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1
SYSTEMS AND METHODS FOR DRIVER
SCORING WITH MACHINE LEARNING

FIELD

The embodiments relate to generating a risk score for
vehicle drivers by using accumulated vehicle data and
unsupervised machine learning classifiers.

BACKGROUND

Telematics is the integrated use of telecommunications
and informatics. Telematics units are installed in vehicles to
provide a variety of telematics functionality in the vehicle.
This functionality includes, but is not limited to, emergency
warning systems, navigation functionality, safety warnings,
and automated driving assistance. Telematics units are also
capable of recording vehicle information/data related to the
operation of the vehicle and providing that information for
analysis, whether in real-time or not, such as during a time
when the vehicle is being serviced. The vehicle information/
data (telematics data) generated by a telematics unit can be
used in a variety of applications, such as fleet tracking,
shipment tracking, insurance calculations, and in vehicle
management and service.

SUMMARY

The embodiments are best summarized by the claims that
follow below. Briefly, systems and methods are disclosed for
generating driver risk scores by using adaptive models with
machine learning classifiers.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram conceptually illustrating vehicle
telematics system that can be used to generate driver risk
scores.

FIG. 2A is a block diagram illustrating a vehicle telem-
atics device that can be used to generate vehicle data for
computing driver risk scores.

FIG. 2B is a block diagram illustrating a remote server
system that can be used to accumulate vehicle driver data for
a plurality of vehicles and drivers and compute driver risk
scores.

FIG. 3 is a conceptual block diagram of the unsupervised
machine learning system, including example information
that can be useful in computing driver risk scores.

FIG. 4 is a conceptual block diagram of an unsupervised
machine learning system using a plurality of isolation forests
that can be used to identify safe and unsate driving behavior.

FIG. 5 is a flowchart of a method for determining driver
risk scores, in accordance with one embodiment.

FIG. 6 is a flowchart of a method for calculating a driver
risk score by using machine learning classifiers (e.g., isola-
tion forests and/or other classifiers) and ensemble scoring, in
accordance with another embodiment.

FIG. 7 is a flowchart of a method for engaging vehicle
safety systems based on a driver risk score, in accordance
with yet another embodiment.

FIG. 8 is a conceptual block diagram of a supervised
machine learning system.

FIG. 9 is a conceptual block diagram the supervised
machine learning system, including example information.

FIG. 10 illustrates example training data for a supervised
machine learning system.
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FIG. 11 is a conceptual block diagram of a system for
testing the labeled training features of FIG. 10 and deter-
mining a biased driver risk score.

FIG. 12 shows an example plot of unlabeled data for
different vehicles.

FIG. 13 is a conceptual block diagram of a generic
unsupervised machine learning system.

FIG. 14 is another conceptual block diagram of the
unsupervised machine learning system for determining
driver risk scores.

FIG. 15 is an example score distribution that may be
determined.

FIG. 16 is a chart to compare results of vehicle behavior
(e.g., driver behavior) for three factors.

FIG. 17 is a chart to compare the results of vehicle
behavior with an average to determine safe, average, and
unsafe drivers.

DETAILED DESCRIPTION

Turning now to the drawings, systems and methods for
risk scoring for a vehicle operator (e.g., driver) by using
unsupervised machine learning classifiers in accordance
with embodiments that are disclosed. Many vehicles are
equipped with a telematics device which can collect a
variety of sensor data. This data can be analyzed to produce
a driver risk score, based on past information, to predict
future driving risks.

Vehicle telematics systems in accordance with a variety of
embodiments can utilize a variety of advance machine
learning techniques to identify driver behavior and generate
driver risk scores that more accurately assess a particular
driver’s risk than prior art techniques. Unsupervised learn-
ing classifiers (e.g., isolation forests and/or other classifiers)
can identify relationships in uncategorized vehicle driver
data to produce a driver risk score, in accordance with the
embodiments. Unsupervised learning classifiers can detect
anomalies in vehicle driver data by isolating anomalies from
normal points in the data set. These anomalies in data points
can generally indicate safe or unsafe driver behavior. While
an individual unsafe data point may not indicate a risky
driver, a collection of unsafe data points can start to indicate
a risk. In several embodiments, isolation forests, an unsu-
pervised learning machine learning classifier, can be used to
detect such anomalies. Isolation forests, which are discussed
in detail herein, can make random divisions of a data set
while detecting anomalies. Several isolation forests con-
structed for the same data set will each individually make
different random choices and therefore each isolation forest
can be slightly different. In some embodiments, the system
can combine the output of a group of isolation forests by
using an ensemble learning process to generate a driver risk
score.

Systems and methods for driver risk scoring by using
unsupervised machine learning classifiers in accordance
with the disclosed embodiments are described in more detail
herein.

Vehicle Telematics Systems

FIG. 1 is a conceptual diagram of a vehicle telematics
system 100, in accordance with an embodiment. Vehicle
telematics systems described herein can use a variety of data
regarding the operation of a vehicle to generate a operator
risk score (e.g., driver risk score) for the operator (e.g.,
driver) of the vehicle. The vehicle telematics system 100
includes one or more vehicle telematics devices (110, 110,
etc.) typically mounted in or on a vehicle (102, 102', etc.).
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For explanatory purposes, the embodiments are described
herein by using vehicles operated by drivers. A driver is a
vehicle operator of various types of vehicles. A vehicle
operator can be a vehicle driver, a ship captain, an airplane
pilot, a drone pilot, a motorcycle rider, a bicycle rider, an
automated operator, and/or a remote operator, among other
operators. A vehicle (102, 102', etc.) can be any car, truck,
bus, train, airplane, helicopter, drone, motorcycle, bicycle,
watercraft, land craft, and/or aircraft, among other vehicles.
A vehicle (102, 102", etc.) can be manned, unmanned,
motorized, unmotorized, directly operated, remotely oper-
ated, artificial intelligence operated, self-driving, self-flying,
and/or self-sailing, among other things. A vehicle can be
operated by an operator (e.g., driver) and/or operated at least
in part by an automated system (e.g., self-driving system,
etc.).

