US010727858B2

a2 United States Patent

Turner et al.

US 10,727,858 B2
Jul. 28, 2020

(10) Patent No.:
45) Date of Patent:

(54) ERROR RESILIENCY FOR ENTROPY
CODED AUDIO DATA

(71) Applicant: QUALCOMM Incorporated, San

Diego, CA (US)

(72) Inventors: Richard Turner, Belfast (GB); Justin

Hundt, Londonderry (GB); Gary

Sands, Belfast (GB); Laurent

Wojcieszak, Belfast (GB)

(73)

Assignee: QUALCOMM Incorporated, San

Diego, CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

@
(22)

Appl. No.: 16/412,048

Filed: May 14, 2019

(65) Prior Publication Data

US 2019/0386674 Al Dec. 19, 2019

Related U.S. Application Data

Provisional application No. 62/686,597, filed on Jun.
18, 2018.

(60)

Int. CL.
HO3M 3/04
HO3M 7/38
GI0L 19/16
G10L 19/005
HO4N 1913
U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2013.01)
(2013.01)
(2014.01)
(52)
HO3M 3/042 (2013.01); GI0L 19/005
(2013.01); GI10L 19/167 (2013.01); HO3M

7/3046 (2013.01); HO4N 19/13 (2014.11)

SOURCE DEVICE
12

(58) Field of Classification Search
CPC ... HO3M 3/042; HO3M 7/3046; G10L 19/167,
G10L 19/005; G10L 19/0017; HOAN
19/13
USPC 341/51, 65, 67; 704/500
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,392,195 B2* 6/2008 Fejzo G10L 19/0017
381/2

G10L 19/008

9,905,232 B2* 2/2018 Hatanaka

OTHER PUBLICATIONS

Bluetooth SIG: “Bluetooth SIG Proprietary Bluetooth Core Speci-
fication v5.0”, XP055499587, vol. 0, Dec. 6, 2016, 2822 Pages.

(Continued)

Primary Examiner — Khai M Nguyen
(74) Attorney, Agent, or Firm — Shumaker & Sieffert,
P.A./ Qualcomm Imcorporated

(57) ABSTRACT

A source device comprising a memory and a processor may
be configured to perform techniques described in this dis-
closure. The memory may store at least a portion of the
audio data. The processor may obtain, from a compressed
version of the audio data, a symbol, and obtain a plurality of
intervals, each having a same bit length. The processor may
obtain a portion of the symbol within the bit length and an
excess portion of the symbol over the bit length, and specify,
in a first interval, the portion of the symbol. The processor
may also specify, in a second interval, the excess portion of
the symbol, and apply, to the first interval and the second
interval, error resiliency. The processor may specify, in a
bitstream representative of the compressed version of the
audio data, the first error resilient interval and the second
error resilient interval.

30 Claims, 14 Drawing Sheets

10

re

AUDIO
DATA

APP
20N
AUDIG
DATA
21N

APP

208
REQ
D
A1

!

4{

MIXED AUDIO DATA) MIXING UNIT
2 22

ENCODED AUDIO

AUDIO

DATA ENGODER
AUDIO S0A-L z 2
MANAGER —
28 WIRELESS CONWECTION MANAGER
SCHEME] &
,,,,,,, > WIRELESS { z WIRELESS
CcoMM oMM
UNIT UNIT
(1 X]

{ TRANSMISSION 31-
{ CHANNEL

SiNK DEVICE WIRELESS CONNECTION BANAGER
SCHEME 2
777777 - WIRELESS] WIRELESS
comm comM
UNIT{ UNIT
AUDIO (444
wanacer | o8-l [_%28] 428
- =

AUDIO
IMXED AUD.|0 DATA DECODER
— u

¥
SPEAKER
484

L]
SPEAKER
4N

US 10,727,858 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Bluetooth SIG: “Bluetooth Specification, Advanced audio distribu-
tion profile specification, A2DP v 1.3.1”, 2015, pp. 1-75.
Bluetooth SIG: “Generic Audio/Video Distribution Profile v 1.0”,
May 22, 2003, pp. 1-35.

Microchip Technology: “AN643 Adaptive Differential Pulse Code
Modulation using PICmicro™ Microcontrollers”, 1997, pp. 1-41.
Qualcomm Technologies: “CSR8645 BlueCore Audio Platform”, 2
Pages.

Trainor D., “apt-X Lossless”, White Paper, APT Licensing Ltd.,
2009, 9 Pages.

Watts L., “Vector Quantization and scalar linear prediction for
waveform coding of speech at 16 kb/s”, Simon Fraser University,
1989, pp. 1-108.

U.S. Appl. No. 16/295,813, filed Mar. 7, 2019, entitled “Level
Estimation for Processing Audio Data,” by Turner et al.

* cited by examiner

U.S. Patent Jul. 28, 2020 Sheet 1 of 14 US 10,727,858 B2
SOURCE DEVICE ya 10
12
APP APP
20A 20N
AUDIO Req) | @ @ @ | (AUDIC REQ
DATA oA DATA 2oN
21A = 21N =
R I
(MIXED AUDIO DATA)} MIXING UNIT
S
L 23 22
(" ENCODED AUDIO AUDIO
L DATA ENCODER
AUDIO 50A~{_ \ 23 24
MANAGER —
28 WIRELESS CONNECTION MANAGER
SCHEME 26
I WIRELESS 2L WIRELESS
COMM COMM
UNIT UNIT
""" 30A eoe 30N

..

 TRANSMISSION 31 ~
O ANNEL e
v
SINK DEVICE
14 WIRELESS CONNECTION MANAGER
SCHEME 40
. WIRELESS 41 WIRELESS
COMM COMM
AUDIO U‘;ﬂ 'Y X ‘ﬁﬂ
MANAGER 50B- L === e
46 —
AUDIO
(MIXED Agglo DATA) DECODER
— 44
SPEAKER SPEAKER
48A eoo 48N

FIG. 1

US 10,727,858 B2

Sheet 2 of 14

Jul. 28, 2020

U.S. Patent

g2 9Old
57 174 k44 L7 R 1% N R
< , ¥300030 [4——— LIND j 1iNn sHouH3 (72 S I
R olany 19 ONIQ0J3a 9 ONDIVANN i LINN NOILD313a &2
e Woday | vivaoany AdOHINZ | Sa¥OM3aod TYAYILNI K1) HOY¥Y3 viva
viva Q3ISSIUAINOD STYAHILNI oiany
oany viN, Q3000N3
¥3A0ON3 olany
Ve 9Old
89 (£ I S S
4 i LINN Aﬂ......l 9 Aﬂ........l HIAOINT |« oy
g/ AINIITS3Y 2] LINA ONDIDVYd () olanvy N ¥IQODN3 (34
viva HOHY¥3 | STVAYILNI TYAYILN] | SGHOMIA0D AJOULNG | VIVA 010NV | miany INDdaY viva
olany QIssSIYdINGD L oiany
Q300IN3 ve
¥IAOINI O1any

US 10,727,858 B2

Sheet 3 of 14

Jul. 28, 2020

U.S. Patent

N
19
WVRILSLIg

i
i
— 34
71t HOH43 w...w..,w.
LINN / @3ziNvND3a
P > LINN
NOILVZILNVND NOLII
IsHIAN [@
it
3ZiS 431S 0
011
LINN _ T
* NOILYINILLST) uwm,m__ﬂ)
. 13A31 3110344
€17 N
o3 \ mN.mﬂn_Hmwkm s} s
aIZIINYND v “ <01
YILUd e
— ® —
(421 « 801 anvesns N
0T LNn e ¢ LN g o
70T €
SLINN NOILLVZILNVND N gt zom%__m%mc g
NOISSIYIINOD LIS LLE SANVEaNs
90T
LIND
]
0% NOILVDOTIV
NOILYIOTIV 1ig .
g 0%
¥3Q0IN3 olanV NDday

US 10,727,858 B2

Sheet 4 of 14

Jul. 28, 2020

U.S. Patent

ga¢ "9Old
]
90¢ ® o
° ot
- 1IND ® — o NOLLV2OTIV
™ NOLIDNYISNODIY |« 91 o1t /A
VAVG O1any < — 1NN — LINN NOLLYINILST
Tt NOILDIGIYd HAN
SHO01d
anvasans o ke
a3131034d VIt —
4 3215 d31sD o [4314
o - 4 1INN
oy m”m: - | NOLLOVYLX3
J— NvVIYisLig
V0T Q3ZINVND3a NOLYZINYND |* N
SLINN ISYIANI SHOUYI
NOISS3¥dINOD3a L aazinvno
Y4
4300230 OIaNY Wdav

U.S. Patent

65A
65B
65C
65D
65E
65F

65A
65B
65C
65D
65E
65F

65A
65B
65C
65D
65E
65F

Jul. 28, 2020 Sheet 5 of 14

SYMBOL 600A

SYMBOL 600B

SYMBOL 600C

SYMBOL 600D

SYMBOL 600E

SYMBOL 600F

US 10,727,858 B2

601

32-BIT INTERVAL

“-604F

FIG. 4A

SYMBOL 600A

SYMBOL 600B

SYMBOL 600C

SYMBOL 600D

SYMBOL 600E

SYMBOL 600F

32-BIT INTERVAL

“-604F

FIG. 4B

SYMBOL 600A

SYMBOL 600B

SYMBOL 600C

SYMBOL 600F

32-BIT INTERVAL

FIG. 4C

U.S. Patent Jul. 28, 2020 Sheet 6 of 14

65A
65B
65C
65D
65E
65F

65A
65B
65C
65D
65E
65F

US 10,727,858 B2

__SYMBOL 600F

32-BIT INTERVAL

FIG. 4E

[601
~604A | -606A
SYMBOL 600A 6?100%
SYMBOL 600B ‘ 610F
SYMBOL 600C , 610E
SYMBOL 600D :
| SYMBOL 600E
- SYMBOL 600F
i
32-BIT INTERVAL }
FIG. 4D /601
{
SYMBOL 600A 620B
SYMBOL 600B

606A

US 10,727,858 B2

601

650

601"

U.S. Patent Jul. 28, 2020 Sheet 7 of 14
{
65A’ { [SYMBOL 600A° &
658’ SYMBOL 600B’
65C’ SYMBOL 600C’
65D’ SYMBOL 600D’
65E’ § SYMBOL 600F’ -
65F" 4 |._SYMBOL 600F" ,f/ 7 N/" V
| 32-BIT INTERVAL {
FIG. 5A
i
65A° {K SYMBOL 600A’ 2
658’
65C’ SYMBOL sooc
65D’ SYMBOL 600D
65E’ g SYMBOL 600E’
65F’ 1 ' SYMBOL 600F ~
| 32-BIT INTERVAL |
FIG. 5B
| i /
65A’ { £ SYMBOL B00A’ 533X
658’
65C’
65D’ SYMBOL 600D’
65E’ § SYMBOL 600E’
65F’ { ' SYMBOL 600F’

32-BIT INTERVAL |

FIG. 5C

U.S.

65A’
65B°
65C’
65D’
65E’
65F°

65A’
658’
65C’
65D’
65E’
65F°

65A’
658’
65C’
65D’
65E’
65F’

Patent Jul. 28, 2020 Sheet 8 of 14 US 10,727,858 B2

" SYMBOL 600 35

b

SYMBOL 600E’
SYMBOL 600F’

I 32-BIT INTERVAL

FIG. 5D

% SYMBOL 600E’
/. SYMBOL 600F

| 32-BIT INTERVAL |

FIG. 5E

. SYMBOL 600A’ =

...' L K B & W N N J > E
' on :éié, ;
LT Rtiodetoted rekededbeoraccell

652F /652G

_SYMBOL 800F! 77777772/

} 32-BIT INTERVAL

FIG. 5F

U.S. Patent Jul. 28, 2020 Sheet 9 of 14 US 10,727,858 B2

65A’
658’
65C’
65D’
65E’
65F’

65A’
658’
65C’
65D’
65E’
65F’

SYMBOL B00A’ iy

I 32-BIT INTERVAL

FIG. 5G

" SYMBOL 600K

XZNE
650

§ SYMBOL 600E’

_SYMBOL 600F 7

: 32-BIT INTERVAL |

FIG. 5H

U.S. Patent Jul. 28, 2020 Sheet 10 of 14 US 10,727,858 B2

/300
OBTAINING, FROM COMPRESSED VERSION OF AUDIO DATA, SYMBOL OF
PLURALITY OF SYMBOLS
302
' r
OBTAINING PLURALITY OF INTERVALS, EACH OF THE INTERVALS
HAVING SAME BIT LENGTH
304
' r

OBTAINING PORTION OF SYMBOL WITHIN BIT LENGTH AND EXCESS
PORTION OF SYMBOL OVER BIT LENGTH

l /306
SPECIFYING, IN FIRST INTERVAL OF PLURALITY OF INTERVALS, PORTION
OF SYMBOL
308
' r

SPECIFYING, IN SECOND INTERVAL OF PLURALITY OF INTERVALS,
EXCESS PORTION OF SYMBOL

L /—310

APPLYING, TO FIRST INTERVAL AND SECOND INTERVAL, ERROR
RESILIENCY TO OBTAIN FIRST ERROR RESILIENT INTERVAL AND
SECOND ERROR RESILIENT INTERVAL

l f312

SPECIFYING, IN BITSTREAM REPRESENTATIVE OF COMPRESSED
VERSION OF AUDIO DATA, FIRST ERROR RESILIENT INTERVAL AND
SECOND ERROR RESILIENT INTERVAL

FIG. 6

U.S. Patent Jul. 28, 2020 Sheet 11 of 14 US 10,727,858 B2

350
-~

OBTAIN, FROM BITSTREAM, FIRST ERROR RESILIENT INTERVAL AND A
SECOND ERROR RESILIENT INTERVAL

¢ K352

PERFORM ERROR DETECTION WITH RESPECT TO FIRST ERROR
RESILIENT INTERVAL AND SECOND ERROR RESILIENT INTERVAL TO
DETECT A PRESENCE OF ERRORS N FIRST ERROR RESILIENT INTERVAL
AND SECOND ERROR RESILIENT INTERVAL

l s 354

RESPONSIVE TO DETECTING THAT ERRORS WERE NOT PRESENT IN
FIRST ERROR RESILIENT INTERVAL AND SECOND ERROR RESILIENT
INTERVAL, OBTAIN, FROM FIRST ERROR RESILIENT INTERVAL, PORTION
OF SYMBOL

l f356

RESPONSIVE TO DETECTING THAT ERRORS WERE NOT PRESENT IN
FIRST ERROR RESILIENT INTERVAL AND SECOND ERROR RESILIENT
INTERVAL, OBTAIN, FROM SECOND ERROR RESILIENT INTERVAL,
EXCESS PORTION OF SYMBOL

L /358

DECOMPRESS, BASED ON THE PORTION AND THE EXCESS PORTION,
THE SYMBOL TO OBTAIN PORTION OF AUDIO DATA.

FIG. 7

U.S. Patent Jul. 28, 2020 Sheet 12 of 14 US 10,727,858 B2
Vs 12
TRANSCEIVER USER
MODULE SPEAKER(S) DISPLAY
INTERFACE
422 102 100
420
DISPLAY
PROCESSOR
GPU 418
PROCESSOR 414
412
A ? A ? A
Y Y Y
SYSTEM MEMORY
416

FIG. 8

U.S. Patent Jul. 28, 2020 Sheet 13 of 14

US 10,727,858 B2

Vs 14
r— = ===
TRANSCEIVER USER | |
MODULE SPEAKER(S) DISPLAY
INTERFACE | |
522 502 500
520 = | T l
e e i o o
l * 1
PROCESSOR
512 R
A
Y
SYSTEM MEMORY
516

FIG. 9

U.S. Patent Jul. 28, 2020 Sheet 14 of 14 US 10,727,858 B2

1000

FIG. 10

US 10,727,858 B2

1
ERROR RESILIENCY FOR ENTROPY
CODED AUDIO DATA

This application claims the benefit of U.S. Provisional
Application No. 62/686,597, entitled “ERROR RESIL-
IENCY FOR ENTROPY CODED AUDIO DATA,” and
filed 18 Jun. 2018, the entire contents of which are incor-
porated herein by reference.

TECHNICAL FIELD

This disclosure relates to processing audio data and, more
specifically, error resiliency for coded audio data.

BACKGROUND

Wireless networks for short-range communication, which
may be referred to as “personal area networks,” are estab-
lished to facilitate communication between a source device
and a sink device. One example of a personal area network
(PAN) protocol is Bluetooth®, which is often used to form
a PAN for streaming audio data from the source device (e.g.,
a mobile phone) to the sink device (e.g., headphones or a
speaker).

Streaming the audio data via the PAN may be vulnerable
to errors due to local interference. In non-streaming con-
texts, the source device may implement a packet retrans-
mission scheme by which to retransmit lost or corrupt (e.g.,
due to errors as a result of interference) packets. However,
in the streaming context, which is often sent via a low
latency wireless connection in certain contexts, like gaming,
video teleconferences, audio teleconferences, etc., there
often is insufficient time to retransmit lost or corrupt packets.

