Патент США № | 10698422 |
---|---|
Автор(ы) | Tuukkanen и др. |
Дата выдачи | 30 июня 2020 г. |
Embodiments include apparatus and methods for determining link level wind factors and providing routes for drones based on the wind factors. At least a portion of the route corresponds to airspace above a road network. Wind factor values are assigned to a range of altitudes of drone air space above a road link of the road network based on a wind model and stored in a database. The wind model is applied to a location based on wind condition data and three-dimensional (3D) features from 3D map data associated with the location. The route is optimized based on the determined wind factors.
Авторы: | Marko Tuukkanen (Schlenzer, DE), Jerome Beaurepaire (Berlin, DE) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | HERE Global B.V. (Eindhoven, NL) |
||||||||||
ID семейства патентов | 65896041 | ||||||||||
Номер заявки: | 15/724,974 | ||||||||||
Дата регистрации: | 04 октября 2017 г. |
Document Identifier | Publication Date | |
---|---|---|
US 20190101934 A1 | Apr 4, 2019 | |
Класс патентной классификации США: | 1/1 |
Класс совместной патентной классификации: | G06Q 10/047 (20130101); G01C 21/20 (20130101); G01C 21/3691 (20130101); G06F 30/20 (20200101); G05D 1/0615 (20130101); G05D 1/101 (20130101); B64C 39/024 (20130101); G01C 21/32 (20130101); B64C 2201/145 (20130101); B64C 2201/14 (20130101) |
Класс международной патентной классификации (МПК): | G05D 1/06 (20060101); G01C 21/36 (20060101); G06Q 10/04 (20120101); G05D 1/10 (20060101); G06F 30/20 (20200101) |
6600991 | July 2003 | Jardin |
8818696 | August 2014 | Klooster et al. |
8963353 | February 2015 | Ekanayake |
9406237 | August 2016 | Downey et al. |
9583007 | February 2017 | Ubhi et al. |
10023323 | July 2018 | Roberts |
10269257 | April 2019 | Gohl |
2008/0147366 | June 2008 | Schutz |
2010/0305767 | December 2010 | Bengtson |
2016/0217694 | July 2016 | Batla |
2016/0253908 | September 2016 | Chambers et al. |
2016/0371984 | December 2016 | Macfarlane |
2017/0011340 | January 2017 | Gabbai |
2017/0039764 | February 2017 | Hu et al. |
2017/0076610 | March 2017 | Liu |
2017/0316510 | November 2017 | Hertz |
2018/0143627 | May 2018 | Lee |
2018/0293898 | October 2018 | Redmann |
2019/0145794 | May 2019 | Ketchell, III |
AIRMAP, "AIRMAP for Stakeholders, for Manufacturers, for Developers, for Operators"https://www.airmap.com/, pp. 1-41. Accessed Oct. 4, 2017. cited by applicant . Amorim; et al., "CFD Modelling of the Pedestrian Wind Comfort in a City Avenue", https://www.researchgate.net/profile/Sylvio_De_Freitas/publicati- on/265087608_CFD_modelling_of_the_pedestrian_wind_comfort_in_a_city_avenue- /links/53fe482b0cf283c3583bd211/CFD-modelling-of-the-pedestrian-wind-comfo- rt-in-a-city avenue.pdf?origin=publication_detail, pp. 1-7, Jun. 2014. cited by applicant . David Galway:, "Urban Wind Modeling with Application to Autonomous Flight", http://atarg.mae.carleton.ca/files/2015/09/thesis_DG.pdf, pp. 1-168, Apr. 2009. cited by applicant . John Ware; et al. "An Analysis of Wind Field Estimation and Exploitation for Quadrotor Flight in the Urban Canopy Layer", https://groups.csail.mit.edu/rrg/papers/ware_icra16.pdf, pp. 1-8, Jun. 2016. cited by applicant. |