Many other configurations of the vehicle 102 are within
the scope of the present technology. As one of many
examples, FIG. 1 shows the vehicle 102' including a vehicle
telematics device 110' having a mobile communication
device 116'. The vehicle telematics device 110' is coupled to
a vehicle data bus 112" and an I/O interface 114'. The devices
110', 112', 114, and 116' function like the devices 110, 112,
114, and 116, but may have different physical configurations.

The vehicle telematics device 110 can be coupled to a
connector and/or a wire harness in communication with a
vehicle data bus 112 of the vehicle 102 to obtain power and
exchange signals with one or more vehicle devices or
sensors. The vehicle telematics device 110 can further be
coupled to a wired or wireless input/output (I/O) interface
114 and/or a mobile communications device 116 as appro-
priate to the requirements of specific applications of the
embodiments.

In a variety of embodiments, the vehicle telematics device
110 communicates with the remote server system 130 via the
mobile communications device 116 over a network 120. In
a variety of embodiments, the network 120 is the Internet. In
many embodiments, the network 120 is any wired or wire-
less network, such as a cellular network, between the vehicle
telematics device 110 and/or the remote server system 130.
In a number of embodiments, the remote server system 130
is implemented by using a single server system. In several
embodiments, the remote server system 130 is implemented
by using multiple server systems.

In a variety of embodiments, the vehicle telematics device
110 is installed in a vehicle 102 having the vehicle data bus
112. In several embodiments, the vehicle telematics device
110 is connected to a vehicle diagnostic connector that
provides access to the vehicle data bus 112. The vehicle
telematics device 110 can obtain data from any of a variety
of vehicle devices connected to the vehicle data bus 112
utilizing any of a variety of techniques as appropriate to the
requirements of specific applications of embodiments.
Vehicle devices can include, but are not limited to, engine
sensors, electronic control unit (ECU) devices, alternator
sensors, vibration sensors, voltage sensors, oxygen sensors,
Global Positioning System (GPS) receivers, ignition
devices, weight sensors, wireless network devices, and/or
acceleration determination devices. Systems and methods
for connecting to a vehicle data bus that can be utilized in
accordance with the embodiments are described in SAE
J1978, titled “OBD 1I Scan Tool,” first published by SAE
International of Troy, Mich. on Mar. 1, 1992 and last updated
Apr. 30, 2002. Systems and methods for obtaining data from
devices connected to a vehicle data bus are described in SAE
J1979, titled “E/E Diagnostic Test Modes,” first published
by SAE International on Dec. 1, 1991 and last updated Aug.
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11, 2014. The disclosures of SAE J1978 and SAE 11979 are
hereby incorporated by reference in their entirety. In a
number of embodiments, the vehicle telematics device is
connected directly, either wired or wirelessly, to one or more
sensors within the vehicle 102 and/or does not utilize the
vehicle data bus 112.

The vehicle telematics device 110 can include any of a
variety of sensors and/or devices, including those described
herein with respect to the vehicle data bus and any described
in more detail herein, to obtain data regarding the status of
the vehicle and its environment. The vehicle telematics
device 110 can also communicate with any of a variety of
sensors and/or devices by using the 1/O interface 114. The
1/O interface 114 can be any connection, including wired and
wireless connections, as appropriate to the requirements of
specific applications of the embodiments.

In several embodiments, the vehicle telematics device 110
is capable of executing scripts to read data and/or perform
particular processes. These scripts can be pre-loaded on the
device and/or obtained from the remote server system 130,
vehicle data bus 112, and/or the I/O interface 114 as appro-
priate to the requirements of specific applications of the
embodiments. The vehicle telematics device 110 can be
self-powered and/or connected into the electrical system of
the vehicle 102 in which the vehicle telematics device 110
is installed. In a variety of embodiments, the vehicle tele-
matics device is powered via the vehicle data bus 112 and/or
the I/O interface 114.

In many embodiments, one of the sensor devices 240 of
the vehicle telematics device 110 is a Global Positioning
System (GPS) receiver in order to determine the location,
speed, and/or acceleration of the vehicle 102. In many
embodiments, one of the sensor devices 240 of the vehicle
telematics device 110 is a multidimensional accelerometer to
acquire acceleration and/or speed of the vehicle 102.

In a variety of embodiments, the vehicle telematics device
110 and/or remote server system 130 provides a user inter-
face allowing for visualizing and interacting with the data
transmitted and/or received between the systems. In several
embodiments, the vehicle telematics device 110 and/or
remote server system 130 provides an interface, such as an
application programming interface (API) or web service that
provides some or all of the data to third-party systems for
further processing. Access to the interface can be open
and/or secured by using any of a variety of techniques, such
as by using client authorization keys, as appropriate to the
requirements of specific applications.

Although a specific architecture of a vehicle telematics
system in accordance with embodiments are discussed
herein and illustrated in FIG. 1, a variety of architectures,
including sensors and other devices and techniques not
specifically described herein, can be utilized in accordance
with embodiments. Furthermore, the processes described
herein can be performed by using any combination the
vehicle telematics device, mobile communications device,
and/or the remote server systems as appropriate to the
requirements of specific applications of the embodiments.

Vehicle Telematics Devices and Remote Server Systems

FIG. 2A is a conceptual block diagram of the vehicle
telematics device 110. Vehicle telematics devices and
remote server systems in accordance with the embodiments
can transmit and receive data regarding the performance of
a vehicle and/or driver risk scores. The vehicle telematics
device 110 includes a processor 210 in communication with
memory 230. The vehicle telematics device 110 can also
include one or more communication interfaces 220 capable
of sending and receiving data. In a number of embodiments,
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the communication interface 220 is in communication with
the processor 210, the memory 230, and/or the sensor
device(s) 240. In several embodiments, the memory 230 is
any form of storage configured to store a variety of data,
including, but not limited to, a vehicle telematics application
232, sensor data 234, and telematics data 236. In many
embodiments, the vehicle telematics application 232, sensor
data 234, and/or telematics data 236 are stored by using an
external server system and received by the vehicle telemat-
ics device 110 by using the communications interface 220.