As such, the source device often implements an error
resiliency scheme by which to identify bit errors in packets.
However, error detection and correction often introduces
signaling overhead that may reduce a quality of compressed
audio data represented in a bitstream sent from the source
device to the sink device. The reduced quality may occur
upon playback as the signaling overhead for error detection
and correction may consume bandwidth that would other-
wise be dedicated to improving the resolution of the com-
pressed audio data represented by the bitstream.

SUMMARY

In general, techniques are described by which to provide
error resiliency for entropy coded audio data while poten-
tially reducing signaling overhead associated with providing
the error resiliency. The techniques may enable the audio
encoder and the audio decoder to improve operation of the
source device and the sink device themselves in terms of
more efficient operation of the audio encoder and the audio
decoder, which may reduce resource utilizing and power
consumption. The techniques may allow the audio encoder
and the audio decoder to better represent the audio data
(compared to various other error resiliency schemes that
utilize more complicated error correction schemes or regular
interval reordering schemes) as signaling overhead is
reduced relative to the various other error resiliency
schemes. Reducing signaling overhead may result in better
quality audio data than would otherwise be possible unless
more processing cycles, memory, and memory bandwidth
were consumed (thereby reducing power consumption). As
such, the techniques may improve the operation of the audio

10

15

20

25

30

35

45

2

encoder and the audio decoder themselves in contrast to
merely implementing a known process using ordinary com-
puting devices.

In one aspect, the techniques are directed to a source
device configured to process audio data, the source device
comprising: a memory configured to store at least a portion
of'the audio data; and one or more processors coupled to the
memory, and configured to: obtain, from a compressed
version of the audio data, a symbol of a plurality of symbols;
obtain a plurality of intervals, each of the intervals having a
same bit length; obtain a portion of the symbol within the bit
length and an excess portion of the symbol over the bit
length; specify, in a first interval of the plurality of intervals,
the portion of the symbol; specify, in a second interval of the
plurality of intervals, the excess portion of the symbol;
apply, to the first interval and the second interval, error
resiliency to obtain a first error resilient interval and a
second error resilient interval; and specity, in a bitstream
representative of the compressed version of the audio data,
the first error resilient interval and the second error resilient
interval.

In another aspect, the techniques are directed to a method
of processing audio data, the method comprising: obtaining,
from a compressed version of the audio data, a symbol of a
plurality of symbols; obtaining a plurality of intervals, each
of'the intervals having a same bit length; obtaining a portion
of the symbol within the bit length and an excess portion of
the symbol over the bit length; specifying, in a first interval
of the plurality of intervals, the portion of the symbol;
specifying, in a second interval of the plurality of intervals,
the excess portion of the symbol; applying, to the first
interval and the second interval, error resiliency to obtain a
first error resilient interval and a second error resilient
interval; and specifying, in a bitstream representative of the
compressed version of the audio data, the first error resilient
interval and the second error resilient interval.

In another aspect, the techniques are directed to a source
device configured to process audio data, the source device
comprising: means for obtaining, from a compressed version
of'the audio data, a symbol of a plurality of symbols; means
for obtaining a plurality of intervals, each of the intervals
having a same bit length; means for obtaining a portion of
the symbol within the bit length and an excess portion of the
symbol over the bit length; means for specifying, in a first
interval of the plurality of intervals, the portion of the
symbol; means for specifying, in a second interval of the
plurality of intervals, the excess portion of the symbol;
means for applying, to the first interval and the second
interval, error resiliency to obtain a first error resilient
interval and a second error resilient interval; and means for
specifying, in a bitstream representative of the compressed
version of the audio data, the first error resilient interval and
the second error resilient interval.

In another aspect, the techniques are directed to a com-
puter-readable medium having stored thereon instructions
that, when executed, cause one or more processors of a
source device to: obtain, from a compressed version of audio
data, a symbol of a plurality of symbols; obtain a plurality
of intervals, each of the intervals having a same bit length;
obtain a portion of the symbol within the bit length and an
excess portion of the symbol over the bit length; specity, in
a first interval of the plurality of intervals, the portion of the
symbol; specify, in a second interval of the plurality of
intervals, the excess portion of the symbol; apply, to the first
interval and the second interval, error resiliency to obtain a
first error resilient interval and a second error resilient
interval; and specify, in a bitstream representative of the

US 10,727,858 B2

3

compressed version of the audio data, the first error resilient
interval and the second error resilient interval.

In another aspect, the techniques are directed to a sink
device configured to process a bitstream representative of a
compressed version of audio data, the sink device compris-
ing a memory configured to store at least a portion of the
bitstream, and one or more processors coupled to the
memory. The one or more processors may be configured to
obtain, from the bitstream, a first error resilient interval and
a second error resilient interval, each of the first error
resilient interval and the second error resilient interval
having a same bit length, and perform error detection with
respect to the first error resilient interval and the second error
resilient interval to detect a presence of one or more errors
in one or more of the first error resilient interval and the
second error resilient interval. The one or more processors
may be further configured to responsive to detecting that the
one or more errors were not present in the first error resilient
interval and the second error resilient interval: obtain, from
the first error resilient interval, a portion of a symbol within
the bit length, the symbol indicative of the compressed
version of the audio data, and obtain, from the second error
resilient interval, an excess portion of the symbol over the
bit length. The one or more processors may also be config-
ured to decompress, based on the portion and the excess
portion, the symbol to obtain a portion of the audio data.

In another aspect, the techniques are directed to a method
of processing a bitstream representative of audio data, the
method comprising obtaining, from the bitstream, a first
error resilient interval and a second error resilient interval,
each of the first error resilient interval and the second error
resilient interval having a same bit length, and performing
error detection with respect to the first error resilient interval
and the second error resilient interval to detect a presence of
one or more errors in one or more of the first error resilient
interval and the second error resilient interval. The method
also comprising responsive to detecting that the one or more
errors were not present in the first error resilient interval and
the second error resilient interval: obtaining, from the first
error resilient interval, a portion of a symbol within the bit
length, the symbol indicative of the compressed version of
the audio data, and; obtaining, from the second error resil-
ient interval, an excess portion of the symbol over the bit
length. The method further comprising decompressing,
based on the portion and the excess portion, the symbol to
obtain a portion of the audio data.

In another aspect, the techniques are directed to a sink
device configured to process a bitstream representative of
audio data, the sink device comprising: means for obtaining,
from the bitstream, a first error resilient interval and a
second error resilient interval, each of the first error resilient
interval and the second error resilient interval having a same
bit length; means for performing error detection with respect
to the first error resilient interval and the second error
resilient interval to detect a presence of one or more errors
in one or more of the first error resilient interval and the
second error resilient interval; responsive to detecting that
the one or more errors were not present in the first error
resilient interval and the second error resilient interval:
means for obtaining, from the first error resilient interval, a
portion of a symbol within the bit length, the symbol
indicative of the compressed version of the audio data, and;
means for obtaining, from the second error resilient interval,
an excess portion of the symbol over the bit length; and
means for decompressing, based on the portion and the
excess portion, the symbol to obtain a portion of the audio
data.

20

25

40

45

50

55

4

In another aspect, the techniques are directed to a non-
transitory computer-readable storage medium having stored
thereon instructions that, when executed, cause one or more
processors of a sink device to: obtain, from a bitstream
representative of audio data, a first error resilient interval
and a second error resilient interval, each of the first error
resilient interval and the second error resilient interval
having a same bit length; perform error detection with
respect to the first error resilient interval and the second error
resilient interval to detect a presence of one or more errors
in one or more of the first error resilient interval and the
second error resilient interval; responsive to detecting that
the one or more errors were not present in the first error
resilient interval and the second error resilient interval:
obtain, from the first error resilient interval, a portion of a
symbol within the bit length, the symbol indicative of the
compressed version of the audio data, and; obtain, from the
second error resilient interval, an excess portion of the
symbol over the bit length; and decompress, based on the
portion and the excess portion, the symbol to obtain a
portion of the audio data.

The details of one or more aspects of the techniques are
set forth in the accompanying drawings and the description
below. Other features, objects, and advantages of these
techniques will be apparent from the description and draw-
ings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a system that may
perform various aspects of the techniques described in this
disclosure.

FIG. 2A is a block diagram illustrating an example of the
audio encoder of FIG. 1 that may perform various aspects of
the techniques described in this disclosure.

FIG. 2B is a block diagram illustrating an example of the
audio decoder of FIG. 1 that may perform various aspects of
the techniques described in this disclosure.

FIG. 3Ais a block diagram illustrating an example of the
ADPCM audio encoder of FIG. 2A in more detail.

FIG. 3B is a block diagram illustrating an example of the
ADPCM audio decoder of FIG. 2B in more detail.

FIGS. 4A-4E are diagrams illustrating example operation
of the interval packing unit shown in FIG. 2A in performing
various aspects of the techniques described in this disclo-
sure.

FIGS. 5A-5H are diagrams illustrating example operation
of the interval unpacking unit shown in FIG. 2B in perform-
ing various aspects of the techniques described in this
disclosure.

FIG. 6 is a flowchart illustrating example operation of the
source device of FIG. 1 in performing various aspects of the
techniques described in this disclosure.

FIG. 7 is a flowchart illustrating example operation of the
sink device of FIG. 1 in performing various aspects of the
techniques described in this disclosure.

FIG. 8 is a block diagram illustrating example compo-
nents of the source device shown in the example of FIG. 1.

FIG. 9 is a block diagram illustrating exemplary compo-
nents of the sink device shown in the example of FIG. 1.

FIG. 10 is a diagram illustrating a graph demonstrating
perceptual improvement as a result of the audio codec
shown in FIG. 1 performing various aspects of the tech-
niques described in this disclosure relative to other audio
codecs.

DETAILED DESCRIPTION

FIG. 1 is a diagram illustrating a system 10 that may
perform various aspects of the techniques described in this

US 10,727,858 B2

5

disclosure. As shown in the example of FIG. 1, the system
10 includes a source device 12 and a sink device 14.
Although described with respect to the source device 12 and
the sink device 14, the source device 12 may operate, in
some instances, as the sink device, and the sink device 14
may, in these and other instances, operate as the source
device. As such, the example of system 10 shown in FIG. 1
is merely one example illustrative of various aspects of the
techniques described in this disclosure.

In any event, the source device 12 may represent any form
of computing device capable of implementing the tech-
niques described in this disclosure, including a handset (or
cellular phone), a tablet computer, a so-called smart phone,
a remotely piloted aircraft (such as a so-called “drone”), a
robot, a desktop computer, a receiver (such as an audio/
visual—AV—receiver), a set-top box, a television (includ-
ing so-called “smart televisions™), a media player (such as s
digital video disc player, a streaming media player, a Blue-
Ray Disc™ player, etc.), or any other device capable of
communicating audio data wirelessly to a sink device via a
personal area network (PAN). For purposes of illustration,
the source device 12 is assumed to represent a smart phone.

The sink device 14 may represent any form of computing
device capable of implementing the techniques described in
this disclosure, including a handset (or cellular phone), a
tablet computer, a smart phone, a desktop computer, a
wireless headset (which may include wireless headphones
that include or exclude a microphone, and so-called smart
wireless headphones that include additional functionality
such as fitness monitoring, on-board music storage and/or
playback, dedicated cellular capabilities, etc.), a wireless
speaker (including a so-called “smart speaker”), a watch
(including so-called “smart watches™), or any other device
capable of reproducing a soundfield based on audio data
communicated wirelessly via the PAN. Also for purposes of
illustration, the sink device 14 is assumed to represent
wireless headphones.

As shown in the example of FIG. 1, the source device 12
includes one or more applications (“apps”) 20A-20N (“apps
20”), a mixing unit 22, an audio encoder 24, a wireless
connection manager 26, and an audio manager 28. Although
not shown in the example of FIG. 1, the source device 12
may include a number of other elements that support opera-
tion of apps 20, including an operating system, various
hardware and/or software interfaces (such as user interfaces,
including graphical user interfaces), one or more processors,
memory, storage devices, and the like.

Each of the apps 20 represents software (such as a
collection of instructions stored to a non-transitory computer
readable media) that configures the source device 10 to
provide some functionality when executed by the one or
more processors of the source device 12. Apps 20 may, to
provide a few examples, provide messaging functionality
(such as access to emails, text messaging, and/or video
messaging), voice calling functionality, video conferencing
functionality, calendar functionality, audio streaming func-
tionality, direction functionality, mapping functionality,
gaming functionality. Apps 20 may be first-party applica-
tions designed and developed by the same company that
designs and sells the operating system executed by the
source device 20 (and often pre-installed on the source
device 20) or third-party applications accessible via a so-
called “app store” or possibly pre-installed on the source
device 20. Each of the apps 20, when executed, may output
audio data 21A-21N (“audio data 21”), respectively.

The mixing unit 22 represent a unit configured to mix one
or more of audio data 21A-21N (“audio data 21”) output by

20

30

40

45

50

6

the apps 20 (and other audio data output by the operating
system—such as alerts or other tones, including keyboard
press tones, ringtones, etc.) to generate mixed audio data 23.
Audio mixing may refer to a process whereby multiple
sounds (as set forth in the audio data 21) are combined into
one or more channels. During mixing, the mixing unit 22
may also manipulate and/or enhance volume levels (which
may also be referred to as “gain levels™), frequency content,
panoramic position of the audio data 21. In the context of
streaming the audio data 21 over a wireless PAN session, the
mixing unit 22 may output the mixed audio data 23 to the
audio encoder 24.

The audio encoder 24 may represent a unit configured to
encode the mixed audio data 23 and thereby obtain encoded
audio data 25. Referring for purposes of illustration to one
example of the PAN protocols, Bluetooth® provides for a
number of different types of audio codecs (which is a word
resulting from combining the words “encoding” and “decod-
ing”), and is extensible to include vendor specific audio
codecs. The Advanced Audio Distribution Profile (A2DP) of
Bluetooth® indicates that support for A2DP requires sup-
porting a subband codec specified in A2DP. A2DP also
supports codecs set forth in MPEG-1 Part 3 (MP2), MPEG-2
Part 3 (MP3), MPEG-2 Part 7 (advanced audio coding—
AAC), MPEG-4 Part 3 (high efficiency-AAC—HE-AAC),
and Adaptive Transform Acoustic Coding (ATRAC). Fur-
thermore, as noted above, A2DP of Bluetooth® supports
vendor specific codecs, such as aptX™ and various other
versions of aptX (e.g., enhanced aptX—E-aptX, aptX live,
and aptX high definition—aptX-HD).

AptX may refer to an audio encoding and decoding
(which may be referred to generally as a “codec”) scheme by
which to compress and decompress audio data, and may
therefore be referred to as an “aptX audio codec.” AptX may
improve the functionality of the source and sink devices
themselves as compression results in data structures that
organize data in a manner that reduces bandwidth (including
over internal busses and memory pathways) and/or storage
consumption. The techniques described in this disclosure
may further improve bandwidth and/or storage consump-
tion, thereby improving operation of the devices themselves
in contrast to merely implementing a known process using
devices.

The audio encoder 24 may operate consistent with one or
more of any of the above listed audio codecs, as well as,
audio codecs not listed above, but that operate to encode the
mixed audio data 23 to obtain the encoded audio data 25.
The audio encoder 24 may output the encoded audio data 25
to one of the wireless communication units 30 (e.g., the
wireless communication unit 30A) managed by the wireless
connection manager 26.

The wireless connection manager 26 may represent a unit
configured to allocate bandwidth within certain frequencies
of'the available spectrum to the different ones of the wireless
communication units 30. For example, the Bluetooth® com-
munication protocols operate over within the 2.4 GHz range
of the spectrum, which overlaps with the range of the
spectrum used by various WLAN communication protocols.
The wireless connection manager 26 may allocate some
portion of the bandwidth during a given time to the Blu-
etooth® protocol and different portions of the bandwidth
during a different time to the overlapping WLAN protocols.
The allocation of bandwidth and other is defined by a
scheme 27. The wireless connection manager 26 may expose
various application programmer interfaces (APIs) by which
to adjust the allocation of bandwidth and other aspects of the
communication protocols so as to achieve a specified quality

US 10,727,858 B2

7

of service (QoS). That is, the wireless connection manager
26 may provide the API to adjust the scheme 27 by which
to control operation of the wireless communication units 30
to achieve the specified QoS.

In other words, the wireless connection manager 26 may
manage coexistence of multiple wireless communication
units 30 that operate within the same spectrum, such as
certain WLAN communication protocols and some PAN
protocols as discussed above. The wireless connection man-
ager 26 may include a coexistence scheme 27 (shown in
FIG. 1 as “scheme 27”) that indicates when (e.g., an interval)
and how many packets each of the wireless communication
units 30 may send, the size of the packets sent, and the like.

The wireless communication units 30 may each represent
a wireless communication unit 30 that operates in accor-
dance with one or more communication protocols to com-
municate encoded audio data 25 via a transmission channel
to the sink device 14. In the example of FIG. 1, the wireless
communication unit 30A is assumed for purposes of illus-
tration to operate in accordance with the Bluetooth® suite of
communication protocols. It is further assumed that the
wireless communication unit 30A operates in accordance
with A2DP to establish a PAN link (over the transmission
channel) to allow for delivery of the encoded audio data 25
from the source device 12 to the sink device 14.

More information concerning the Bluetooth® suite of
communication protocols can be found in a document
entitled “Bluetooth Core Specification v 5.0,” published
Dec. 6, 2016. The foregoing Bluetooth Core Specification
provides further details regarding a so-called Bluetooth Low
Energy and Classic Bluetooth, where the Bluetooth Low
Energy (BLE) operates using less energy than Classic Blu-
etooth. Reference to Bluetooth® (which may also be
referred to as a “Bluetooth® wireless communication pro-
tocol”) may refer to one of BLE and Classic Bluetooth, or
both BLE and Classic Bluetooth. More information con-
cerning A2DP can be found in a document entitled
“Advanced Audio Distribution Profile Specification,” ver-
sion 1.3.1, published on Jul. 14, 2015.

The wireless communication unit 30A may output the
encoded audio data 25 as a bitstream 31 to the sink device
14 via a transmission channel, which may be a wired or
wireless channel, a data storage device, or the like. While
shown in FIG. 1 as being directly transmitted to the sink
device 14, the source device 12 may output the bitstream 31
to an intermediate device positioned between the source
device 12 and the sink device 14. The intermediate device
may store the bitstream 31 for later delivery to the sink
device 14, which may request the bitstream 31. The inter-
mediate device may comprise a file server, a web server, a
desktop computer, a laptop computer, a tablet computer, a
mobile phone, a smart phone, or any other device capable of
storing the bitstream 31 for later retrieval by an audio
decoder. This intermediate device may reside in a content
delivery network capable of streaming the bitstream 31 (and
possibly in conjunction with transmitting a corresponding
video data bitstream) to subscribers, such as the sink device
14, requesting the bitstream 31.

Alternatively, the source device 12 may store the bit-
stream 31 to a storage medium, such as a compact disc, a
digital video disc, a high definition video disc or other
storage media, most of which are capable of being read by
a computer and therefore may be referred to as computer-
readable storage media or non-transitory computer-readable
storage media. In this context, the transmission channel may
refer to those channels by which content stored to these
mediums are transmitted (and may include retail stores and

10

15

20

25

30

35

40

45

50

55

60

65

8

other store-based delivery mechanism). In any event, the
techniques of this disclosure should not therefore be limited
in this respect to the example of FIG. 1.

As further shown in the example of FIG. 1, the sink device
14 includes a wireless connection manager 40 that manages
one or more of wireless communication units 42A-42N
(“wireless communication units 42”°) according to a scheme
41, an audio decoder 44, and one or more speakers 48 A-48N
(“speakers 48”). The wireless connection manager 40 may
operate in a manner similar to that described above with
respect to the wireless connection manager 26, exposing an
API to adjust scheme 41 by which the wireless communi-
cation units 42 operate to achieve a specified QoS.

The wireless communication units 42 may be similar in
operation to the wireless communication units 30, except
that the wireless communication units 42 operate recipro-
cally to the wireless communication units 30 to decapsulate
the encoded audio data 25. One of the wireless communi-
cation units 42 (e.g., the wireless communication unit 42A)
is assumed to operate in accordance with the Bluetooth®
suite of communication protocols and reciprocal to the
wireless communication protocol 28A. The wireless com-
munication unit 42A may output the encoded audio data 25
to the audio decoder 44.

The audio decoder 44 may operate in a manner that is
reciprocal to the audio decoder 24. The audio decoder 44
may operate consistent with one or more of any of the above
listed audio codecs, as well as, audio codecs not listed
above, but that operate to decode the encoded audio data 25
to obtain mixed audio data 23'. The prime designation with
respect to “mixed audio data 23” denotes that there may be
some loss due to quantization or other lossy operations that
occur during encoding by the audio encoder 24. The audio
decoder 44 may output the mixed audio data 23' to one or
more of the speakers 48.

Each of the speakers 48 may represent a transducer
configured to reproduce a soundfield from the mixed audio
data 23'. The transducer may be integrated within the sink
device 14 as shown in the example of FIG. 1, or may be
communicatively coupled to the sink device 14 (via a wire
or wirelessly). The speakers 48 may represent any form of
speaker, such as a loudspeaker, a headphone speaker, or a
speaker in an earbud. Furthermore, although described with
respect to a transducer, the speakers 48 may represent other
forms of speakers, such as the “speakers” used in bone
conducting headphones that send vibrations to the upper jaw,
which induces sound in the human aural system.

As noted above, the apps 20 may output audio data 21 to
the mixing unit 22. Prior to outputting the audio data 21, the
apps 20 may interface with the operating system to initialize
an audio processing path for output via integrated speakers
(not shown in the example of FIG. 1) or a physical connec-
tion (such as a mini-stereo audio jack, which is also known
as 3.5 millimeter—mm—minijack). As such, the audio
processing path may be referred to as a wired audio pro-
cessing path considering that the integrated speaker is con-
nected by a wired connection similar to that provided by the
physical connection via the mini-stereo audio jack. The
wired audio processing path may represent hardware or a
combination of hardware and software that processes the
audio data 21 to achieve a target quality of service (QoS).

To illustrate, one of the apps 20 (which is assumed to be
the app 20A for purposes of illustration) may issue, when
initializing or reinitializing the wired audio processing path,
one or more request 29A for a particular QoS for the audio
data 21A output by the app 20A. The request 29A may
specify, as a couple of examples, a high latency (that results

US 10,727,858 B2

9

in high quality) wired audio processing path, a low latency
(that may result in lower quality) wired audio processing
path, or some intermediate latency wired audio processing
path. The high latency wired audio processing path may also
be referred to as a high quality wired audio processing path,
while the low latency wired audio processing path may also
be referred to as a low quality wired audio processing path.

The audio manager 28 may represent a unit configured to
manage processing of the audio data 21. That is, the audio
manager 28 may configure the wired audio processing path
within source device 12 in an attempt to achieve the
requested target QoS. The audio manager 28 may adjust an
amount of memory dedicated to buffers along the wired
audio processing path for the audio data 21, shared resource
priorities assigned to the audio data 21 that control priority
when processed using shared resources (such as processing
cycles of a central processing unit—CPU—or processing by
a digital signal processor—DSP—to provide some
examples), and/or interrupt priorities assigned to the audio
data 21.

Configuring the wired audio processing path to suit the
latency requirements of the app 20A may allow for more
immersive experiences. For example, a high latency wired
audio processing path may result in higher quality audio
playback that allows for better spatial resolution that places
a listener more firmly (in a auditory manner) in the sound-
field, thereby increasing immersion. A low latency wired
audio processing path may result in more responsive audio
playback that allows game and operating system sound
effects to arrive in real-time or near-real-time to match
on-screen graphics, allow for accurate soundfield reproduc-
tion in immersive virtual reality, augmented reality, and/or
mixed-reality contexts and the like, accurate responsiveness
for digital music creation contexts, and/or accurate respon-
siveness for playback during manipulation of virtual musical
instruments.

As noted above, the source device 12 may include the
audio encoder 24 by which to compress the audio data 23
prior to transmission as a bitstream 31 via the PAN. Stream-
ing the audio data via the PAN may be vulnerable to errors
due to local interference. In non-streaming contexts, the
source device 12 may implement a packet retransmission
scheme by which to retransmit lost or corrupt (e.g., due to
errors as a result of interference) packets of the bitstream 31.
However, in the streaming context, which is often sent via
a low latency wireless connection in certain contexts, like
gaming, video teleconferences, audio teleconferences, etc.
as noted above, there often is insufficient time to retransmit
lost or corrupt packets.

As such, the source device 12 may implement an error
resiliency scheme by which to identify bit errors in packets
of the bitstream 31. However, error resiliency often intro-
duces signaling overhead that may reduce a quality of
compressed audio data represented in the bitstream 31 sent
from the source device 12 to the sink device 14. The reduced
quality may occur upon playback as the signaling overhead
for error resiliency may consume bandwidth that would
otherwise be dedicated to improving the resolution of the
compressed audio data represented by the bitstream 31.

In accordance with various aspects of the techniques
described in this disclosure, the audio encoder 24 may
provide error resiliency (via redundancy such as majority
voting in the bitstream 21) for entropy coded audio data
while potentially reducing signaling overhead associated
with providing the error resiliency. The reduction in signal-
ing overhead may allow the audio encoder 24 to potentially

10

15

20

25

30

35

40

45

50

55

60

65

10

retain some amount of the increased resolution of the audio
data 23 that would otherwise be lost when performing other
error resiliency schemes.

The audio decoder 44 may perform, based on the error
resiliency embedded in the bitstream 31, error detection in
accordance with various aspects of the techniques described
in this disclosure. Given that the error resiliency reduces
signaling overhead as described in more detail below, the
audio decoder 44 may decompress the bitstream to obtain
audio data 23' having a higher resolution compared to
bitstreams that provide error resiliency via other error resil-
iency schemes.

In operation, the audio encoder 24 may provide error
resiliency with reduced signaling overhead by, at least in
part, implementing a symbol packing scheme that allows for
packing of symbols to intervals having a same bit length.
The audio encoder 24 may, to obtain the symbols, compress
the audio data 23 according to one or more of the audio
codecs noted above. For purposes of illustration, it is
assumed that the audio encoder 24 performs compression in
accordance with aptX, which may, in one example, involve
application of adaptive differential pulse code modulation
(ADPCM) encoding/decoding.

After performing ADPCM encoding with respect to the
audio data 23 to obtain ADPCM compressed audio data, the
audio encoder 24 may perform statistical lossless encoding
(which may be referred to as “entropy encoding” or “entropy
coding”) with respect to the ADPCM compressed audio data
to obtain one or more codewords. An example of entropy
coding is Huffman coding, which may result in Huffman
codewords. The audio encoder 24 may obtain, based on the
one or more codewords, the symbols.

While entropy encoding may provide additional compres-
sion to ADPCM codecs, such entropy encoding may sacri-
fice error resiliency. That is, prefix-code entropy encoding,
like Huffman coding, may be intolerant of bit errors as a
single error (e.g., flipping a bit from a zero to a one or a one
to a zero) may invalidate the prefix property of prefix-code
entropy encoding in which each codeword is restricted from
being a prefix of any other codeword, thereby preventing
correct parsing of the errored codeword, and in this instance,
symbol.

To reduce the impact of this deficiency, the audio encoder
24 may introduce two processes. First, the audio encoder 24
may specify (or, in other words, “pack”) the symbols into
regular intervals. The intervals are “regular” in the sense that
each interval is of a uniform (or, in other words, same) bit
length. Second, the audio encoder 24 may provide error
resiliency via various error resiliency schemes, such as
parity bit schemes, majority voting schemes, check digit
scheme, etc., on a bit-by-bit basis, codeword-by-codeword
basis, an interval-by-interval basis, or a packet-by-packet
basis. The interval may limit the extent an error may corrupt
the underlying audio data to a single interval, while the error
resiliency may enable detection (and possibly correction in
certain high bandwidth or high latency contexts).

Unlike other codecs that utilize entropy coding in con-
junction with regular intervals, the audio encoder 24 does
not set the bit length of the regular intervals to be the same
as or greater than a maximum size of a symbol so as to
ensure each symbol is capable of being specified within a
single interval. In codecs that utilize entropy coding in
conjunction with intervals that can accommodate symbols of
a maximum size, there may be wasted space in intervals
having symbols that are not of the maximum size. To more
fully utilize the intervals (e.g., compared to other codecs
having intervals of maximum symbol size), the audio

US 10,727,858 B2

11

encoder 24 may split symbols that exceed the bit length of
a single interval across multiple intervals.

When specifying the symbol in the interval, the audio
encoder 24 may compare the symbol to the bit length of the
first interval to determine whether the symbol exceeds the
bit length of the interval. Assuming that the symbol exceeds
the bit length of the first interval, the audio encoder 24 may
obtain a portion of the symbol within the bit length and an
excess portion of the symbol over the bit length. The audio
encoder 24 may specity, in a first interval of the plurality of
intervals, the portion of the symbol. The audio encoder 24
may also specify, in a second interval of the plurality of
intervals, the excess portion of the symbol.

Next, the audio encoder 24 may apply, to the first interval
and the second interval, error resiliency to obtain a first error
resilient interval and a second error resilient interval. As
noted above, the audio encoder 24 may provide error resil-
iency via various error resiliency schemes, such as parity bit
schemes, majority voting schemes, check digit scheme, etc.,
on a bit-by-bit basis, codeword-by-codeword basis, an inter-
val-by-interval basis, or a packet-by-packet basis. The audio
encoder 24 may specify the first error resilient interval and
the second error resilient interval in the encoded audio data
25 (which may also be referred to as the “bitstream 257).

As noted above, the audio decoder 44 may be configured
to perform operations reciprocal to those described above
with respect to the audio encoder 24. As such, the audio
decoder 44 may obtain, from the bitstream 25, a first error
resilient interval and a second error resilient interval, each of
which may, as noted above, have the same bit length.

The audio decoder 44 may next perform error detection
with respect to the first error resilient interval and the second
error resilient interval to detect a presence of one or more
errors in one or more of the first error resilient interval and
the second error resilient interval. Responsive to detecting
that the one or more errors were not present in the first error
resilient interval and the second error resilient interval, the
audio decoder 44 may obtain, from the first error resilient
interval, the portion of the symbol within the bit length.
Also, responsive to detecting that the one or more errors
were not present in the first error resilient interval and the
second error resilient interval, the audio decoder 44 may
obtain, from the second error resilient interval, the excess
portion of the symbol over the bit length, and decompress,
based on the portion and the excess portion, the symbol to
obtain a portion of the audio data 23'.

In this respect, the techniques may enable the audio
encoder 24 and the audio decoder 44 to improve operation
of the source device 12 and/or audio encoder 24 and the sink
device 14 and/or audio decoder 44 themselves in terms of
more efficient operation of the audio encoder and the audio
decoder, which may reduce resource utilizing and power
consumption. The techniques may allow the audio encoder
24 and the audio decoder 44 to better represent the audio
data 23 (compared to various other error resiliency schemes
that utilize more complicated error correction schemes or
regular interval reordering schemes) as signaling overhead is
potentially reduced relative to the various other error resil-
iency schemes. Reducing signaling overhead may result in
better quality audio data than would otherwise be possible
unless more processing cycles, memory, and memory band-
width were consumed (thereby reducing power consump-
tion). As such, the techniques may improve the operation of
the audio encoder 24 and the audio decoder 44 themselves
in contrast to merely implementing a known process using
ordinary computing devices.

10

15

20

25

30

35

40

45

50

55

60

65

12

FIG. 2A is a block diagram illustrating an example of the
audio encoder of FIG. 1 that may perform various aspects of
the techniques described in this disclosure. As shown in the
example of FIG. 2A, the audio encoder 24 may include an
ADPCM audio encoder 60, an entropy audio encoder 62, an
interval packing unit 64, and an error resiliency unit 66.

The ADPCM audio encoder 60 may represent a unit
configured to perform ADPCM audio encoding with respect
to the audio data 23 to obtain compressed audio data 61. The
ADPCM audio encoder 60 is described below in more detail
with respect to the example of FIG. 3A. The ADPCM audio
encoder 60 may output the compressed audio data 61 to
entropy audio encoder 62, which may include one or more
compressed portions. As described below, the compressed
portions may include compressed subbands. As such, the
compressed audio data 61 may also be referred to as
compressed subbands 61 or bitstream 61.

The entropy audio encoder 62 may represent a unit
configured to perform statistical lossless coding with respect
to the compressed audio data 61 to obtain codewords 63. In
some instances, the entropy audio encoder 62 may perform
prefix-code entropy coding, such as Huffman coding, with
respect to the compressed audio data 61 to obtain the
codewords 63. The entropy audio encoder 62 may perform
entropy coding with respect to each of the compressed
subbands 61, generating a sequence (e.g., time-ordered
sequence) of codewords 63 for each of the compressed
subbands 63. The entropy audio encoder 62 may output the
codewords 63 to interval packing unit 64.

The interval packing unit 64 may represent a unit con-
figured to specify (or, in other words, pack) the codewords
63 into a number of uniform intervals. The interval packing
unit 64 may obtain, based on the codewords 63, one or more
symbols. In order to obtain the symbols, the interval packing
unit 64 may obtain, from the compressed audio data 61, an
ordering of each of the compressed subbands 63 relative to
the remaining compressed subbands 63. The ADPCM audio
encoder 60 may specify the ordering of each of the com-
pressed subbands 63 relative to the remaining compressed
subbands 63 via various syntax elements either explicitly or
implicitly (e.g., in the form of a bit allocation identifying a
number of bits allocated to each of the subbands). Based on
the ordering and the codewords 63, the interval packing unit
64 may obtain the symbols.

For example, the interval packing unit 64 may determine,
based on the ordering, that a subset of the subbands are more
important (in terms of representing the soundfield indicated
by the audio data 23) than the remaining subbands. The term
“subset” should be understood to refer to one or more items
contrary to the mathematical definition in which the term
“subset” may refer to zero or more items unless explicitly
indicated otherwise. In any event, the interval packing unit
64 may determine, in this example, that three of the sub-
bands are more important in that, as an example, a higher
number of bits were allocated per sample than the remaining
subbands.

The interval packing unit 64 may obtain a sequential
ordering of the codewords 63 corresponding to the three
subbands, and then formulate a symbol as a tuple of a first
codeword from the first of the three subbands, a second
codeword of a second of the three subbands, and a third
codeword from a third of the three subbands. The interval
packing unit 64 may then iterate to the next set of three
codewords from the respective three subbands to obtain a
sequentially successive symbol. The interval packing unit 64
may continue in this manner to obtain symbols. In this
respect, each of the symbols comprises a codeword from the

US 10,727,858 B2

13

one or more codewords 63 of two or more of the entropy
coded versions of the plurality of filtered portions (i.e., the
codewords 63 shown in the example of FIG. 2A).