Sensor devices 240 can include RPM sensors, voltage
sensors, GPS receivers, noise sensors, vibration sensors,
acceleration sensors, weight sensors, and any other device
capable of measuring data regarding a vehicle as appropriate
to the requirements of specific applications of the embodi-
ments. Sensor devices 240 can be included within the
vehicle telematics device 110 and/or located external to the
vehicle telematics device 110. The vehicle telematics device
110 can communicate with external sensor devices by using
the communications interface 220, such as via a vehicle data
bus, I/O interface (including serial interfaces), mobile com-
munications device, and/or a network connection as appro-
priate to the requirements of specific applications of embodi-
ments. In a variety of embodiments, a vehicle telematics
device is connected to a diagnostic connector (e.g. an OBD
II port) in a vehicle. In some embodiments, information
collected from sensor devices 240 and/or sensor data 234
can be used as vehicle driver data in a variety of machine
learning processes for driver scoring as described in more
detail herein. For example, vehicle driver data (e.g., raw data
collected by vehicle telematics device) can include, without
limitation, vehicle speed, acceleration data, and steering data
over time and location for the detection of speeding, hard
acceleration, hard deceleration, vehicle swerving, time of
day, date, traffic information, weather, continuous hours
driven. The system can combine raw data from a vehicle
telematics device with server-generated data, such as loca-
tion, time, date, weather, and/or other data. It should be
readily appreciated by one having ordinary skill that these
are merely illustrative examples and any such information
can be used as appropriate to the requirements of specific
applications.

FIG. 2B is a conceptual block diagram of a remote server
system, in accordance with an embodiment. The remote
server system 130 includes a processor 252 in communica-
tion with memory 260. The remote server system 130 can
also include one or more communications interfaces 254
capable of sending and receiving, such as with a vehicle
telematics device. In a number of embodiments, the com-
munication interface is in communication with the processor
252 and/or the memory 260. In several embodiments, the
memory 260 is any form of storage configured to store a
variety of data, including, but not limited to, a server
application 262, an operating system 264, vehicle driver data
266, and historical data 268. In many embodiments, the
server application 262, an operating system 264, vehicle
driver data 266, and/or historical data 268 are stored by
using an external server system and received by the remote
server system 130 by using the remote communications
interface 254.

The processor 210 and processor 252 can be directed, by
the vehicle telematics application 232 and the server appli-
cation 262 respectively, to perform a variety of driver risk
scoring processes. Driver risk scoring processes can include
obtaining data vehicle driver data and generating driver risk
scores by using a vehicle telematics device and/or a remote
server system by using a variety of machine learning sys-
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tems. Driver risk scoring processes that can be performed in
accordance with embodiments are described in more detail
herein.

Although specific architectures for vehicle telematics
devices and remote server systems in accordance with
embodiments are conceptually illustrated in FIGS. 2A-B,
any of a variety of architectures, including those that store
data or applications on disk or some other form of storage
and are loaded into memory at runtime, can also be utilized.
Additionally, any of the data utilized in the system can be
cached and transmitted once a network connection (such as
a wireless network connection via the communications
interface) becomes available. In a variety of embodiments,
a memory includes circuitry such as, but not limited to,
memory cells constructed by using transistors, that are
configured to store instructions. Similarly, a processor can
include logic gates formed from transistors (or any other
device) that dynamically perform actions based on the
instructions stored in the memory. In several embodiments,
the instructions are embodied in a configuration of logic
gates within the processor to implement and/or perform
actions described by the instructions. In this way, the sys-
tems and methods described herein can be performed uti-
lizing both general-purpose computing hardware and by
single-purpose devices.

Rule-Based Algorithms

Traditionally, rule-based algorithms calculate a driver risk
score via algorithms that use manually inputted rules. Driver
risk scores are manually calculated using rule-based algo-
rithms with the data frequently forced into a bell curve to
facilitate the calculation of the driver risk score. Examples
of manually inputted rules are the following: “If the driver
has more than ten instances of hard braking over seven days,
then the driver risk score is reduced; and if the driver has less
than three instances of hard braking over seven days, then
the driver risk score is increased.”

Unfortunately, there are several problems with manual,
rule-based algorithms. A first problem is manual threshold-
ing, which does not enable an accurate general application
to different locales and diverse geography. For example, ten
hard braking instances might be considered excessive in
Omaha, Nebr., but might be considered low in New York
City. So, it might be fair for the manual, rule-based algo-
rithms to ding such a driver in Omaha, while it might by
unfair to ding such a driver in New York City. A second
problem with manual, rule-based algorithms is unjustified
data transformations. For example, forcing the raw data
received from vehicle telematics devices into a bell curve,
for the sake of easy calculations, might not accurately reflect
reality. A third problem with manual, rule-based algorithms
is the rules are arbitrary, which leads to suboptimal algo-
rithm performance. For example, a rule that states, for
example, “ten instances of hard braking are excessive”, may
be a best guess by an expert. Unfortunately, such a best
guess is highly unlikely to be better than an estimate that is
empirically determined from raw data received from vehicle
telematics devices. A fourth problem is that manually input-
ted rules incorporate human biases. For example, an expert
in vehicle driving safety may consider hard left turns to be
unsafe, when evidence may show hard left turns are not
actually unsafe.

Supervised Machine [earning Systems

Traditionally, supervised learning classifiers may be used
to identify relationships in labeled vehicle telematics infor-
mation. A known (or labeled) set of vehicle telematics
device information, which can be referred to as a training
set, can be used to train the machine learning classifier. Once
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the machine learning classifier is trained by using the labeled
training set, the machine learning classifier can classify
unknown sets of vehicle telematics device information.
Correctly classified information can be added to the training
set to continuously improve the performance of the machine
learning system. Similarly, information related to incorrectly
classified vehicle telematics information can also be added
to the training data set to improve the precision of the
machine learning system.

Supervised machine learning classifiers analyze informa-
tion collected by vehicle telematics devices to produce a
driver risk score. Supervised learning classifiers identify
relationships in labeled vehicle telematics information. A
known (or labeled) set of vehicle telematics device infor-
mation, which can be referred to as a training set, is used to
train the machine learning classifier. Once the machine
learning classifier is trained by using the labeled training set,
the machine learning classifier classifies unknown sets of
vehicle telematics device information. Correctly classified
information is added to the training set to continuously
improve the performance of the machine learning system.
Similarly, information related to incorrectly classified
vehicle telematics information is added to the training data
set to improve the precision of the machine learning system.