The interval packing unit 64 may also identify the subset
of subbands (in the form of the corresponding ones of the
codewords 63) as the subset to which error resiliency is to
be applied. That is, the same subset from which the interval
packing unit 64 may obtain the symbols may also represent
a subset of the plurality of portions to which the error
resiliency is to be applied. In this respect, the interval
packing unit 64 may identify those of the intervals to which
error resiliency is to be applied.

The interval packing unit 64 may also obtain symbols
based on codewords 63 corresponding to subbands that are
relatively less important (as indicated, for example, by
having less bits allocated to the subbands per the bit allo-
cation specified in the compressed audio data 61). The
interval packing unit 64 may identify these symbols as
corresponding to subbands to which error resiliency is not to
be applied. The interval packing unit 64 may, as discussed
below in more detail, specify these symbols into any space
remaining within the intervals after specifying the symbols
to which error resiliency is to be applied. More information
regarding how the symbols are packed into the intervals is
described with respect to the example of FIGS. 4A-4F.

FIGS. 4A-4E are diagrams illustrating example operation
of the interval packing unit shown in FIG. 2A in performing
various aspects of the techniques described in this disclo-
sure. The interval packing unit 64 may first obtain, as shown
in the example of FIG. 4A, symbols 600A-600F (“symbols
600). The interval packing unit 64 may next obtain inter-
vals 65A-65F (“intervals 65"), which may form a packet 601
of the bitstream 25. Each of the intervals 65 have a same bit
length of 32 bits. Although described with respect to a bit
length of 32 bits, the techniques may be performed with
respect to any bit length, and should not be limited to the
example bit length of 32 bits. Furthermore, the interval may
be regular (or, in other words, uniform), non-regular (e.g.,
vary between packets), and/or defined in packets/stream or
outside of the packets/stream as side information.

After obtaining the symbols 600 and the intervals 65, the
interval packing unit 64 may systematically (or, in other
words, algorithmically) begin packing the symbols 600 into
the intervals 65. As shown in FIG. 4A, the interval packing
unit 64 may arrange the intervals 65 according to a stack
structure, arranging each of the intervals to form a stack data
structure such that the interval 65E is directly above the
interval 65F, the interval 65D is directly above the interval
65E, the interval 65C is directly above the interval 65D, the
interval 65B is directly above the interval 65C, and the
interval 65A is directly above the interval 65B. As such, the
intervals 65 may be referred to as an interval stack 65.

Next, the interval packing unit 64 may push each of the
symbols 600 onto the interval stack 65, starting with symbol
600F, and proceeding to push each of symbols 600E-600A
one after another onto the stack. The example of FIG. 4A
shows the result of pushing the symbols 600 onto the
interval stack 65, with the symbol 600F stored to the interval
65F, the symbol 600E stored to the interval 65E, the symbol
600D stored to the interval 65D, the symbol 600C stored to
the interval 65C, the symbol 600B stored to the interval 65B,
and the symbol 600A stored to the interval 65A.

As further shown in the example of FIG. 4A, the symbol
600F exceeds the 32-bit length of the interval 600F, the
symbol 600F exceed the 32-bit length of the interval 600E,
and the symbol 600A exceed the bit length of the interval
65A. The interval packing unit 64 may begin from the

10

15

20

25

30

35

40

45

50

55

60

65

14

bottom of the interval stack 65, systematically comparing
each of the symbols 600F-600A (in that order) to the 32-bit
length of each of the intervals 65. As such, the interval
packing unit 64 may first determine that the symbol 600F
exceeds the 32-bit length.

Responsive to determining that the symbol 600F exceeds
the 32-bit length, the interval packing unit 64 may obtain a
portion 604F of the symbol 600F that is within the 32-bit
length, and an excess portion 606F of the symbol 600F that
exceeds the 32-bit length. The interval packing unit 64 may
attempt to relocate (or, in other words, specify) the excess
portion 606F to the interval 65E directly above the interval
65F (as denoted by arrow 610A). However, the interval
packing unit 64 may determine that the interval 65E does not
have any available space, considering that the symbol 600E
exceeds the 32-bit length. The interval packing unit 64 may
then halt processing of the symbol 600F (as denoted by the
“X” over the arrow 610A), and proceed to processing of the
interval 600E directly above the interval 65F.

The interval packing unit 64 may begin processing of the
interval 65E by comparing the symbol 600E to the 32-bit
length to determine that the symbol 65E exceeds the 32-bit
length. Responsive to determining that the interval 65E
exceeds the 32-bit length, the interval packing unit 64 may
obtain a portion 604E within the 32-bit length, and an excess
portion 606F that exceeds the 32-bit length. The interval
packing unit 64 may next attempt to relocate the excess
portion 606E to the interval 65D directly above the interval
65E in the interval stack 65.

To relocate the excess portion 606F, the interval packing
unit 64 may first determine whether the symbol 600D
exceeds the 32-bit length. As shown in the example of FIG.
4A, the symbol 600D does not exceed the 32-bit length. The
interval packing unit 64, responsive to determining that the
symbol 600D does not exceed the 32-bit length, reallocate at
least some of the excess portion 606E to the interval 65D. In
the example of FIG. 4A, the interval packing unit 64 may
relocate all of excess portion 606E to the interval 65D (as
denoted by arrow 610B).

Referring next to the example of FIG. 4B, the interval
packing unit 64 may, after relocating excess portion 606E,
return to symbol 600F, and attempt to relocate excess
portion 606F. In this respect, the interval packing unit 64
may be configured to execute a recursive algorithm in which
the algorithm calls itself in order to pack the symbol 600E,
saving any state produced when packing the symbol 600F,
and returning to the first invocation of the algorithm to pack,
based on the saved state, the symbol 600F. In any event, the
interval packing unit 64 may, based on the saved state,
determine whether the next interval, i.e., the interval 600D
in this example, has any available space to store excess
portion 606F.

In this example, the interval packing unit 64 may deter-
mine that the symbol 606D plus excess portion 606E does
not exceed the 32-bit length and that there is available space
in the interval 65D. As such, the interval may relocated the
excess portion 606F to the interval 65D (as denoted by arrow
610C), with the result of the relocation shown in the
example of FIG. 4C.

Referring to the example of FIG. 4C, the interval packing
unit 64 has relocated the excess portion 606F. The interval
packing unit 64 may, after relocating the excess portion
606F, determine whether the symbol 600D plus the excess
portion 606F and the excess portion 606F exceeds the 32-bit
length. In the example of FIG. 4C, the interval packing unit

US 10,727,858 B2

15

64 may determine that the symbol 600D plus the excess
portion 606F and the excess portion 606F exceeds the 32-bit
length.

Responsive to determining that the symbol 600D plus the
excess portion 606E and the excess portion 606F exceeds
the 32-bit length, the interval packing unit 64 may obtain, a
sub-portion 614F of the excess portion 606F within the
32-bit length and an excess sub-portion 616F that exceeds
the 32-bit length. The interval packing unit 64 may attempt
to relocate the excess sub-portion 616F to the interval 65C
directly above the current interval 606D.

To relocate the excess sub-portion 616F, the interval
packing unit 64 may first determine whether the symbol
600C stored to the interval 600C exceeds the 32-bit length.
As shown in the example of FIG. 4C, the symbol 600C does
not exceed the 32-bit length. The interval packing unit 64,
responsive to determining that the symbol 600C does not
exceed the 32-bit length, reallocate at least some of the
excess sub-portion 616F to the interval 65C. In the example
of FIG. 4C, the interval packing unit 64 may relocate all of
excess sub-portion 616F to the interval 65C (as denoted by
arrow 610D), the result of which is shown in the example of
FIG. 4D.

Referring next to the example of FIG. 4D, the interval
packing unit 64 has relocated the excess sub-portion 616F to
the interval 65C. The interval packing unit 64 may, after
relocating the excess sub-portion 616F, determine whether
the symbol 600C plus the excess sub-portion 616F exceeds
the 32-bit length. In the example of FIG. 4D, the interval
packing unit 64 may determine that the symbol 600C plus
the excess sub-portion 616F does not exceed the 32-bit
length. As such, the interval packing unit 64 processes the
interval 65B directly above the interval 65C in the interval
stack 65.

In processing the interval 65B, the interval packing unit
64 may first determine whether the symbol 600B exceeds
the 32-bit length of the interval 65B. Responsive to deter-
mining that the symbol 600B does not exceed the 32-bit
length, the interval packing unit 64 may proceed to process
the interval 65A directly above the interval 65B in the
interval stack 65.

In processing the interval 65A, the interval packing unit
64 may first determine whether the symbol 600A exceeds
the 32-bit length of the interval 65A. Responsive to deter-
mining that the symbol 600A exceeds the 32-bit length, the
interval packing unit 64 may obtain a portion 604A of the
symbol 600A that is within the 32-bit length and an excess
portion 606A that exceeds the 32-bit length. The interval
packing unit 64 may attempt to relocate the excess portion
606A by looping around the stack 65 (e.g., starting at the
interval 65F at the bottom of the interval stack 65), and
iteratively moving up from the bottom of the interval stack
65 from interval 65E-65B responsive to determining that the
interval 65F does not have any available space (as denoted
by the “X” on an arrow 610E).

The interval packing unit 64 may sequentially determine
that the intervals 65E, and then the interval 65D also do not
have any available space (as denoted by the “X” on an arrow
610F and on an arrow 610G, respectively). The interval
packing unit 64 may next determine that the interval 65C has
available space and relocate at least some of the excess
portion 606A to the interval 65C (as denoted by an arrow
610H), the result of which is shown in the example of FIG.
4E.

In the example of FIG. 4E, the interval packing unit 64
has relocated the excess portion 606A to the interval 65C.
The interval packing unit 64 may, after relocating the excess

25

40

45

55

16

portion 606A, determine whether the symbol 600C plus the
excess sub-portion 616F and the excess portion 606A
exceeds the 32-bit length. In the example of FIG. 4E, the
interval packing unit 64 may determine that the symbol
600C plus the excess sub-portion 616F and the excess
portion 606A does not exceed the 32-bit length.

Responsive to determining that the symbol 600C plus the
excess sub-portion 616F and the excess portion 606A does
not exceed the 32-bit length, the interval packing unit 64
may determine whether any of the intervals 65 have any
available space. The interval packing unit 64 may determine
that interval 65B includes available space 620B. The interval
packing unit 64 may proceed to pack any symbols from less
important subbands into the available space 620B.

Although described above as specifying excess portions
of symbols in intervals above the current interval in the
symbol stack, the techniques may be performed such that
excess portions are specified in any previous or future
interval. The excess portion (which may also be referred to
as “slipover”) may, in other words, flow forward to future
intervals and then loop back to the beginning of the packet.
Furthermore, while described with respect to packets, the
techniques may be performed with respect to streams in
which the slipover may flow forward to future intervals or
backwards to past intervals. In the context of streams, there
may not be any looping back/forward, and as such, the
number of intervals into which the slipover is capable of
flowing may be limited.

Returning to the example of FIG. 2A, the interval packing
unit 64 may output the intervals 65 to the error resiliency
unit 66. The error resiliency unit 66 may represent a unit
configured to apply error resiliency to the intervals 65 to
obtain error resilient intervals, which the error resiliency unit
66 may specified in the bitstream 25.

FIG. 2B is a block diagram illustrating an example of the
audio decoder of FIG. 1 that may perform various aspects of
the techniques described in this disclosure. As shown in the
example of FIG. 2B, the audio decoder 24 includes an error
detection unit 70, an interval unpacking unit 72, an entropy
decoding unit 74, and an ADPCM audio decoder 76.

The error detection unit 70 may represent a unit config-
ured to perform error detection with respect to the intervals
65' specified in the bitstream 25 to detect a presence of one
or more errors 71 in one or more of the intervals 65' (where
the prime notation (') denotes that the intervals 65 may have
been impacted by bit errors 71). The error detection unit 70
may determine the errors 71 in a manner specified by the
corresponding error resiliency scheme listed above. The
error detection unit 70 may specify the errors 71 as an error
bit mask for each of the intervals, which may identify which
of the bits of the intervals are errors. As such, the errors 71
may be referred to herein as “error bit mask 71.” The error
detection unit 70 may also obtain, from the bitstream 25, the
intervals 65' and output the intervals 65' to the interval
unpacking unit 72.

The interval unpacking unit 72 may operate in a manner
reciprocal to the interval packing unit 64 discussed above
with respect to the example of FIGS. 2 and 4A-4F. That is,
the interval unpacking unit 72 may systematically obtain (or,
in some instances, parse) the symbols from the intervals 65'.
More information concerning how the interval unpacking
unit 72 may obtain the symbols from the intervals is
described with respect to the following FIG. 5.

FIGS. 5A-5H are diagrams illustrating example operation
of the interval unpacking unit shown in FIG. 2B in perform-
ing various aspects of the techniques described in this
disclosure. Referring first to the example of FIG. 5A, the

US 10,727,858 B2

17

interval unpacking unit 72 may begin at a top of packet 601",
parsing the symbol 600A' from interval 65A'. Responsive to
determining that the interval 65A' only stores a portion of the
symbol 600A’, the interval unpacking unit 72 may determine
whether excess portion 606A is stored to a local stack 650.
Response to determining that the local stack 650 is empty
(or, in other words, does not store the excess portion 606A"),
the interval unpacking unit 72 may mark the symbol 600A'
as unavailable (denoted by the “X”), and proceed to process
the next interval 65B' as shown in the example of FIG. 5B.

The interval unpacking unit 72 may parse the symbol
600B' from the interval 65B', providing the symbol 600B' to
the entropy decoding unit 74. The result of parsing symbol
600B' from the interval 65B' is shown in the example of FIG.
5B.

Referring next to the example of FIG. 5C, the interval
unpacking unit 72 may parse the symbol 600C' from the
interval 65C', providing the symbol 600C' to the entropy
decoding unit 74. The interval unpacking unit 72 may also
push the excess sub-portion 616F' and the excess portion
606A' onto the local stack 650 (as denoted by arrows 652A
and 652B).

Referring next to the example of FIG. 5D, the interval
unpacking unit 72 may parse the symbol 600D' from the
interval 65D', providing the symbol 600D' to the entropy
decoding unit 74. The interval unpacking unit 72 may also
push the excess portion 606E' and the sub-portion 614F' onto
the local stack 650 (as denoted by arrows 652C and 652D).

Referring next to the example of FIG. SE, the interval
unpacking unit 72 may parse the symbol 600E' from the
interval 65E'. The interval unpacking unit 72 may determine
that the symbol 600E' is incomplete (e.g., the entropy
decoding unit 74 may indicate that the symbol 600E' is
incomplete). As such, the interval unpacking unit 72 may
obtain, from the local stack 650 (and as denoted by arrow
652F), the excess portion 606E' previously pushed onto the
local stack 650. The interval unpacking unit 72 may provide
the reconstructed symbol 600E' to the entropy decoding unit
74, and proceed to unpacking symbol 600F".

Referring next to the example of FIG. 5F, the interval
unpacking unit 72 may parse the symbol 600F' from the
interval 65F'. The interval unpacking unit 72 may determine
that the symbol 600F' is incomplete (e.g., the entropy
decoding unit 74 may indicate that the symbol 600F"' is
incomplete). As such, the interval unpacking unit 72 may
obtain, from the local stack 650 (and as denoted by arrow
652F), the sub-portion 614F' previously pushed onto the
local stack 650. The interval unpacking unit 72 may provide
the reconstructed symbol 600E' to the entropy decoding unit
74, which may again indicate that the symbol 600F' is
incomplete. The interval unpacking units 72 may obtain,
from the local stack 650 (and as denoted by arrow 652G), the
excess sub-portion 616" previously pushed onto the local
stack 650, thereby reconstructing the excess portion 606F"
and the symbol 600F'. The interval unpacking unit 72 may
provide the reconstructed symbol 600F' to the entropy
decoding unit 74, and proceed to address any symbols 600A’
marked as unavailable.

Referring next to the example of FIG. 5G, the interval
unpacking unit 72 may determine that the symbol 600A" is
marked as unavailable. Responsive to determining that the
symbol 600A' is unavailable, the interval unpacking unit 72
may obtain, from the local stack 650 (and as denoted by
arrow 652H), the excess portion 606A' previously pushed
onto the local stack 650, thereby reconstructing the symbol
600A'. The interval unpacking unit 72 may provide the
reconstructed symbol 600A' to the entropy decoding unit 74.

10

15

20

25

30

35

40

45

50

55

60

65

18

The interval unpacking unit 72 may also, although not
shown in the example of FIGS. 5A-5F, determine whether
any available space was used to store additional symbols
from other subbands. The interval unpacking unit 72 may
then unpack the additional symbols from the other subbands
and provide the codewords 63' from these additional sym-
bols to the entropy decoding unit 74.

Due to how the interval packing unit 64 may systemati-
cally pack the symbols 600 within the intervals 65, the
interval unpacking unit 72 may systematically unpack the
symbols 600" from the intervals 65' utilizing the local stack
650 in the manner described above without potentially
requiring the interval packing unit 64 to signal any addi-
tional bits (or, in other words, overhead bits) to identify
where the symbols 600 are specified in the intervals 65.
Accordingly, the techniques may improve the operation of
the interval packing unit 64 and the interval unpacking unit
72 themselves that the techniques may allow for more
efficient representation of the symbols 600 in the intervals
65, which may reduce resource utilization (and thereby
power consumption).

The foregoing FIGS. 5A-5H provided an example of
successful unpacking of the intervals 65', however there may
be one or more errors that occurred during transmission
and/or processing of the intervals 65'. To illustrate, consider
the example of FIG. 5H in which it is assumed that an error
occurred in the portion 604E' of the symbol 600E. The
interval unpacking unit 72 may determine a location of the
error in the portion 604E', and parse the codewords 63' from
the symbol 600E occurring before the detected error in the
portion 604E', which may be decompressed to obtain a
partial portion of the audio data 23'. The interval packing
unit 72 may discard the remainder of the portion 604E' and
the local stack, e.g., the excess portion 606E', 606F', and
606A' (as denoted by the “X”).

Alternatively, consider the example of FIG. 5H in which
it is assumed that an error occurred in the excess portion
606F'. The interval unpacking unit 72 may determine a
location of the error in the excess portion 606F", and parse
the codewords 63' from the symbol 600F occurring in the
portion 604F"' and (when possible) before the detected error
in the excess portion 606F', the combination of which may
be decompressed to obtain a partial portion of the audio data
23'. The interval packing unit 72 may discard the remainder
of the excess portion 606F' (which may, in some instances,
be all of the excess portion 606F") and possibly some of the
portion 604F" that relied on the excess portion 606F' (e.g.,
when a codeword is split between the portion 604F" and the
excess portion 606F"). In this respect, errors may be limited
to a single interval, and may not propagate to more than one
interval.

Although described above as obtaining excess portions of
symbols from intervals above the current interval in the
symbol stack, the techniques may be performed such that
excess portions are obtained from any previous or future
interval. The excess portion (which may also be referred to
as “slipover”) may, in other words, flow forward to future
intervals and then loop back to the beginning of the packet.
Furthermore, while described with respect to packets, the
techniques may be performed with respect to streams in
which the slipover may flow forward to future intervals or
backwards to past intervals. In the context of streams, there
may not be any looping back/forward, and as such, the
number of intervals into which the slipover is capable of
flowing may be limited.

Returning to the example of FIG. 2B, the interval unpack-
ing unit 72 may obtain the codewords 63' from the symbols

US 10,727,858 B2

19

in a manner reciprocal to how the interval packing unit 64
obtained the symbols from the codewords 63. Again, the
prime notation (') may denote that the codewords 63' are
generally the same as the codewords 63' but for the errors 71
that potentially resulted in loss of one or more of the original
codewords 63. In any event, the interval unpacking unit 72
may identify, given that each of the codewords 63' is a
unique codeword that is not a prefix of any other code, each
of the codewords 63' of the codeword tuple forming each
symbol, and extract each of the three codewords 63' from the
symbol. The interval unpacking unit 72 may next organize
each of the codewords 63' sequentially according to which
of the subbands each of the codewords 63' correspond. The
interval unpacking unit 63' may output the organized code-
words 63' to entropy decoding unit 74.

The entropy decoding unit 74 may represent a unit
configured to perform entropy decoding with respect to the
codewords 63' to obtain compressed audio data 61' (which
may also be referred to as compressed subbands 61'). The
entropy decoding unit 74 may perform prefix-code entropy
decoding, such as Huffman decoding, with respect to the
codewords 62' to obtain the compressed subbands 61'. The
entropy decoding unit 74 may output the compressed sub-
bands 61' to the ADPCM audio decoder 76, which may
perform ADPCM decompression with respect to the com-
pressed subbands 61' to obtain the audio data 23' as
described below in more detail with respect to the example
of FIG. 3B.

FIG. 10 is a diagram illustrating a graph 1000 demon-
strating perceptual improvement as a result of the audio
codec shown in FIG. 1 performing various aspects of the
techniques described in this disclosure relative to other
audio codecs. Graph 1000 indicates that aptX mode 1, which
is representative of aptX modified in accordance with the
various aspects of the techniques described in this disclo-
sure, sounded perceptually better with an average user score
of 75.2 relative to other audio codecs, such as 3.5 kilo Hertz
(kHz) low pass filter (LPF) audio codec, and an Opus 1.2
audio codec.

FIG. 3A is a block diagram illustrating an example of the
ADPCM audio encoder of FIG. 2A in performing various
aspects of the techniques described in this disclosure. As
shown in the example of FIG. 3A, the ADPCM audio
encoder 60 includes a subband filter 102, compression units
104, and a bit allocation unit 106. The subband filter 102
may represent a unit configured to separate the audio data 23
(which may represent pulse code modulated—PCM—audio
data) into different subbands 103 of the audio data 23 (or,
more generically, different portions of the audio data 23).
Examples of the subband filter 102 include a quadrature
mirror filterbank (QMF) or a conjugate mirror filters (CMF,
which may also be referred to as power symmetric filters—
PSF). The subband filter 102 may output subbands 103 to
the bit compression units 104 and the bit allocation unit 106.

The compression units 104 may represent one or more
units configured to compress one or more of the subbands
103. In the example of FIG. 3A, the audio encoder 24
includes a compression unit of compression units 104 for
each one of the subbands 103. However, the audio encoder
24 may include a single compression unit 104 that processes
each of the subbands 103, or two or more compression units
104 that may process one or more of the subbands 103.

In any event, each of the compression units 104 may be
configured to perform a form of compression referred to as
adaptive differential pulse code modulation (ADPCM).
Although described with respect to ADPCM, the techniques
may be implemented with respect to any form of compres-

10

15

20

25

30

35

40

45

50

55

60

65

20

sion that relies on bit allocations or other indications of a
current level of a current block of the audio data 23 and level
estimation in order to obtain the level estimate indication.
The compression units 104 may perform ADPCM with
respect to the subbands 103 to obtain quantized errors 113,
which may be formatted to form the bitstream 61.

The bit allocation unit 106 may represent a unit config-
ured to perform, based on the subbands 103, bit allocation to
obtain a bit allocation for each of the subbands 103.
Although not shown in the example of FIG. 3A, the bit
allocation unit 106 may receive a target bitrate or other
indication of the target bitrate (such as a quality, SNR, etc.).
The bit allocation unit 106 may then obtain, based on the
target bitrate, a bit budget for a frame (or any set or adaptable
number of samples) of the audio data 23.

The bit allocation unit 106 may analyze each of the
subbands 103 to identify which of the subbands 103 include
information salient in representing the soundfield captured
by the audio data 23, and thereby allocate portions of the bit
budget to one or more of the subbands 103. In some
examples, the bit allocation unit 106 may determine a
maximum peak to average power ratio (PAR) envelope for
each of the subbands 103 and identify which of the subbands
103 should receive more bits than other ones of the subbands
103 (possibly performing differentiation and integration
between the different subbands 103 to identify redundancies,
etc.). The bit allocation unit 106 may, in some instances,
identify a SNR for each of the subbands 103 as an alternative
to the maximum PAR envelope or in conjunction with the
maximum PAR envelope. The bit allocation unit 106 may
then provide the bit allocation 107 for each of the subbands
107 to a corresponding one of the compression units 104.

As further shown in the example of FIG. 3A, the com-
pression units 104 may each include an error generation unit
108, a level estimation unit 110, a quantization unit 112, an
inverse quantization unit 114, and a prediction unit 116. The
error generation unit 108 may represent a unit configured to
obtain an error 109 as a difference between a current block
of the subband 103, and a predicted subband block 117
predicted from a previous block of the subband 103. The
previous block of the subband 103 may include a block that
is temporally directly before the current block of the sub-
band 103. The error generation unit 108 may output the error
109 to quantization unit 112.

The level estimation unit 110 may represent a unit con-
figured to perform level estimation with respect to previous
blocks of the subband 103. The level estimation unit 110
may receive quantized errors 113 as codewords having, as
one example, bit lengths of two to nine bits. The quantized
errors 113 may represent an example of previous indications
of the levels of previous blocks of subband 103.

The level estimation unit 110 may perform, based on one
or more of the quantized errors 113, level estimation 110 to
obtain quantization step size 111 (“Q step size 111”). More
information concerning how to perform level estimation
with respect to only quantized errors 113 can be found at
section 3.2.3 (in reference to Adaptive Quantizers and
referred to as “adaptive-backward prediction”), entitled
“VECTOR QUANTIZATION AND SCALAR LINEAR
PREDICTION FOR WAVEFORM CODING OF SPEECH
AT 16 kb§,” and dated June 1989. The level estimation unit
110 may output the quantization step size 111 to both the
quantization unit 112 and the inverse quantization unit 114.

The quantization unit 112 may represent a unit configured
to perform uniform or non-uniform quantization with
respect to the error 109. Uniform quantization may refer to
quantization in which the quantization levels or intervals are

US 10,727,858 B2

21

uniform (or, in other words, the same). Non-uniform quan-
tization may refer to quantization in which the quantization
levels or intervals are not uniform. For purposes of illustra-
tion, it is assumed that quantization unit 112 may perform
non-uniform quantization as the audio data 23 may generally
not have a uniform distribution of samples especially in the
presence of rapidly changing levels.

In any event, the quantization unit 112 may perform
adaptive quantization (which is a form of lossy compres-
sion) based on quantization step size 111, where such
quantization is adaptive given that the quantization step size
111 may change. The quantization unit 112 may perform,
based on the quantization step size 111, non-uniform quan-
tization with respect to the error 109 to obtain the quantized
error 113. The quantization unit 112 may output the quan-
tized error 113 to the level estimation unit 110, as noted
above, and the inverse quantization unit 114.

The inverse quantization unit 114 may represent a unit
configured to perform inverse quantization, based on the
quantization step size 111, with respect to the quantized error
113 to obtain the dequantized error 115. In this respect, the
inverse quantization unit 114 may operate reciprocally to the
quantization unit 112. The inverse quantization unit 114 may
output the dequantized error 115 to the prediction unit 116.

The prediction unit 116 may represent a unit configured to
predict, based on dequantized error 115, subband 103 to
obtain predicted subband block 117. The prediction unit 116
may obtain the predicted subband block 117 by, as one
example, adding dequantized error 115 to a previously
predicted subband block 117 for subband 103. The predic-
tion unit 116 may output the predicted subband block 117 to
the error generation unit 108, as noted above.

FIG. 3B is a block diagram illustrating an example of the
audio decoder of FIG. 1 in performing various aspects of the
techniques described in this disclosure. As shown in the
example of FIG. 3B, the ADPCM audio decoder 76 includes
an extraction unit 202, decompression units 204, and a
reconstruction unit 206. The extraction unit 202 may rep-
resent a unit configured to extract or otherwise parse various
values from the bitstream 61, such as the quantized errors
113 and corresponding bit allocations 107.

The decompression units 204 may each represent a unit
configured to perform reciprocal operations to those
described above with respect to compression units 104. In
the example of FIG. 3B, the audio decoder 44 includes a
decompression unit of decompression units 204 for each one
of the quantized errors 103. However, the ADPCM audio
decoder 76 may include a single decompression unit 204
that processes each of the quantized errors 113, or two or
more decompression units 204 that may process one or more
of the quantized errors 113.

Each of the decompression units 204 may perform inverse
ADPCM compression to obtain predicted subband blocks
117. Each of decompression units 204 may output predicted
subband blocks 117 to reconstruction unit 206. Although
described with respect to inverse ADPCM, the techniques
may be implemented with respect to any form of decom-
pression that relies on bit allocations or other indications of
a current level of a current block of the audio data 23 and
level estimation in order to obtain the level estimate indi-
cation 111. The decompression units 204 may output pre-
dicted subband blocks 117 to reconstruction unit 206.

The reconstruction unit 206 may represent a unit config-
ured to reconstruct, based on predicted subband blocks 117
from each of the decompression units 204, audio data 23'.
The reconstruction unit 206 may apply an inverse subband

20

25

40

45

22

filter (not shown) in a manner reciprocal to the subband filter
102 with respect to the predicted subband blocks 117 to
obtain the audio data 23'".

As further shown in the example of FIG. 3B, each of the
decompression units 204 include a level estimation unit 110,
an inverse quantization unit 114, and a prediction unit 116.
The level estimation unit 110, the inverse quantization unit
114, and the prediction unit 116 of the decompression units
204 may each operate in a manner substantially similar to,
if not the same as, the level estimation unit 110, the inverse
quantization unit 114, and the prediction unit 116, respec-
tively, of the compression units 104 of the ADPCM audio
encoder 60 shown in the example of FIG. 3A.

The level estimation unit 110 of the decompression units
204 may represent a unit configured to perform level esti-
mation with respect to previous blocks of the subband 103.
The level estimation unit 110 may receive quantized errors
113 as codewords having, as one example, bit lengths of two
to nine bits. The quantized errors 113 may represent an
example of previous indications of the levels of previous
blocks of subband 103.

The level estimation unit 110 may perform, based on one
or more of the quantized errors 113, level estimation 110 to
obtain quantization step size 111 (“Q step size 111”). More
information concerning how to perform level estimation
with respect to only quantized errors 113 can be found at
section 3.2.3 (in reference to Adaptive Quantizers and
referred to as “adaptive-backward prediction™) in a Thesis
Paper by Watts, Lloyd, entitled “VECTOR QUANTIZA-
TION AND SCALAR LINEAR PREDICTION FOR
WAVEFORM CODING OF SPEECH AT 16 kb/s,” and
dated June 1989. The level estimation unit 110 may output
the quantization step size 111 to the inverse quantization unit
114.

The inverse quantization unit 114 may represent a unit
configured to perform inverse quantization, based on the
quantization step size 111, with respect to the quantized error
113 to obtain the dequantized error 115. In this respect, the
inverse quantization unit 114 may operate reciprocally to the
quantization unit 112 of the compression units 104. The
inverse quantization unit 114 may output the dequantized
error 115 to the prediction unit 116.

The prediction unit 116 may represent a unit configured to
predict, based on dequantized error 115, subband 103 to
obtain predicted subband block 117. The prediction unit 116
may obtain the predicted subband block 117 by, as one
example, adding dequantized error 115 to a previously
predicted subband block 117 for subband 103. The predic-
tion unit 116 may output the predicted subband block 117 to
the reconstruction unit 206, as noted above.

FIG. 6 is a flowchart illustrating example operation of the
source device 12 of FIG. 1 in performing various aspects of
the techniques described in this disclosure. As shown in the
example of FIG. 6, the source device 12 may first obtain,
from a compressed version of the audio data, a symbol of a
plurality of symbols (300). The source device 12 may next
obtain a plurality of intervals, each of the intervals having a
same bit length (302). The source device may also obtain a
portion of the symbol within the bit length and an excess
portion of the symbol over the bit length (304). The source
device 12 may further specify, in a first interval of the
plurality of intervals, the portion of the symbol (306). The
source device 12 may also specify, in a second interval of the
plurality of intervals, the excess portion of the symbol (308).
The source device 12 may apply, to the first interval and the
second interval, error resiliency to obtain a first error resil-
ient interval and a second error resilient interval (310). The

US 10,727,858 B2

23

source device 12 may further specify, in a bitstream repre-
sentative of the compressed version of the audio data, the
first error resilient interval and the second error resilient
interval (312).

FIG. 7 is a flowchart illustrating example operation of the
sink device 14 of FIG. 1 in performing various aspects of the
techniques described in this disclosure. As shown in the
example of FIG. 7, the sink device 14 may obtain, from the
bitstream, a first error resilient interval and a second error
resilient interval, each of the first error resilient interval and
the second error resilient interval having a same bit length
(350). The sink device 14 may further perform error detec-
tion with respect to the first error resilient interval and the
second error resilient interval to detect a presence of one or
more errors in one or more of the first error resilient interval
and the second error resilient interval (352).

The sink device 14 may, responsive to detecting that the
one or more errors were not present in the first error resilient
interval and the second error resilient interval, obtain, from
the first error resilient interval, a portion of a symbol within
the bit length, the symbol indicative of the compressed
version of the audio data (354), and obtain, from the second
error resilient interval, an excess portion of the symbol over
the bit length (356). The sink device 14 may next decom-
press, based on the portion and the excess portion, the
symbol to obtain a portion of the audio data (358).

FIG. 8 is a block diagram illustrating example compo-
nents of the source device 12 shown in the example of FIG.
1. In the example of FIG. 8, the source device 12 includes
a processor 412, a graphics processing unit (GPU) 414,
system memory 416, a display processor 418, one or more
integrated speakers 102, a display 100, a user interface 420,
and a transceiver module 422. In examples where the source
device 12 is a mobile device, the display processor 418 is a
mobile display processor (MDP). In some examples, such as
examples where the source device 12 is a mobile device, the
processor 412, the GPU 414, and the display processor 418
may be formed as an integrated circuit (IC).

For example, the IC may be considered as a processing
chip within a chip package, and may be a system-on-chip
(SoC). In some examples, two of the processors 412, the
GPU 414, and the display processor 418 may be housed
together in the same IC and the other in a different integrated
circuit (i.e., different chip packages) or all three may be
housed in different ICs or on the same IC. However, it may
be possible that the processor 412, the GPU 414, and the
display processor 418 are all housed in different integrated
circuits in examples where the source device 12 is a mobile
device.