FIG. 8 is a conceptual block diagram of a supervised
machine learning system 800. The system 800 receives raw
data 802 from one or more vehicle telematics devices. From
the raw data 802, the system 800 performs feature extraction
to generate Feature 1 through Feature n. Fach feature is a
description about the raw data 802. Example features are
described with reference to FIG. 9. The system 800 inputs
the features into a model 812, which predicts an outcome
probability Pr(outcome).

FIG. 9 is a conceptual block diagram of the supervised
machine learning system 800, including example feature
extraction of information from the available vehicle/driver
data. The system 800 receives driver data 802 from one or
more vehicle telematics devices. From the driver data 902,
the system 800 performs feature extraction to generate a
speeding description, a hard acceleration description, a hard
deceleration description, a serving description, and so on.
Each feature is a description about the driver data 802. At the
feature extraction stage, the system 800 is not yet calculating
a driver risk score. The system is, for example, keeping track
of the number of times an event (e.g., speeding) occurs (e.g.,
frequency). In this example, the system inputs the features
into a model 812, which predicts an outcome probability
Pr(Driver has accident), which is the probability of the
driver having an accident.

FIG. 10 illustrates example training data for a supervised
machine learning system. Supervised learning involves pro-
cedures training the model, including providing labeled data
to a model. When an outcome is known, the supervised
system can label data points. In example 1000, Driver A has
an outcome of an accident. Accordingly, the supervised
system can label the following features for Driver A: speed-
ing 25% of the driving time; hard accelerations 60% of
acceleration time; and hard decelerations 40% of decelera-
tion time. The supervised system labels those features as
being associated with an accident. In example 1020, Driver
B has an outcome of no accident. According, the supervised
system applies a label to the following features for Driver B:
speeding 15% of the driving time; hard accelerations 40% of
acceleration time; and hard decelerations 60% of decelera-
tion time. The supervised system labels those features as
being associated with no accident, or the system does not
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those features. The supervised system can train the models
for hundreds or thousands of labeled data points (e.g.,
labeled features).

FIG. 11 is a conceptual block diagram of a system 1100
for testing the labeled training features of FIG. 10. The
system generates a model 1102 based on labeled features,
which are generated as discussed with reference to FIG. 10.
As shown in FIG. 11, the system receives unlabeled data,
input that unlabeled data into the model 1102, and generate
a probability Pr(X), which is the probability of event X
happening. In this example, the supervised system calculates
an accident probability Pr(accident) equal to 75%, given the
unlabeled data inputted into the trained model 1102.

Unfortunately, supervised machine learning requires an
adequate amount of labeled historical data to train models.
Meanwhile, a system may not have been labeling features
when certain events occur (e.g., drivers get into accidents)
over time in a database of historical driver data. Lack of an
adequate database of historical labeled features, renders the
supervised machine learning system inaccurate and unreli-
able.

Unsupervised Machine Learning Systems

Unsupervised machine learning systems, in accordance
with embodiments, are designed to solve problems associ-
ated with rule-based algorithms and supervised machine
learning systems. Unsupervised machine learning classifiers
can analyze information collected by vehicle telematics
devices to produce a driver risk score. Unsupervised learn-
ing classifiers (e.g., isolation forests and/or other classifiers)
can identify relationships in uncategorized vehicle driver
data to produce a driver risk score. Unsupervised learning
classifiers can detect anomalies in vehicle driver data by
isolating anomalies from normal points in the data set. These
anomalies in data points can generally indicate safe or
unsafe driver behavior. While an individual unsafe data
point may not indicate a risky driver, a collection of unsafe
data points can start to indicate a risk. In several embodi-
ments, the system can use isolation forests, an unsupervised
learning machine learning classifier, to detect such anoma-
lies. Isolation forests, which are described herein, can make
random divisions of a data set while detecting anomalies.
Several isolation forests constructed for the same data set
will each individually make different random choices and
therefore each isolation forest can be slightly different. In
some embodiments, the system can combine the output of a
group of isolation forests by using an ensemble learning
process to generate a driver risk score.

FIG. 12 shows an example plot 1200 of unlabeled data, in
accordance with an embodiment. The axes do not mean
anything specific. The plot 1200 is provided for explanatory
purposes. The unsupervised system receives the unstruc-
tured, unlabeled data shown in the plot 1200. The unsuper-
vised system calculates some sort of judgment in terms of
“same versus different” for each unlabeled data point. In the
example of FIG. 12, the unsupervised system determines
data points 1202, 1204, and 1206 are “different” and deter-
mines all the other data points are “same”.

FIG. 13 is a conceptual block diagram of an unsupervised
machine learning system 1300, in accordance with an
embodiment. The system 1300 receives raw vehicle driver
data 1302 from one or more vehicle telematics devices. The
system receives a set of features for data extraction. For
example, a human can determine that the system 1300 will
extract data associated with the following features: accel-
eration, deceleration, and speed. Each feature is a descrip-
tion about the vehicle driver data 1302. Example features are
described with reference to FIG. 3. From the vehicle driver
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data 1302, the system 1300 performs feature extraction to
generate data associated with Feature 1 through Feature n.
The system 1300 inputs the features into a model 1312,
which assigns a label (e.g., L, . . ., L) to the data. The
model 1312 includes any algorithm that uses a machine
learning classifier to perform detection of anomalies (e.g.,
outliers, “different” data, etc.). Unsupervised learning clas-
sifiers for the model 1312 can include (but are not limited to)
k-means clustering, mixture models, hierarchical clustering,
anomaly detection, artificial neural networks, expectation-
maximization algorithms, principal component analysis,
independent component analysis, singular value decompo-
sition, isolation forests, and/or a combination of unsuper-
vised learning classifiers.

FIG. 3 is a conceptual block diagram of an unsupervised
machine learning system 300, including example driving
features that may be extracted from the vehicle driver data
in order that it may be classified. Machine learning systems
in accordance with embodiments can receive vehicle driver
data from a vehicle telematics device to identify baseline
driver behavior and/or anomalies in the vehicle driver data.
The machine learning system 300 includes vehicle driver
data 302. The vehicle driver data 302 can include a variety
of information such as speeding 304, hard acceleration 306,
hard deceleration 308, and/or swerving 310, which is evi-
dence about a driver’s driving behavior or habits. An unsu-
pervised machine learning classifier 312 can receive infor-
mation as input and use it to generate a label 314. In some
embodiments, label 314 can indicate anomalies in vehicle
driver data such as labeling the data according to a binary
decision (e.g., SAME or DIFFERENT). In various embodi-
ments, SAME labels can indicate SAFE driver actions
and/or DIFFERENT labels can indicate UNSAFE driver
actions. Accordingly, the unsupervised system can operate
under the assumption that an average driver (e.g., SAME
driver) is a SAFE driver, while an anomalous driver (e.g.,
DIFFERENT driver) is an UNSAFE driver. However, it
should be noted that any labels (including any number of
labels) can be utilized as appropriate to the requirements of
specific applications of embodiments.

An isolation forest is one technique, among others, to
detect data anomalies (e.g., “different” data, outliers, etc.).
Isolation forests are based on the fact that anomalies are data
points that are few and different. Because of these properties,
anomalies are susceptible to a mechanism called isolation.
Isolation forests introduce the use of isolation as a more
effective and efficient means to detect anomalies than the
commonly used basic distance and density measures. More-
over, an isolation forest algorithm has a relatively low linear
time complexity and a relatively small memory requirement,
compared to other machine learning methods. An isolation
forest algorithm can isolate observations by randomly
selecting a feature and then randomly selecting a split value
between the maximum and minimum values of the selected
feature. Isolating anomaly observations is easier because
only a few conditions are needed to separate those cases
from the normal (e.g., “same”) observations. On the other
hand, isolating normal observations requires more condi-
tions. Accordingly, an anomaly score can be calculated as
the number of conditions required to separate a given
observation. The isolation forest algorithm constructs the
separation by creating isolation trees (e.g., random decision
trees). Then, the system calculates a score as a path length
to isolate the observation.

The unsupervised system 300 randomly builds many
decision trees for each feature. The unsupervised system 300
then averages the tree distance between a point and its
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nearest neighbors. The clustering includes training observa-
tions, new regular observations, and new abnormal obser-
vations. The training observations represent training set
data. The new regular observations represent driver behavior
that the unsupervised system 300 may consider to be normal
(e.g., “same”). The new abnormal observations represent
driver behavior that the unsupervised system 300 may
consider to be an anomaly (e.g., outlier or “different™).

If using isolation forests, vehicle driver data is clustered
according to the driving behaviors indicated in the vehicle
driver data to identify baseline driver behavior. By cluster-
ing the vehicle driver data to identify large clusters of driver
behavior and assign those as the baseline driver behavior,
labels can be applied to the clustered vehicle driver data to
identify safe drivers as most drivers do not regularly have
accidents, so that these clusters identifying baseline driver
behavior can identify a variety of characteristics of ordinary
driving without relying on external labels being applied to
the source data. Anomalies in the vehicle driver data can be
identified by locating pieces of vehicle driver data that are
statistically deviant from the baseline driver behavior. Addi-
tionally, the identification of baseline driver behavior can
overcome a variety of difficulties in applying machine
learning techniques when the vehicle driver data does not
include labels identifying the vehicle driver data.

The unsupervised machine learning classifier 312 can
include a variety of classifiers including (but not limited to)
supervised learning classifiers, unsupervised learning clas-
sifiers, and/or a combination of several classifiers. Super-
vised learning classifiers can include (but are not limited to)
artificial neural networks, nearest neighbor algorithms, deci-
sion trees, support vector machines, random forests,
ensembles of classifiers, and/or a combination of supervised
learning classifiers. In a variety of embodiments, supervised
learning classifiers can be further adapted to be unsupervised
learning classifiers for the identification of driver behavior
classification as appropriate to the requirements of specific
applications of embodiments. Unsupervised learning classi-
fiers can include (but are not limited to) k-means clustering,
mixture models, hierarchical clustering, anomaly detection,
artificial neural networks, expectation-maximization algo-
rithms, principal component analysis, independent compo-
nent analysis, singular value decomposition, isolation for-
ests, and/or a combination of unsupervised learning
classifiers.

Additionally, machine learning classifiers can optionally
use feature extraction to combine information in a way that
still meaningfully represents the data. It should be readily
apparent to one having ordinary skill in the art that many
feature extraction techniques are available such as (but not
limited to) principal component analysis, independent com-
ponent analysis, isomap analysis, and/or partial least
squares, and that feature extraction itself is optional.

FIG. 4 is conceptual block diagram of an unsupervised
machine learning system 400, in accordance with an
embodiment. The machine learning system 400 uses
ensemble learning with isolation forests (e.g., ensemble of
isolation forests) to generate driver risk scores. Isolation
forests are shown for explanatory purposes. However, the
machine learning system 400 can use any of a variety of
machine learning classifiers to generate driver risk scores.

The unsupervised machine learning system 400 includes
vehicle driver data 402. This driver data can be input one or
more isolation forests 404. Isolation forests (or iForests) are
an machine learning classifier that can detect anomalies in a
data set rather than modelling normal points and are gener-
ally made of many isolation trees (or iTrees). In many
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embodiments, anomalies in vehicle telematics device infor-
mation can be more susceptible to isolation than normal
points. Information can be isolated through isolation trees.
In a variety of embodiments, isolation trees are binary trees,
although a variety of data structures can be utilized to
express isolation trees as appropriate to the requirements of
specific applications of embodiments. An attribute can ran-
domly be selected at each node and a random split point can
be chosen that can divide the data set into two sub-regions.
This process can be repeated until every point in the data set
is isolated from the rest of the points. The top of an isolation
tree will generally contain points that are isolated quickly.

An isolation forest classifier can construct many isolation
trees, each slightly different due to the random split points.
Anomalies in a data set are generally points that have a
shorter average path length than normal points in a set of
isolation trees within an isolation forest. Detected anomalies
within isolation forests can be used to label an isolation
forest as SAFE and/or UNSAFE. Systems and methods for
generating isolation forests are described in “Isolation For-
ests” to F. T. Liu, K. M. Ting, and Z.-H. Zhou in Proc. ICDM
2008, pages 413-422, 2008, the disclosure of which is
hereby incorporated by reference in its entirety. In some
embodiments, the output of many isolation forests can be
aggregated to generate a driver risk score by using ensemble
scoring.