Examples of the processor 412, the GPU 414, and the
display processor 418 include, but are not limited to, one or
more digital signal processors (DSPs), general purpose
microprocessors, application specific integrated circuits
(ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. The proces-
sor 412 may be the central processing unit (CPU) of the
source device 12. In some examples, the GPU 414 may be
specialized hardware that includes integrated and/or discrete
logic circuitry that provides the GPU 414 with massive
parallel processing capabilities suitable for graphics pro-
cessing. In some instances, GPU 14 may also include
general purpose processing capabilities, and may be referred
to as a general purpose GPU (GPGPU) when implementing
general purpose processing tasks (i.e., non-graphics related
tasks). The display processor 418 may also be specialized
integrated circuit hardware that is designed to retrieve image

10

15

20

25

30

35

40

45

50

55

60

24

content from the system memory 416, compose the image
content into an image frame, and output the image frame to
the display 100.

The processor 412 may execute various types of the
applications 20. Examples of the applications 20 include
web browsers, e-mail applications, spreadsheets, video
games, other applications that generate viewable objects for
display, or any of the application types listed in more detail
above. The system memory 416 may store instructions for
execution of the applications 20. The execution of one of the
applications 20 on the processor 412 causes the processor
412 to produce graphics data for image content that is to be
displayed and the audio data 21 that is to be played (possibly
via integrated speaker 102). The processor 412 may transmit
graphics data of the image content to the GPU 414 for
further processing based on and instructions or commands
that the processor 412 transmits to the GPU 414.

The processor 412 may communicate with the GPU 414
in accordance with a particular application processing inter-
face (API). Examples of such APIs include the DirectX®
API by Microsoft®, the OpenGL® or OpenGL ES® by the
Khronos group, and the OpenCL™; however, aspects of this
disclosure are not limited to the DirectX, the OpenGL, or the
OpenCL APIs, and may be extended to other types of APIs.
Moreover, the techniques described in this disclosure are not
required to function in accordance with an APIL, and the
processor 412 and the GPU 414 may utilize any technique
for communication.

The system memory 416 may be the memory for the
source device 12. The system memory 416 may comprise
one or more computer-readable storage media. Examples of
the system memory 416 include, but are not limited to, a
random access memory (RAM), an electrically erasable
programmable read-only memory (EEPROM), flash
memory, or other medium that can be used to carry or store
desired program code in the form of instructions and/or data
structures and that can be accessed by a computer or a
processor.

In some aspects, the system memory 416 may include
instructions that cause the processor 412, the GPU 414,
and/or the display processor 418 to perform the functions
ascribed in this disclosure to the processor 412, the GPU
414, and/or the display processor 418. Accordingly, the
system memory 416 may be a computer-readable storage
medium having instructions stored thereon that, when
executed, cause one or more processors (e.g., the processor
412, the GPU 414, and/or the display processor 418) to
perform various functions.

The system memory 416 may include a non-transitory
storage medium. The term “non-transitory” indicates that
the storage medium is not embodied in a carrier wave or a
propagated signal. However, the term “non-transitory”
should not be interpreted to mean that the system memory
416 is non-movable or that its contents are static. As one
example, the system memory 416 may be removed from the
source device 12, and moved to another device. As another
example, memory, substantially similar to the system
memory 416, may be inserted into the source device 12. In
certain examples, a non-transitory storage medium may
store data that can, over time, change (e.g., in RAM).

The user interface 420 may represent one or more hard-
ware or virtual (meaning a combination of hardware and
software) user interfaces by which a user may interface with
the source device 12. The user interface 420 may include
physical buttons, switches, toggles, lights or virtual versions
thereof. The user interface 420 may also include physical or

US 10,727,858 B2

25
virtual keyboards, touch interfaces—such as a touchscreen,
haptic feedback, and the like.

The processor 412 may include one or more hardware
units (including so-called “processing cores™) configured to
perform all or some portion of the operations discussed
above with respect to one or more of the mixing unit 22, the
audio encoder 24, the wireless connection manager 26, the
audio manager 28, and the wireless communication units 30.
The transceiver module 422 may represent a unit configured
to establish and maintain the wireless connection between
the source device 12 and the sink device 14. The transceiver
module 422 may represent one or more receivers and one or
more transmitters capable of wireless communication in
accordance with one or more wireless communication pro-
tocols. The transceiver module 422 may perform all or some
portion of the operations of one or more of the wireless
connection manager 26 and the wireless communication
units 30.

FIG. 9 is a block diagram illustrating exemplary compo-
nents of the sink device 14 shown in the example of FIG. 1.
Although the sink device 14 may include components simi-
lar to that of the source device 12 discussed above in more
detail with respect to the example of FIG. 8, the sink device
14 may, in certain instances, include only a subset of the
components discussed above with respect to the source
device 12.

In the example of FIG. 9, the sink device 14 includes one
or more speakers 502, a processor 512, a system memory
516, a user interface 520, and a transceiver module 522. The
processor 512 may be similar or substantially similar to the
processor 412. In some instances, the processor 512 may
differ from the processor 412 in terms of total processing
capacity or may be tailored for low power consumption. The
system memory 516 may be similar or substantially similar
to the system memory 416. The speakers 502, the user
interface 520, and the transceiver module 522 may be
similar to or substantially similar to the respective speakers
402, user interface 420, and transceiver module 422. The
sink device 14 may also optionally include a display 500,
although the display 500 may represent a low power, low
resolution (potentially a black and white LED) display by
which to communicate limited information, which may be
driven directly by the processor 512.

The processor 512 may include one or more hardware
units (including so-called “processing cores™) configured to
perform all or some portion of the operations discussed
above with respect to one or more of the wireless connection
manager 40, the wireless communication units 42, the audio
decoder 44, and the audio manager 26. The transceiver
module 522 may represent a unit configured to establish and
maintain the wireless connection between the source device
12 and the sink device 14. The transceiver module 522 may
represent one or more receivers and one or more transmitters
capable of wireless communication in accordance with one
or more wireless communication protocols. The transceiver
module 522 may perform all or some portion of the opera-
tions of one or more of the wireless connection manager 40
and the wireless communication units 28.

The foregoing techniques may be performed with respect
to any number of different contexts and audio ecosystems. A
number of example contexts are described below, although
the techniques should be limited to the example contexts.
One example audio ecosystem may include audio content,
movie studios, music studios, gaming audio studios, channel
based audio content, coding engines, game audio stems,
game audio coding/rendering engines, and delivery systems.

10

15

20

25

30

35

40

45

50

55

60

65

26

The movie studios, the music studios, and the gaming
audio studios may receive audio content. In some examples,
the audio content may represent the output of an acquisition.
The movie studios may output channel based audio content
(e.g., in 2.0, 5.1, and 7.1) such as by using a digital audio
workstation (DAW). The music studios may output channel
based audio content (e.g., in 2.0, and 5.1) such as by using
a DAW. In either case, the coding engines may receive and
encode the channel based audio content based one or more
codecs (e.g., AAC, AC3, Dolby True HD, Dolby Digital
Plus, and DTS Master Audio) for output by the delivery
systems. The gaming audio studios may output one or more
game audio stems, such as by using a DAW. The game audio
coding/rendering engines may code and or render the audio
stems into channel based audio content for output by the
delivery systems. Another example context in which the
techniques may be performed comprises an audio ecosystem
that may include broadcast recording audio objects, profes-
sional audio systems, consumer on-device capture, HOA
audio format, on-device rendering, consumer audio, TV, and
accessories, and car audio systems.

The broadcast recording audio objects, the professional
audio systems, and the consumer on-device capture may all
code their output using HOA audio format. In this way, the
audio content may be coded using the HOA audio format
into a single representation that may be played back using
the on-device rendering, the consumer audio, TV, and acces-
sories, and the car audio systems. In other words, the single
representation of the audio content may be played back at a
generic audio playback system (i.e., as opposed to requiring
a particular configuration such as 5.1, 7.1, etc.), such as
audio playback system 16.

Other examples of context in which the techniques may
be performed include an audio ecosystem that may include
acquisition elements, and playback elements. The acquisi-
tion elements may include wired and/or wireless acquisition
devices (e.g., microphones), on-device surround sound cap-
ture, and mobile devices (e.g., smartphones and tablets). In
some examples, wired and/or wireless acquisition devices
may be coupled to mobile device via wired and/or wireless
communication channel(s).

In accordance with one or more techniques of this dis-
closure, the mobile device may be used to acquire a sound-
field. For instance, the mobile device may acquire a sound-
field via the wired and/or wireless acquisition devices and/or
the on-device surround sound capture (e.g., a plurality of
microphones integrated into the mobile device). The mobile
device may then code the acquired soundfield into various
representations for playback by one or more of the playback
elements. For instance, a user of the mobile device may
record (acquire a soundfield of) a live event (e.g., a meeting,
a conference, a play, a concert, etc.), and code the recording
into various representation, including higher order
ambisonic HOA representations.

The mobile device may also utilize one or more of the
playback elements to playback the coded soundfield. For
instance, the mobile device may decode the coded sound-
field and output a signal to one or more of the playback
elements that causes the one or more of the playback
elements to recreate the soundfield. As one example, the
mobile device may utilize the wireless and/or wireless
communication channels to output the signal to one or more
speakers (e.g., speaker arrays, sound bars, etc.). As another
example, the mobile device may utilize docking solutions to
output the signal to one or more docking stations and/or one
or more docked speakers (e.g., sound systems in smart cars
and/or homes). As another example, the mobile device may

US 10,727,858 B2

27

utilize headphone rendering to output the signal to a headset
or headphones, e.g., to create realistic binaural sound.

In some examples, a particular mobile device may both
acquire a soundfield and playback the same soundfield at a
later time. In some examples, the mobile device may acquire
a soundfield, encode the soundfield, and transmit the
encoded soundfield to one or more other devices (e.g., other
mobile devices and/or other non-mobile devices) for play-
back.

Yet another context in which the techniques may be
performed includes an audio ecosystem that may include
audio content, game studios, coded audio content, rendering
engines, and delivery systems. In some examples, the game
studios may include one or more DAWs which may support
editing of audio signals. For instance, the one or more
DAWSs may include audio plugins and/or tools which may be
configured to operate with (e.g., work with) one or more
game audio systems. In some examples, the game studios
may output new stem formats that support audio format. In
any case, the game studios may output coded audio content
to the rendering engines which may render a soundfield for
playback by the delivery systems.

The mobile device may also, in some instances, include a
plurality of microphones that are collectively configured to
record a soundfield, including 3D soundfields. In other
words, the plurality of microphone may have X, Y, Z
diversity. In some examples, the mobile device may include
a microphone which may be rotated to provide X, Y, Z
diversity with respect to one or more other microphones of
the mobile device.

A ruggedized video capture device may further be con-
figured to record a soundfield. In some examples, the
ruggedized video capture device may be attached to a helmet
of'a user engaged in an activity. For instance, the ruggedized
video capture device may be attached to a helmet of a user
whitewater rafting. In this way, the ruggedized video capture
device may capture a soundfield that represents the action all
around the user (e.g., water crashing behind the user, another
rafter speaking in front of the user, etc . . .).

The techniques may also be performed with respect to an
accessory enhanced mobile device, which may be config-
ured to record a soundfield, including a 3D soundfield. In
some examples, the mobile device may be similar to the
mobile devices discussed above, with the addition of one or
more accessories. For instance, an microphone, including an
Eigen microphone, may be attached to the above noted
mobile device to form an accessory enhanced mobile device.
In this way, the accessory enhanced mobile device may
capture a higher quality version of the soundfield than just
using sound capture components integral to the accessory
enhanced mobile device.

Example audio playback devices that may perform vari-
ous aspects of the techniques described in this disclosure are
further discussed below. In accordance with one or more
techniques of this disclosure, speakers and/or sound bars
may be arranged in any arbitrary configuration while still
playing back a soundfield, including a 3D soundfield. More-
over, in some examples, headphone playback devices may
be coupled to a decoder via either a wired or a wireless
connection. In accordance with one or more techniques of
this disclosure, a single generic representation of a sound-
field may be utilized to render the soundfield on any com-
bination of the speakers, the sound bars, and the headphone
playback devices.

A number of different example audio playback environ-
ments may also be suitable for performing various aspects of
the techniques described in this disclosure. For instance, a

10

15

20

25

30

35

40

45

50

55

60

65

28

5.1 speaker playback environment, a 2.0 (e.g., stereo)
speaker playback environment, a 9.1 speaker playback envi-
ronment with full height front loudspeakers, a 22.2 speaker
playback environment, a 16.0 speaker playback environ-
ment, an automotive speaker playback environment, and a
mobile device with ear bud playback environment may be
suitable environments for performing various aspects of the
techniques described in this disclosure.

In accordance with one or more techniques of this dis-
closure, a single generic representation of a soundfield may
be utilized to render the soundfield on any of the foregoing
playback environments. Additionally, the techniques of this
disclosure enable a rendered to render a soundfield from a
generic representation for playback on the playback envi-
ronments other than that described above. For instance, if
design considerations prohibit proper placement of speakers
according to a 7.1 speaker playback environment (e.g., if it
is not possible to place a right surround speaker), the
techniques of this disclosure enable a render to compensate
with the other 6 speakers such that playback may be
achieved on a 6.1 speaker playback environment.

Moreover, a user may watch a sports game while wearing
headphones. In accordance with one or more techniques of
this disclosure, the soundfield, including 3D soundfields, of
the sports game may be acquired (e.g., one or more micro-
phones and/or Eigen microphones may be placed in and/or
around the baseball stadium). HOA coeflicients correspond-
ing to the 3D soundfield may be obtained and transmitted to
a decoder, the decoder may reconstruct the 3D soundfield
based on the HOA coefficients and output the reconstructed
3D soundfield to a renderer, the renderer may obtain an
indication as to the type of playback environment (e.g.,
headphones), and render the reconstructed 3D soundfield
into signals that cause the headphones to output a represen-
tation of the 3D soundfield of the sports game.

In each of the various instances described above, it should
be understood that the source device 12 may perform a
method or otherwise comprise means to perform each step
of the method for which the source device 12 is described
above as performing. In some instances, the means may
comprise one or more processors. In some instances, the one
or more processors may represent a special purpose proces-
sor configured by way of instructions stored to a non-
transitory computer-readable storage medium. In other
words, various aspects of the techniques in each of the sets
of encoding examples may provide for a non-transitory
computer-readable storage medium having stored thereon
instructions that, when executed, cause the one or more
processors to perform the method for which the source
device 12 has been configured to perform.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored on or transmitted over as one or more
instructions or code on a computer-readable medium and
executed by a hardware-based processing unit. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media. Data storage media may be any available
media that can be accessed by one or more computers or one
or more processors to retrieve instructions, code and/or data
structures for implementation of the techniques described in
this disclosure. A computer program product may include a
computer-readable medium.

Likewise, in each of the various instances described
above, it should be understood that the sink device 14 may
perform a method or otherwise comprise means to perform

US 10,727,858 B2

29

each step of the method for which the sink device 14 is
configured to perform. In some instances, the means may
comprise one or more processors. In some instances, the one
or more processors may represent a special purpose proces-
sor configured by way of instructions stored to a non-
transitory computer-readable storage medium. In other
words, various aspects of the techniques in each of the sets
of encoding examples may provide for a non-transitory
computer-readable storage medium having stored thereon
instructions that, when executed, cause the one or more
processors to perform the method for which the sink device
14 has been configured to perform.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. It should
be understood, however, that computer-readable storage
media and data storage media do not include connections,
carrier waves, signals, or other transitory media, but are
instead directed to non-transitory, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techniques
described herein. In addition, in some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated in a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are
described in this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by different hard-
ware units. Rather, as described above, various units may be
combined in a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, in conjunction with
suitable software and/or firmware.

In this respect, various aspects of the techniques may
enable the following devices, methods, and computer-read-
able medium to operate as set forth in the following clauses.

Clause 1A. A source device configured to process audio
data, the source device comprising: a memory configured to
store at least a portion of the audio data; and one or more
processors coupled to the memory, and configured to:
obtain, from a compressed version of the audio data, a
symbol of a plurality of symbols; obtain a plurality of
intervals, each of the intervals having a same bit length;
obtain a portion of the symbol within the bit length and an
excess portion of the symbol over the bit length; specify, in

40

45

55

30

a first interval of the plurality of intervals, the portion of the
symbol; specify, in a second interval of the plurality of
intervals, the excess portion of the symbol; apply, to the first
interval and the second interval, error resiliency to obtain a
first error resilient interval and a second error resilient
interval; and specify, in a bitstream representative of the
compressed version of the audio data, the first error resilient
interval and the second error resilient interval.

Clause 2A. The source device of clause 1A, wherein the
compressed version of the audio data comprises an entropy
coded version of the audio data.

Clause 3A. The source device of clause 2A, wherein the
entropy coded version of the audio data comprises a Huft-
man coded version of the audio data.

Clause 4A. The source device of clause 1A, wherein the
one or more processors are further configured to perform
entropy coding with respect to the audio data to obtain the
compressed version of the audio data.