Although specific systems for using machine learning
classifiers in accordance with embodiments are shown in
FIG. 3 and systems for generating driver risk scores by using
isolation forests are described herein with respect to FIG. 4,
the system can use any of a variety of machine learning
classifiers to generate driver risk scores, in accordance with
embodiments.

The system can parallelize the computations of the
machine learning classifiers (e.g., ensemble isolation for-
ests) across as many processing cores that are available. For
example, if a server has n processors, then each of the n
processors can work to perform computations for one
machine learning classifier (e.g., one isolation forest).

FIG. 14 is another conceptual block diagram of the
unsupervised machine learning system 400, in accordance
with an embodiment. FIG. 15 illustrates how the unsuper-
vised system can calculate a driver risk score. The system
400 sends each data point to multiple isolation forest. Each
isolation forest is different from the rest. The system 400
calculates a risk score based on the one or more labels
generated by the one or machine learning classifiers, which
are isolation forests in the example of FIG. 14. The driver
risk score is further described with reference to FIG. 6.

FIG. 15 is an example score distribution 1500, in accor-
dance with an embodiment. In this example, the system
filters data to consider a population of 313 sedans. The
filtering is an attempt to compare similar vehicles. For
example, it would be inappropriate to compare sedans with
dump trucks. The system considers raw data captured by
vehicle telematics devices over the course of one month. The
system uses the following features: acceleration, decelera-
tion, and speed, which are discussed with reference to FIG.
3. The system uses the ensemble isolation forest method,
which is described with reference to FIG. 4. This example
uses two hundred and fifty-six (256) isolation forest votes
for the score distribution 1500. As shown in FIG. 15, about
23 vehicles had a score between 2 and 10; about 120
vehicles had a score between 11 and 20, and so on.

FIG. 16 is a comparison 1600 of results of vehicle
behavior (e.g., driver behavior), in accordance with an
embodiment. The system uses the following features: accel-
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eration, deceleration, and speed, which are discussed with
reference to FIG. 3. The numbers on the vertical axis
represent normalized scores. Regarding the acceleration
feature, a sedan 2 is relatively far away from the average
acceleration, while a sedan 1 is relatively close to the
average acceleration. Regarding the deceleration feature,
sedan 2 is close to the average deceleration, while sedan 1
is also not too far away from the average deceleration.
Regarding speed, there is no data for sedan 2, while sedan
1 is not that far away from the average speed. Accordingly,
for sedan 1, the system calculates a driver risk score of 9,
which indicates a relatively low level of risk. For sedan 2,
the system calculates a driver risk score of 95, which
indicates a relatively high level of risk. Note that magnitude
and spectral differences. Isolation forests can learn spectral
patterns as well as dynamic thresholds.

FIG. 17 is a comparison 1700 of results of vehicle
behavior associated with unsafe drivers, in accordance with
an embodiment. The system uses the following features:
acceleration, deceleration, and speed, which are discussed
with reference to FIG. 3. The numbers on the vertical axis
represent normalized scores. In this example, the behaviors
of sedan 3, sedan 4, and sedan 5 are compared. Each sedan
(e.g., driver) is substantially far away from the average
acceleration, the average deceleration, and/or the average
speed. Accordingly, the system calculates each sedan to be
associated with a driver risk score of 100, which indicates
the highest rating for the level of risk.

Methods of Driver Risk Scoring with Unsupervised
Machine Learning

FIG. 5 is a flowchart of a method 500 for determining
driver risk scores, in accordance with an embodiment.
Driver risk scoring processes can include gathering vehicle
driver data from sensor devices and calculating driver risk
scores. The system receives (502) vehicle driver data by (but
not limited to) a vehicle telematics device and/or a remote
server system. A vehicle telematics device can receive
vehicle driver data directly from vehicle telematics device
sensors. Additionally, a vehicle telematics device can
receive vehicle driver data, such as (but not limited to)
historical driver data, from a remote server system. Simi-
larly, a remove server can receive vehicle driver data from
a plurality of vehicle telematics devices that is collected by
one or more sensors of the vehicle telematics devices.

The system identifies (504) anomalies in vehicle driver
data with an adaptive machine learning model. In many
embodiments, the model includes a machine learning clas-
sifier, such as (but not limited to) an unsupervised learning
machine learning classifier, that can label points in the driver
data that are the SAME (part of a cluster) and DIFFERENT
(an anomaly). Driver data labeled SAME can indicate SAFE
driver actions. Similarly, driver data labeled DIFFERENT
can indicate UNSAFE driver actions. A vehicle telematics
device can receive the adaptive machine learning model,
such as (but not limited to) coefficients of the model, from
a remote server system.

The system calculates (506) a driver risk score by using
anomalies identified in vehicle driver data. This calculation
can be performed by (but is not limited to) one or more
processors within the vehicle telematics device. This calcu-
lation can alternatively or additionally be performed by one
or more processors of the remote server system.

A driver may receive feedback from the telematics device
in real time about his driving behavior. The driver may
receive a warning (e.g. visible warning light, audible mes-
sage, vibration from vibrator) from the telematics device if
his/her driver score is unsafe or a periodic compliment (e.g.
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visible positive reinforcement light, audible message, vibra-
tion from vibrator) if the driver score is safe or improves.
The feedback regarding driving behavior may be sent
remotely from the remote server system to the telematics
device and provided to the user with driver risk score
calculations being performed by the remote server system.

In some embodiments, an individual driver can be tracked
across several vehicles to calculate a driver risk score. In
such cases, vehicle driver data from multiple vehicles can be
used to calculate a driver risk score. Alternatively, a driver
risk score can be calculated for an individual vehicle for a
specific date range. In some embodiments, a driver risk
score for a vehicle from two date ranges can be compared to
see if driving has improved or become riskier.

Although a variety of processes for generating a driver
risk score are discussed with respect to FIG. 5, any of a
variety of processes capable of identifying risks from
anomalies and clusters in vehicle driver data can be utilized
as appropriate to the requirements of specific applications in
accordance with several embodiments.

FIG. 6 is a flowchart of a method 600 for calculating a
driver risk score by using machine learning classifiers (e.g.,
isolation forests and/or other classifiers) and ensemble scor-
ing, in accordance with an embodiment. Driver risk scoring
processes can include any of a variety of machine learning
classifiers to identify anomalies and clusters in vehicle
driver data. Anomalies in vehicle driver data are distinguish-
able from the clusters of vehicle driver data. Isolation forests
are just one example of machine learning classifiers that can
be used to distinguish clusters of vehicle driver data from
anomalies in vehicle driver data. The anomalies are the
outliers from the clusters generated with the models.

The system can receive (601) vehicle driver data. For
example, a remote server system can receive vehicle driver
data from a plurality of vehicle telematics devices. As
another example, a vehicle telematics device, or a comput-
ing device coupled to the vehicle telematics device, can
receive vehicle driver data from sensors and/or from a
remote server system. The remote server system, the vehicle
telematics device, and/or another computing device can
receive vehicle driver data periodically, or in real time as a
driver is driving a vehicle.

The system can filter (602) the received vehicle driver
data so that proper comparisons are made between similar
vehicles. For example, the system can filter data so that
sedan to sedan comparisons are made with the data, and data
from sedans are not compared with data from dump trucks.
As another example, the system can filter data so that a
sports car is compared to other sports cars, and not to pickup
trucks. However, embodiments are not limited to these
examples. Any filtering is permissible to compare any
vehicle type.

The system generates (604) one or more unsupervised
machine learning models by using the vehicle driver data.
The models are used to classify the vehicle driver data to
identify clusters and distinguish anomalies with little to no
bias. One such unsupervised machine learning model that
can be used is isolation forests.

The system identifies (606) anomalies in the vehicle
driver data by using the models. The anomalies are the
outliers from the clusters generated with the models.

The system uses the identified anomalies in the driver data
to label (608) the output of each model as SAFE or
UNSAFE. A specific vehicle driver data point in a cluster of
vehicle driver data can be labeled SAFE and indicate safe
driver actions. A specific vehicle driver data point that is an
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anomaly outside the clusters can be labeled UNSAFE and
indicate unsafe driver actions.

The system can calculate (610) a driver risk score by
using the number of models labeled UNSAFE and using an
ensemble scoring machine learning classifier. It should be
readily apparent to one having ordinary skill that ensemble
isolation forests are merely illustrative and any variety of
processes to evaluate a collection of labeled machine learn-
ing classifiers to generate a driver risk score as appropriate
to many embodiments. In various embodiments, a risk score
can be calculated by using the following equation:

. 100 x Num_UNUSAFE
Risk Score(v;) = e ——

where v, is a set of vehicle driver data, n is a total number
of models, and Num_UNSAFE is the number of models
with an output of UNSAFE. The system can compare driver
risk score to a threshold to determine what sort of risk it
indicates. As an illustrative example, where driver risk
scores can range from 0-100, a driver risk score of 9 can
indicate a low level of risk and a driver risk score of 95 can
indicate a high level of risk. However, it should be noted that
the system can use any risk scoring range, including those
where a risk score below a threshold value indicates a high
risk and a risk score above a threshold value includes a low
risk, as appropriate to the requirements of specific applica-
tions of embodiments.

In many embodiments, driver risk scoring processes can
include sending safety control signals to a vehicle for the
safe control thereof when a calculated driver risk score is at
or above a predetermined threshold. As an illustrative
example, these safety control signals can (but are not limited
to) impose limitations on vehicle speed and/or minimum
driving distances from other vehicles, force a vehicle to
change from a user-controlled driving mode to a self-driving
mode, and/or alert other drivers to the unsafe driver by for
example (but not limited to) honking a vehicle horn and/or
flashing vehicle headlights until a driver stops, shuts off,
and/or exits the vehicle.

Accordingly, the system can use a variety of processes to
generate drive risk scores by using machine learning clas-
sifiers (such as isolation forests) and then to control the
operation of a vehicle, in accordance with embodiments.

FIG. 7 is a flowchart of a method 700 for engaging a
vehicle safety system based on a driver risk score, in
accordance with an embodiment. The system obtains,
receives, or calculates (702) a driver risk score. Calculation
of driver risk score is discussed with reference to FIG. 6. The
system identifies (704) one or more safety violations based
on the driver risk score and/or the raw data received from a
vehicle telematics device associated with the vehicle. For
example, the system may identify the vehicle is traveling at
one hundred miles per hour. The system generates (706) one
or more safety control signals based on the identified safety
violation. For example, the system can generate a safety
control signal to instruct the engine (e.g., via an engine
control unit coupled to the processor) to reduce rotations per
minute (rpm).

The system engages (708) one or more safety systems
based on the one or more safety control signals. For
example, the system slows the rpm of the engine based on
a safety control signal, and thereby slows down (e.g.,
reduces velocity) the vehicle. As another example, the
system can include, or communicate with, a display device



US 10,392,022 B1

15

and/or an audio device mounted in the vehicle and coupled
to the processor to alert the driver of the unsafe driving,
based on a safety control signal. As another example, the
system can be coupled to the braking system of a vehicle
(e.g., via an antilock brake control unit coupled to the
processor) to apply the brakes and further slow down the
vehicle based on the control signal. As another example, the
system can be coupled to the transmission system of a
vehicle (e.g., via a transmission control unit coupled to the
processor) to shift down to a lower gear to slow down the
vehicle, based on the control signal. As another example, the
system can be coupled to the ignition system of a vehicle
(e.g., via an ignition or engine control unit coupled to the
processor) to shut the engine off, perhaps after bringing the
vehicle to a stop at a safe location, based on the control
signal. The vehicle can be temporarily disabled from opera-
tion in this case. As another example, the safety system can
be coupled to an autonomous driving (e.g., autopilot) system
coupled to the processor to engage the autopilot based on the
safety control signal to automatically drive the vehicle to a
safe location.