Clause 5A. The source device of clause 4A, wherein the
one or more processors are configured to perform Huffman
coding with respect to the audio data to obtain the com-
pressed version of the audio data.

Clause 6A. The source device of any combination of
clauses 4A and 5A, wherein the one or more processors are
further configured to perform, prior to performing the
entropy coding, adaptive differential pulse code modulation
(ADPCM) coding with respect to the audio data to obtain the
compressed version of the audio data.

Clause 7A. The source device of clause 1A, wherein the
one or more processors are further configured to: apply a
filter with respect to the audio data to obtain a plurality of
filtered portions of the audio data; and perform entropy
coding with respect to the plurality of portions of the audio
data to obtain entropy coded versions of the plurality of
portions, each of the entropy coded version of the plurality
of portions comprising one or more codewords, and wherein
the symbol comprises a codeword from the one or more
codewords of two or more of the entropy coded versions of
the plurality of filtered portions.

Clause 8A. The source device of clause 7A, wherein the
filter comprises a subband filter, and wherein the plurality of
filtered portions comprises a plurality of subbands.

Clause 9A. The source device of any combination of
clauses 7A and 8A, wherein the one or more processors are
further configured to obtain a subset of the plurality of
portions to which the error resiliency is to be applied, and
wherein the one or more processors are configured to obtain,
from the subset of the plurality of portions, the plurality of
symbols.

Clause 10A. The source device of clause 9A, wherein the
plurality of symbols comprises a sequential ordering of the
codewords from the two or more of the entropy coded
versions of the plurality of filtered portions.

Clause 11A. The source device of any combination of
clauses 1A-10A, further comprising a transceiver configured
to transmit the bitstream to a sink device in accordance with
a wireless communication protocol.

Clause 12A. The source device of clause 11 A, wherein the
wireless communication protocol comprises a personal area
network wireless communication protocol.

Clause 13A. The source device of clause 11 A, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol.

Clause 14A. The source device of clause 11 A, wherein the
personal area network wireless communication protocol

US 10,727,858 B2

31

comprises a Bluetooth® wireless communication protocol
operating according to the advance audio distribution pro-
file.

Clause 15A. The source device of any combination of
clauses 1A-14A, wherein the one or more processors are
configured to apply majority voting error detection with
respect to the first interval and the second interval to obtain
the first error resilient interval and the second error resilient
interval.

Clause 16A. A method of processing audio data, the
method comprising: obtaining, from a compressed version
of the audio data, a symbol of a plurality of symbols;
obtaining a plurality of intervals, each of the intervals having
a same bit length; obtaining a portion of the symbol within
the bit length and an excess portion of the symbol over the
bit length; specifying, in a first interval of the plurality of
intervals, the portion of the symbol; specifying, in a second
interval of the plurality of intervals, the excess portion of the
symbol; applying, to the first interval and the second inter-
val, error resiliency to obtain a first error resilient interval
and a second error resilient interval; and specifying, in a
bitstream representative of the compressed version of the
audio data, the first error resilient interval and the second
error resilient interval.

Clause 17A. The method of clause 16A, wherein the
compressed version of the audio data comprises an entropy
coded version of the audio data.

Clause 18A. The method of clause 17A, wherein the
entropy coded version of the audio data comprises a Huft-
man coded version of the audio data.

Clause 19A. The method of clause 16A, further compris-
ing performing entropy coding with respect to the audio data
to obtain the compressed version of the audio data.

Clause 20A. The method of clause 19A, wherein perform-
ing the entropy coding comprises performing Huffman cod-
ing with respect to the audio data to obtain the compressed
version of the audio data.

Clause 21A. The method of any combination of clauses
19A and 20A, further comprising performing, prior to per-
forming the entropy coding, adaptive differential pulse code
modulation (ADPCM) coding with respect to the audio data
to obtain the compressed version of the audio data.

Clause 22A. The method of clause 16A, further compris-
ing: applying a filter with respect to the audio data to obtain
a plurality of filtered portions of the audio data; and per-
forming entropy coding with respect to the plurality of
portions of the audio data to obtain entropy coded versions
of the plurality of portions, each of the entropy coded
version of the plurality of portions comprising one or more
codewords, wherein the symbol comprises a codeword from
the one or more codewords of two or more of the entropy
coded versions of the plurality of filtered portions.

Clause 23 A. The method of clause 22A, wherein the filter
comprises a subband filter, and wherein the plurality of
filtered portions comprises a plurality of subbands.

Clause 24A. The method of any combination of clauses
22A and 23A, further comprising obtaining a subset of the
plurality of portions to which the error resiliency is to be
applied, and wherein obtaining the symbol comprises
obtaining, from the subset of the plurality of portions, the
plurality of symbols.

Clause 25A. The method of clause 24A, wherein the
plurality of symbols comprises a sequential ordering of the
codewords from the two or more of the entropy coded
versions of the plurality of filtered portions.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

Clause 26A. The method of any combination of clauses
16A-25A, further comprising transmitting the bitstream to a
sink device in accordance with a wireless communication
protocol.

Clause 27A. The method of clause 26A, wherein the
wireless communication protocol comprises a personal area
network wireless communication protocol.

Clause 28A. The method of clause 26A, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol.

Clause 29A. The method of clause 26A, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol
operating according to the advance audio distribution pro-
file.

Clause 30A. The method of any combination of clauses
16A-29A, wherein performing the error resiliency com-
prises performing majority voting error detection with
respect to the first interval and the second interval to obtain
the first error resilient interval and the second error resilient
interval.

Clause 31A. A source device configured to process audio
data, the source device comprising: means for obtaining,
from a compressed version of the audio data, a symbol of a
plurality of symbols; means for obtaining a plurality of
intervals, each of the intervals having a same bit length;
means for obtaining a portion of the symbol within the bit
length and an excess portion of the symbol over the bit
length; means for specifying, in a first interval of the
plurality of intervals, the portion of the symbol; means for
specifying, in a second interval of the plurality of intervals,
the excess portion of the symbol; means for applying, to the
first interval and the second interval, error resiliency to
obtain a first error resilient interval and a second error
resilient interval; and means for specifying, in a bitstream
representative of the compressed version of the audio data,
the first error resilient interval and the second error resilient
interval.

Clause 32A. The source device of clause 31, wherein the
compressed version of the audio data comprises an entropy
coded version of the audio data.

Clause 33 A. The source device of clause 32 A, wherein the
entropy coded version of the audio data comprises a Huft-
man coded version of the audio data.

Clause 34A. The source device of clause 31A, further
comprising means for performing entropy coding with
respect to the audio data to obtain the compressed version of
the audio data.

Clause 35A. The source device of clause 34 A, wherein the
means for performing the entropy coding comprises means
for performing Huffman coding with respect to the audio
data to obtain the compressed version of the audio data.

Clause 36A. The source device of any combination of
clauses 34A and 35A, further comprising means for per-
forming, prior to performing the entropy coding, adaptive
differential pulse code modulation (ADPCM) coding with
respect to the audio data to obtain the compressed version of
the audio data.

Clause 37A. The source device of clause 31A, further
comprising: means for applying a filter with respect to the
audio data to obtain a plurality of filtered portions of the
audio data; and means for performing entropy coding with
respect to the plurality of portions of the audio data to obtain
entropy coded versions of the plurality of portions, each of
the entropy coded version of the plurality of portions com-
prising one or more codewords, wherein the symbol com-

US 10,727,858 B2

33

prises a codeword from the one or more codewords of two
or more of the entropy coded versions of the plurality of
filtered portions.

Clause 38A. The source device of clause 37A, wherein the
filter comprises a subband filter, and wherein the plurality of
filtered portions comprises a plurality of subbands.

Clause 39A. The source device of any combination of
clauses 37A and 38A, further comprising means for obtain-
ing a subset of the plurality of portions to which the error
resiliency is to be applied, and wherein the means for
obtaining the symbol comprises means for obtaining, from
the subset of the plurality of portions, the plurality of
symbols.

Clause 40A. The source device of clause 39A, wherein the
plurality of symbols comprises a sequential ordering of the
codewords from the two or more of the entropy coded
versions of the plurality of filtered portions.

Clause 41A. The source device of any combination of
clauses 31 A-40A, further comprising means for transmitting
the bitstream to a sink device in accordance with a wireless
communication protocol.

Clause 42A. The source device of clause 41 A, wherein the
wireless communication protocol comprises a personal area
network wireless communication protocol.

Clause 43A. The source device of clause 41 A, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol.

Clause 44A. The source device of clause 41 A, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol
operating according to the advance audio distribution pro-
file.

Clause 45A. The source device of any combination of
clauses 31A-44A, wherein the means for performing the
error resiliency comprises means for performing majority
voting error detection with respect to the first interval and
the second interval to obtain the first error resilient interval
and the second error resilient interval.

Clause 46A. A computer-readable medium having stored
thereon instructions that, when executed, cause one or more
processors of a source device to: obtain, from a compressed
version of audio data, a symbol of a plurality of symbols;
obtain a plurality of intervals, each of the intervals having a
same bit length; obtain a portion of the symbol within the bit
length and an excess portion of the symbol over the bit
length; specify, in a first interval of the plurality of intervals,
the portion of the symbol; specify, in a second interval of the
plurality of intervals, the excess portion of the symbol;
apply, to the first interval and the second interval, error
resiliency to obtain a first error resilient interval and a
second error resilient interval; and specity, in a bitstream
representative of the compressed version of the audio data,
the first error resilient interval and the second error resilient
interval.

Clause 1B. A sink device configured to process a bit-
stream representative of a compressed version of audio data,
the sink device comprising: a memory configured to store at
least a portion of the bitstream; and one or more processors
coupled to the memory, and configured to: obtain, from the
bitstream, a first error resilient interval and a second error
resilient interval, each of the first error resilient interval and
the second error resilient interval having a same bit length;
perform error detection with respect to the first error resilient
interval and the second error resilient interval to detect a
presence of one or more errors in one or more of the first
error resilient interval and the second error resilient interval;
responsive to detecting that the one or more errors were not

10

15

20

25

30

35

40

45

50

55

60

65

34

present in the first error resilient interval and the second
error resilient interval; obtain, from the first error resilient
interval, a portion of a symbol within the bit length, the
symbol indicative of the compressed version of the audio
data; obtain, from the second error resilient interval, an
excess portion of the symbol over the bit length; and
decompress, based on the portion and the excess portion, the
symbol to obtain a portion of the audio data.

Clause 1.5B. The sink device of clause 1B, wherein the
symbol comprises a first symbol, wherein the second error
resilient interval includes a second symbol, and wherein the
one or more processors are configured to: push, when
obtaining the second symbol from the second error resilient
interval, the excess portion onto a stack; and obtain, respon-
sive to determining that the portion of the symbol is incom-
plete and from the stack, the excess portion.

Clause 2B. The sink device of clause 1B, wherein the one
or more processors are further configured to, responsive to
detecting that the one or more errors were present in the first
interval: decompress, based on the portion of the symbol,
one or more codewords of the portion of the symbols
occurring before the detected one or more errors in the first
interval to obtain a partial portion of the audio data; and
discard the excess portion.

Clause 3B. The sink device of clause 1B, wherein the one
or more processors are further configured to, responsive to
detecting that the one or more errors were present in the
second interval but not the first interval: discard the excess
portion; and decompress, based on the portion of the sym-
bol, one or more codewords of the portion of the symbol
occurring before the detected error in the first interval to
obtain a partial portion of the audio data.

Clause 4B. The sink device of any combination of clauses
1B-3B, wherein the one or more processors are further
configured to systematically store the second error resilient
interval in a stack directly above the first error resilient
interval.

Clause 5B. The sink device of any combination of clauses
1B-3B, wherein the symbol comprises a first symbol,
wherein the portion of the audio data comprises a first
portion of the audio data, wherein the one or more proces-
sors are further configured to obtain, from the second
interval, a second symbol, the second symbol having a
length less than or equal to the bit length minus a length of
the excess portion, and wherein the one or more processors
are further configured to, responsive to detecting that the one
or more errors were not present in the second error resilient
interval decompress the second symbol to obtain a second
portion of the audio data.

Clause 6B. The sink device of any combination of clauses
1B-3B, wherein the symbol comprises a first symbol,
wherein the portion of the audio data comprises a first
portion of the audio data, wherein the one or more proces-
sors are further configured to: obtain, from the bitstream, a
third interval including a second symbol, the third interval
having the same bit length as the first interval, the second
symbol having a length equal to or exceeding the bit length,
and wherein the one or more processors are further config-
ured to, responsive to detecting that the one or more errors
were not present in the second error resilient interval,
decompress the second symbol to obtain a second portion of
the audio data.

Clause 7B. The sink device of clause 6B, wherein the one
or more processors are further configured to: systematically
store the third interval in a stack directly above the first error
resilient interval; and systematically store the second error
resilient interval in a stack directly above the third interval.

US 10,727,858 B2

35

Clause 8B. The sink device of any combination of clauses
1B-7B, wherein the compressed version of the audio data
comprises an entropy coded version of the audio data.

Clause 9B. The sink device of clause 8B, wherein the
entropy coded version of the audio data comprises a Huft-
man coded version of the audio data.

Clause 10B. The sink device of any combination of
clauses 1B-7B, wherein the one or more processors are
configured to perform entropy decoding with respect to the
symbol to obtain the portion of the audio data.

Clause 11B. The sink device of clause 10B, wherein the
one or more processors are configured to perform Huffman
decoding with respect to the symbol to obtain the portion of
the audio data.

Clause 12B. The sink device of clause 1B, wherein the
symbol comprises two or more codewords, each of the two
or more codewords representative of different entropy coded
filtered portions of the audio data, and wherein the one or
more processors are configured to perform entropy decoding
with respect to the two or more codewords to obtain different
filtered portions of the audio data.

Clause 13B. The sink device of clause 12B, wherein the
different filtered portions each comprises a different sub-
band.

Clause 14B. The sink device of clause 1B, further com-
prising a transceiver configured to receive the bitstream via
a wireless connection in accordance with a wireless com-
munication protocol.

Clause 15B. The sink device of clause 14B, wherein the
wireless communication protocol comprises a personal area
network wireless communication protocol.

Clause 16B. The sink device of clause 15B, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol.

Clause 17B. The sink device of clause 15B, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol
operating according to the advance audio distribution pro-
file.

Clause 18B. The sink device of any combination of
clauses 1B-17B, wherein the one or more processors are
configured to apply majority voting error detection with
respect to the first error resilient interval and the second error
resilient interval to detect the presence of the one or more
errors in the one or more of the first error resilient interval
and the second error resilient interval.

Clause 19B. A method of processing a bitstream repre-
sentative of audio data, the method comprising: obtaining,
from the bitstream, a first error resilient interval and a
second error resilient interval, each of the first error resilient
interval and the second error resilient interval having a same
bit length; performing error detection with respect to the first
error resilient interval and the second error resilient interval
to detect a presence of one or more errors in one or more of
the first error resilient interval and the second error resilient
interval; responsive to detecting that the one or more errors
were not present in the first error resilient interval and the
second error resilient interval: obtaining, from the first error
resilient interval, a portion of a symbol within the bit length,
the symbol indicative of the compressed version of the audio
data, and; obtaining, from the second error resilient interval,
an excess portion of the symbol over the bit length; and
decompressing, based on the portion and the excess portion,
the symbol to obtain a portion of the audio data.

Clause 19.5B. The method of clause 19B, wherein the
symbol comprises a first symbol, wherein the second error
resilient interval includes a second symbol, and wherein

10

15

20

25

30

35

40

45

50

55

60

65

36

obtaining the excess portion comprises: pushing, when
obtaining the second symbol from the second error resilient
interval, the excess portion onto a stack; and obtaining,
responsive to determining that the portion of the symbol is
incomplete and from the stack, the excess portion.

Clause 20B. The method of clause 19B, further compris-
ing, responsive to detecting that the one or more errors were
present in the first interval: decompressing, based on the
portion of the symbol, one or more codewords of the portion
of the symbols occurring before the detected one or more
errors in the first interval to obtain a partial portion of the
audio data; and discarding the excess portion.

Claus 21B. The method of clause 19B, further compris-
ing, responsive to detecting that the one or more errors were
present in the second interval but not the first interval:
discarding the excess portion; and decompressing, based on
the portion of the symbol, one or more codewords of the
portion of the symbol occurring before the detected error in
the first interval to obtain a partial portion of the audio data.

Clause 22B. The method of any combination of clauses
19B-21B, further comprising systematically storing the sec-
ond error resilient interval in a stack directly above the first
error resilient interval.

Clause 23B. The method of any combination of clauses
19B-21B, wherein the symbol comprises a first symbol,
wherein the portion of the audio data comprises a first
portion of the audio data, and wherein the method further
comprises: obtaining, from the second interval, a second
symbol, the second symbol having a length less than or
equal to the bit length minus a length of the excess portion;
and decompressing, responsive to detecting that the one or
more errors were not present in the second error resilient
interval, the second symbol to obtain a second portion of the
audio data.

Clause 24B. The method of any combination of clauses
19B-21B, wherein the symbol comprises a first symbol,
wherein the portion of the audio data comprises a first
portion of the audio data, and wherein the method further
comprises: obtaining, from the bitstream, a third interval
including a second symbol, the third interval having the
same bit length as the first interval, the second symbol
having a length equal to or exceeding the bit length, and
decompressing, responsive to detecting that the one or more
errors were not present in the second error resilient interval,
the second symbol to obtain a second portion of the audio
data.

Clause 25B. The method of clause 24B, further compris-
ing: systematically storing the third interval in a stack
directly above the first error resilient interval; and system-
atically storing the second error resilient interval in a stack
directly above the third interval.

Clause 26B. The method of any combination of clauses
19B-25B, wherein the compressed version of the audio data
comprises an entropy coded version of the audio data.

Clause 27B. The method of clause 26B, wherein the
entropy coded version of the audio data comprises a Huft-
man coded version of the audio data.

Clause 28B. The method of any combination of clauses
19B-25B, wherein decompressing the symbol comprises
performing entropy decoding with respect to the symbol to
obtain the portion of the audio data.

Clause 29B. The method of clause 28B, wherein perform-
ing entropy decoding comprises performing Huffman
decoding with respect to the symbol to obtain the portion of
the audio data.

Clause 30B. The method of clause 19B, wherein the
symbol comprises two or more codewords, each of the two

US 10,727,858 B2

37

or more codewords representative of different entropy coded
filtered portions of the audio data, and wherein decompress-
ing the symbol comprises performing entropy decoding with
respect to the two or more codewords to obtain different
filtered portions of the audio data.

Clause 31B. The method of clause 30B, wherein the
different filtered portions each comprises a different sub-
band.

Clause 32B. The method of clause 19B, further compris-
ing receiving the bitstream via a wireless connection in
accordance with a wireless communication protocol.

Clause 33B. The method of clause 32B, wherein the
wireless communication protocol comprises a personal area
network wireless communication protocol.

Clause 34B. The method of clause 33B, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol.

Clause 35B. The method of clause 33B, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol
operating according to the advance audio distribution pro-
file.

Clause 36B. The method of any combination of clauses
19B-35B, wherein performing error detection comprises
performing majority voting error detection with respect to
the first error resilient interval and the second error resilient
interval to detect the presence of the one or more errors in
the one or more of the first error resilient interval and the
second error resilient interval.

Clause 37B. A sink device configured to process a bit-
stream representative of audio data, the sink device com-
prising: means for obtaining, from the bitstream, a first error
resilient interval and a second error resilient interval, each of
the first error resilient interval and the second error resilient
interval having a same bit length; means for performing
error detection with respect to the first error resilient interval
and the second error resilient interval to detect a presence of
one or more errors in one or more of the first error resilient
interval and the second error resilient interval; responsive to
detecting that the one or more errors were not present in the
first error resilient interval and the second error resilient
interval: means for obtaining, from the first error resilient
interval, a portion of a symbol within the bit length, the
symbol indicative of the compressed version of the audio
data, and; means for obtaining, from the second error
resilient interval, an excess portion of the symbol over the
bit length; and means for decompressing, based on the
portion and the excess portion, the symbol to obtain a
portion of the audio data.

Clause 37.5B. The sink device of clause 37B, wherein the
symbol comprises a first symbol, wherein the second error
resilient interval includes a second symbol, and wherein
obtaining the excess portion comprises: means for pushing,
when obtaining the second symbol from the second error
resilient interval, the excess portion onto a stack; and means
for obtaining, responsive to determining that the portion of
the symbol is incomplete and from the stack, the excess
portion.

Clause 38B. The sink device of clause 37B, further
comprising, responsive to detecting that the one or more
errors were present in the first interval: means for decom-
pressing, based on the portion of the symbol, one or more
codewords of the portion of the symbols occurring before
the detected one or more errors in the first interval to obtain
a partial portion of the audio data; and means for discarding
the excess portion.

10

15

20

25

30

35

40

45

50

55

60

65

38

Clause 39B. The sink device of clause 37B, further
comprising, responsive to detecting that the one or more
errors were present in the second interval but not the first
interval: means for discarding the excess portion; and means
for decompressing, based on the portion of the symbol, one
or more codewords of the portion of the symbol occurring
before the detected error in the first interval to obtain a
partial portion of the audio data.

Clause 40B. The sink device of any combination of
clauses 37B-39B, further comprising means for systemati-
cally storing the second error resilient interval in a stack
directly above the first error resilient interval.

Clause 41B. The sink device of any combination of
clauses 37B-39B, wherein the symbol comprises a first
symbol, wherein the portion of the audio data comprises a
first portion of the audio data, and wherein the sink device
further comprises: means for obtaining, from the second
interval, a second symbol, the second symbol having a
length less than or equal to the bit length minus a length of
the excess portion; and means for decompressing, respon-
sive to detecting that the one or more errors were not present
in the second error resilient interval, the second symbol to
obtain a second portion of the audio data.

Clause 42B. The sink device of any combination of
clauses 37B-39B, wherein the symbol comprises a first
symbol, wherein the portion of the audio data comprises a
first portion of the audio data, and wherein the sink device
further comprises: means for obtaining, from the bitstream,
a third interval including a second symbol, the third interval
having the same bit length as the first interval, the second
symbol having a length equal to or exceeding the bit length,
and means for decompressing, responsive to detecting that
the one or more errors were not present in the second error
resilient interval, the second symbol to obtain a second
portion of the audio data.

Clause 43B. The sink device of clause 42B, further
comprising: means for systematically storing the third inter-
val in a stack directly above the first error resilient interval;
and means for systematically storing the second error resil-
ient interval in a stack directly above the third interval.

Clause 44B. The sink device of any combination of
clauses 37B-43B, wherein the compressed version of the
audio data comprises an entropy coded version of the audio
data.

Clause 45B. The sink device of clause 44B, wherein the
entropy coded version of the audio data comprises a Huft-
man coded version of the audio data.

Clause 46B. The sink device of any combination of
clauses 37B-43B, wherein the means for decompressing the
symbol comprises means for performing entropy decoding
with respect to the symbol to obtain the portion of the audio
data.

Clause 47B. The sink device of clause 46B, wherein the
means for performing entropy decoding comprises means
for performing Huffman decoding with respect to the sym-
bol to obtain the portion of the audio data.

Clause 48B. The sink device of clause 37B, wherein the
symbol comprises two or more codewords, each of the two
or more codewords representative of different entropy coded
filtered portions of the audio data, and wherein the means for
decompressing the symbol comprises means for performing
entropy decoding with respect to the two or more codewords
to obtain different filtered portions of the audio data.

Clause 49B. The sink device of clause 48B, wherein the
different filtered portions each comprises a different sub-
band.

US 10,727,858 B2

39

Clause 50B. The sink device of clause 37B, further
comprising means for receiving the bitstream via a wireless
connection in accordance with a wireless communication
protocol.

Clause 51B. The sink device of clause 50B, wherein the
wireless communication protocol comprises a personal area
network wireless communication protocol.

Clause 52B. The sink device of clause 51B, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol.

Clause 53B. The sink device of clause 51B, wherein the
personal area network wireless communication protocol
comprises a Bluetooth® wireless communication protocol
operating according to the advance audio distribution pro-
file.

Clause 54B. The sink device of any combination of
clauses 37B-53B, wherein the means for performing error
detection comprises means for performing majority voting
error detection with respect to the first error resilient interval
and the second error resilient interval to detect the presence
of the one or more errors in the one or more of the first error
resilient interval and the second error resilient interval.

Clause 55B. A non-transitory computer-readable storage
medium having stored thereon instructions that, when
executed, cause one or more processors of a sink device to:
obtain, from a bitstream representative of audio data, a first
error resilient interval and a second error resilient interval,
each of the first error resilient interval and the second error
resilient interval having a same bit length; perform error
detection with respect to the first error resilient interval and
the second error resilient interval to detect a presence of one
or more errors in one or more of the first error resilient
interval and the second error resilient interval; responsive to
detecting that the one or more errors were not present in the
first error resilient interval and the second error resilient
interval: obtain, from the first error resilient interval, a
portion of a symbol within the bit length, the symbol
indicative of the compressed version of the audio data, and;
obtain, from the second error resilient interval, an excess
portion of the symbol over the bit length; and decompress,
based on the portion and the excess portion, the symbol to
obtain a portion of the audio data.

Various aspects of the techniques have been described.
These and other aspects of the techniques are within the
scope of the following claims.

The invention claimed is:
1. A source device configured to process audio data, the
source device comprising:

a memory configured to store at least a portion of the
audio data; and

one or more processors coupled to the memory, and
configured to:

obtain, from a compressed version of the audio data, a
symbol of a plurality of symbols;

obtain a plurality of intervals, each of the intervals having
a same bit length;

obtain a portion of the symbol within the bit length and an
excess portion of the symbol over the bit length;

specity, in a first interval of the plurality of intervals, the
portion of the symbol;

specity, in a second interval of the plurality of intervals,
the excess portion of the symbol;

apply, to the first interval and the second interval, error
resiliency to obtain a first error resilient interval and a
second error resilient interval; and

10

15

20

25

30

35

40

45

50

55

60

65

40

specify, in a bitstream representative of the compressed
version of the audio data, the first error resilient interval
and the second error resilient interval.

2. The source device of claim 1, wherein the compressed
version of the audio data comprises an entropy coded
version of the audio data.

3. The source device of claim 2, wherein the entropy
coded version of the audio data comprises a Huffman coded
version of the audio data.

4. The source device of claim 1, wherein the one or more
processors are further configured to perform entropy coding
with respect to the audio data to obtain the compressed
version of the audio data.

5. The source device of claim 4, wherein the one or more
processors are configured to perform Huffman coding with
respect to the audio data to obtain the compressed version of
the audio data.

6. The source device of claim 4, wherein the one or more
processors are further configured to perform, prior to per-
forming the entropy coding, adaptive differential pulse code
modulation (ADPCM) coding with respect to the audio data
to obtain the compressed version of the audio data.

7. The source device of claim 1,

wherein the one or more processors are further configured

to:
apply a filter with respect to the audio data to obtain a
plurality of filtered portions of the audio data; and

perform entropy coding with respect to the plurality of
portions of the audio data to obtain entropy coded
versions of the plurality of portions, each of the entropy
coded version of the plurality of portions comprising
one or more codewords, and

wherein the symbol comprises a codeword from the one

or more codewords of two or more of the entropy coded
versions of the plurality of filtered portions.

8. The source device of claim 7,

wherein the filter comprises a subband filter, and

wherein the plurality of filtered portions comprises a

plurality of subbands.

9. The source device of claim 7,

wherein the one or more processors are further configured

to obtain a subset of the plurality of portions to which
the error resiliency is to be applied, and

wherein the one or more processors are configured to

obtain, from the subset of the plurality of portions, the
plurality of symbols.

10. The source device of claim 9, wherein the plurality of
symbols comprises a sequential ordering of the codewords
from the two or more of the entropy coded versions of the
plurality of filtered portions.

11. The source device of claim 1, further comprising a
transceiver configured to transmit the bitstream to a sink
device in accordance with a wireless communication proto-
col, wherein the wireless communication protocol comprises
one of a personal area network wireless communication
protocol, a Bluetooth® wireless communication protocol, or
a Bluetooth® wireless communication protocol operating
according to the advance audio distribution profile.

12. The source device of claims 1, wherein the one or
more processors are configured to apply majority voting
error detection with respect to the first interval and the
second interval to obtain the first error resilient interval and
the second error resilient interval.

13. A method of processing audio data, the method
comprising:

obtaining, from a compressed version of the audio data, a

symbol of a plurality of symbols;

US 10,727,858 B2

41

obtaining a plurality of intervals, each of the intervals

having a same bit length;

obtaining a portion of the symbol within the bit length and

an excess portion of the symbol over the bit length;
specitying, in a first interval of the plurality of intervals,
the portion of the symbol;

specifying, in a second interval of the plurality of inter-

vals, the excess portion of the symbol;

applying, to the first interval and the second interval, error

resiliency to obtain a first error resilient interval and a
second error resilient interval; and

specifying, in a bitstream representative of the com-

pressed version of the audio data, the first error resilient
interval and the second error resilient interval.

14. A sink device configured to process a bitstream
representative of a compressed version of audio data, the
sink device comprising:

a memory configured to store at least a portion of the

bitstream; and

one or more processors coupled to the memory, and

configured to:

obtain, from the bitstream, a first error resilient interval

and a second error resilient interval, each of the first
error resilient interval and the second error resilient
interval having a same bit length;

perform error detection with respect to the first error

resilient interval and the second error resilient interval
to detect a presence of one or more errors in one or
more of the first error resilient interval and the second
error resilient interval;

responsive to detecting that the one or more errors were

not present in the first error resilient interval and the
second error resilient interval:
obtain, from the first error resilient interval, a portion of
a symbol within the bit length, the symbol indicative
of the compressed version of the audio data, and;
obtain, from the second error resilient interval, an
excess portion of the symbol over the bit length; and
decompress, based on the portion and the excess portion, the
symbol to obtain a portion of the audio data.

15. The sink device of claim 14,

wherein the symbol comprises a first symbol,

wherein the second error resilient interval includes a

second symbol, and

wherein the one or more processors are configured to:

push, when obtaining the second symbol from the second

error resilient interval, the excess portion onto a stack;
and

obtain, responsive to determining that the portion of the

symbol is incomplete and from the stack, the excess
portion.

16. The sink device of claim 14, wherein the one or more
processors are further configured to, responsive to detecting
that the one or more errors were present in the first interval:

decompress, based on the portion of the symbol, one or

more codewords of the portion of the symbols occur-

ring before the detected one or more errors in the first

interval to obtain a partial portion of the audio data;
discard the excess portion.

17. The sink device of claim 14, wherein the one or more
processors are further configured to, responsive to detecting
that the one or more errors were present in the second
interval but not the first interval:

discard the excess portion; and

decompress, based on the portion of the symbol, one or

more codewords of the portion of the symbol occurring

5

15

20

35

40

45

42

before the detected error in the first interval to obtain a
partial portion of the audio data.

18. The sink device of claim 14, wherein the one or more
processors are further configured to systematically store the
second error resilient interval in a stack directly above the
first error resilient interval.

19. The sink device of claim 14,

wherein the symbol comprises a first symbol,

wherein the portion of the audio data comprises a first

portion of the audio data,
wherein the one or more processors are further configured
to obtain, from the second interval, a second symbol,
the second symbol having a length less than or equal to
the bit length minus a length of the excess portion, and

wherein the one or more processors are further configured
to, responsive to detecting that the one or more errors
were not present in the second error resilient interval:

decompress the second symbol to obtain a second portion
of the audio data.

20. The sink device of claim 14,

wherein the symbol comprises a first symbol,

wherein the portion of the audio data comprises a first

portion of the audio data,

wherein the one or more processors are further configured

to:
obtain, from the bitstream, a third interval including a
second symbol, the third interval having the same bit
length as the first interval, the second symbol having a
length equal to or exceeding the bit length, and

wherein the one or more processors are further configured
to, responsive to detecting that the one or more errors
were not present in the second error resilient interval:

decompress the second symbol to obtain a second portion
of the audio data.

21. The sink device of claim 20, wherein the one or more
processors are further configured to:

systematically store the third interval in a stack directly

above the first error resilient interval; and

systematically store the second error resilient interval in a

stack directly above the third interval.

22. The sink device of claim 14, wherein the compressed
version of the audio data comprises an entropy coded
version of the audio data.

23. The sink device of claim 22, wherein the entropy
coded version of the audio data comprises a Huffman coded
version of the audio data.

24. The sink device of claim 14, wherein the one or more
processors are configured to perform entropy decoding with
respect to the symbol to obtain the portion of the audio data.

25. The sink device of claim 24, wherein the one or more
processors are configured to perform Huffman decoding
with respect to the symbol to obtain the portion of the audio
data.

26. The sink device of claim 14,

wherein the symbol comprises two or more codewords,

each of the two or more codewords representative of
different entropy coded filtered portions of the audio
data, and

wherein the one or more processors are configured to

perform entropy decoding with respect to the two or
more codewords to obtain different filtered portions of
the audio data.

27. The sink device of claim 26, wherein the different
filtered portions each comprises a different subband.

US 10,727,858 B2

43

28. The sink device of claim 14, further comprising a
transceiver configured to receive the bitstream via a wireless
connection in accordance with a wireless communication
protocol.

29. The sink device of claim 14, wherein the one or more
processors are configured to apply majority voting error
detection with respect to the first error resilient interval and
the second error resilient interval to detect the presence of
the one or more errors in the one or more of the first error
resilient interval and the second error resilient interval.

30. A method of processing a bitstream representative of
audio data, the method comprising:

obtaining, from the bitstream, a first error resilient interval

and a second error resilient interval, each of the first
error resilient interval and the second error resilient
interval having a same bit length;

performing error detection with respect to the first error

resilient interval and the second error resilient interval
to detect a presence of one or more errors in one or
more of the first error resilient interval and the second
error resilient interval;

responsive to detecting that the one or more errors were

not present in the first error resilient interval and the
second error resilient interval:
obtaining, from the first error resilient interval, a por-
tion of a symbol within the bit length, the symbol
indicative of the compressed version of the audio
data, and;
obtaining, from the second error resilient interval, an
excess portion of the symbol over the bit length; and
decompressing, based on the portion and the excess portion,
the symbol to obtain a portion of the audio data.

#* #* #* #* #*

25

30

44