Unsupervised machine learning has several advantages. A
first advantage is the “rules” that have been learned reflect
the dataset and the dataset only. For example, the “rules” are
not arbitrary manually-inputted definitions and do not reflect
human biases. A second advantage is online learning. For
example, the system can learn from a plurality of vehicle
telematics devices in real time or not real time, as appro-
priate. A third advantage is an administrator can quickly and
easily add a new feature (e.g., hard reversing or whatever)
or remove an unwanted feature (e.g., acceleration or what-
ever). The quick adding or removal of features enables rapid
geographic segmentation and learning.

Although the embodiments have been described in certain
specific aspects, many additional modifications and varia-
tions would be apparent to those skilled in the art. In
particular, any of the various processes described herein can
be performed in alternative sequences and/or in parallel (on
the same or on different computing devices) in order to
achieve similar results in a manner that is more appropriate
to the requirements of a specific application. It is therefore
to be understood that the embodiments that are disclosed can
be practiced otherwise than specifically described without
departing from the scope and spirit of this disclosure. Thus,
the embodiments should be considered in all respects as
illustrative and not restrictive. It will be evident to the person
skilled in the art to freely combine several or all of the
embodiments discussed here as deemed suitable for a spe-
cific application. Throughout this disclosure, terms like
“advantageous”, “exemplary” or “preferred” indicate ele-
ments or dimensions that are particularly suitable (but not
essential) to one or more embodiments, and may be modified
wherever deemed suitable by the skilled person, except
where expressly required. Accordingly, the scope of the
embodiments should be determined not by those illustrated
and described, but by the appended claims and their equiva-
lents.

What is claimed is:
1. A vehicle telematics device, comprising:
a processor;
a communications device coupled to the processor;
one or more sensor devices coupled to the processor; and
a memory coupled to the processor;
wherein the vehicle telematics device:
receives a set of unstructured vehicle driver data from
the one or more sensor devices;
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identifies anomalies in the set of unstructured vehicle
driver data by using an unsupervised machine learn-
ing process that identifies relationships in the
unstructured vehicle driver data;

calculates a driver risk score by using the anomalies
identified in the set of unstructured vehicle driver
data and the identified relationships in the uncatego-
rized vehicle driver data; and

transmits the driver risk score to a remote server system
by using the communications device;

wherein using the unsupervised machine learning pro-
cess further comprises generating a plurality of iso-
lation forests that distinguish clusters of the set of
uncategorized vehicle driver data from anomalies in
the set of uncategorized vehicle driver data.

2. The vehicle telematics device of claim 1, wherein the
set of unstructured vehicle driver data is selected from a
group consisting of vehicle speed, vehicle acceleration,
vehicle deceleration, and vehicle swerving.

3. The vehicle telematics device of claim 1, wherein each
isolation forest in the plurality of isolation forests comprises
a plurality of isolation trees.

4. The vehicle telematics device of claim 1, wherein an
isolation forest in the plurality of isolation forests without
identified anomalies is labeled SAFE to indicate safe driving
and wherein an isolation forest with identified anomalies is
labeled UNSAFE to indicate unsafe driving.

5. The vehicle telematics device of claim 1, wherein the
vehicle telematics device calculates the driver risk score by
using an ensemble scoring process.

6. The vehicle telematics device of claim 5, wherein
calculating the driver risk score by using an ensemble
scoring process is evaluated by the vehicle telematics device
by using the following expression:

100 x Num_UNUSAFE
n

Risk Score(v;) =

where v, is a vehicle with a specific set of driver data, n
is a total number of isolation forests in the plurality of
isolation forests, and Num_UNSAFE is the number of
isolation forests in the plurality of isolation forests
labeled UNSAFE.

7. The vehicle telematics device of claim 6, wherein the
driver risk score above a predetermined value indicates an
unsafe driver.

8. The vehicle telematics device of claim 1, wherein the
vehicle telematics device further calculates the driver risk
score for a specific date range.

9. The vehicle telematics device of claim 1, wherein the
communications device is a wireless device.

10. A method for driver risk scoring, the method com-
prising:

receiving a set of unstructured vehicle driver data from
one or more sensor devices by using a vehicle telem-
atics device, wherein the vehicle telematics device
comprises a processor, a memory coupled to the pro-
cessor, a communications device coupled to the pro-
cessor, and the one or more sensor devices coupled to
the processor;

identifying, using the vehicle telematics device, anoma-
lies in the set of unstructured vehicle driver data by
using an unsupervised machine learning process that
identifies relationships in the unstructured vehicle
driver data;
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calculating, using the vehicle telematics device, a driver
risk score by using the anomalies identified in the set of
unstructured vehicle driver data and the identified rela-
tionships in the unstructured vehicle driver data; and

transmitting the driver risk score to a remote server
system by using the communications device;

wherein using the unsupervised machine learning process

further comprises generating a plurality of isolation
forests that distinguish clusters of the set of uncatego-
rized vehicle driver data from anomalies in the set of
uncategorized vehicle driver data by using the vehicle
telematics device.

11. The method of claim 10, wherein the set of vehicle
driver data is selected from the group consisting of vehicle
speed, vehicle acceleration, vehicle deceleration, and
vehicle swerving.

12. The method of claim 10, wherein each isolation forest
in the plurality of isolation forests comprises a plurality of
isolation trees.

13. The method of claim 10, wherein an isolation forest in
the plurality of isolation forests without identified anomalies
is labeled SAFE to indicate safe driving and the isolation
forest with identified anomalies is labeled UNSAFE to
indicate unsafe driving by using the vehicle telematics
device.
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14. The method of claim 10, wherein calculating the
driver risk score further comprises calculating the driver risk
score by using an ensemble scoring process and the vehicle
telematics device.

15. The method of claim 14, wherein calculating the
driver risks core by using an ensemble scoring process is
evaluated by the vehicle telematics device by using the
following expression:

100 x Num_UNUSAFE
n

Risk Score(v;) =

where v, is a vehicle with a specific set of driver data, n
is a total number of isolation forests in the plurality of
isolation forests, and Num_UNSAFE is the number of
isolation forests in the plurality of isolation forests
labeled UNSAFE.

16. The method of claim 15, wherein the driver risk score

above a predetermined value indicates an unsafe driver.

17. The method of claim 10, further comprising calculat-

ing the driver risk score for a specific date range by using the
vehicle telematics device.

18. The method of claim 10, wherein the communications

device is a wireless device.
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