Выделить слова: 


Патент США №

10767682

Автор(ы)

Leon и др.

Дата выдачи

08 сентября 2020 г.


Frangible fasteners with flexible connectors for unmanned aircraft, and associated systems and methods



РЕФЕРАТ

Frangible fasteners with flexible connectors for unmanned aircraft, and associated systems and methods are disclosed. A representative aircraft includes a fuselage portion, a wing portion, a winglet carried by the wing portion, and a frangible fastener coupling the winglet portion to the wing portion. The frangible fastener can include an outer body with a first portion in contact with the wing portion, a second portion in contact with the winglet portion, and a frangible portion between the first and second portions. A flexible member is positioned at least partially within the outer body and is connected to the first portion so as to extend through and out of the second portion. A stop element is carried by the flexible member.


Авторы:

Michael Matthew Leon (Washougal, WA), Kristian Rubesh (Bingen, WA)

Патентообладатель:

ИмяГородШтатСтранаТип

Insitu, Inc.

Bingen

WA

US

Заявитель:

INSITU, INC. (Bingen, WA)

ID семейства патентов

62715923

Номер заявки:

15/638,137

Дата регистрации:

29 июня 2017 г.

Prior Publication Data

Document IdentifierPublication Date
US 20190003511 A1Jan 3, 2019

Класс патентной классификации США:

1/1

Класс совместной патентной классификации:

F16B 31/021 (20130101); B64C 23/069 (20170501); F16B 41/002 (20130101); B64C 39/024 (20130101); B64C 2201/00 (20130101); B64C 1/26 (20130101); B64C 2201/021 (20130101); B64C 2201/104 (20130101); Y10T 403/11 (20150115)

Класс международной патентной классификации (МПК):

F16B 31/02 (20060101); F16B 41/00 (20060101); B64C 23/06 (20060101); B64C 1/26 (20060101)

Область поиска:

;411/2,3,5,383 ;470/8,9

Использованные источники

[Referenced By]

Патентные документы США

965881August 1910Draper
968339August 1910Geraldson
975953November 1910Hourwich
1144505June 1915Steffan
1164967December 1915Thorp
1317631September 1919Kinser
1383595July 1921Black
1384036July 1921Anderson
1428163September 1922Harriss
1499472July 1924Hazen
1530010March 1925Neilson
1532736April 1925Dodds
1556348October 1925Ray et al.
1624188April 1927Simon
RE16613May 1927Moody et al.
1634964July 1927Steinmetz
1680473August 1928Parker
1686298October 1928Uhl
1712164May 1929Peppin
1716670June 1929Sperry
1731091October 1929Belleville
1737483November 1929Verret
1738261December 1929Perkins
1748663February 1930Tucker
1749769March 1930Johnson
1756747April 1930Holland
1777167September 1930Forbes
1816976August 1931Kirkham
1825578September 1931Cernuda
1836010December 1931Audrain
1842432January 1932Stanton
1869506August 1932Richardson
1892357December 1932Moe
1909445May 1933Ahola
1912723June 1933Perkins
1925212September 1933Steiber
1940030December 1933Steiber
1960264May 1934Heinkel
2211089August 1940Berlin
2286381June 1942Rubissow
2296988September 1942Endter
2333559November 1943Grady et al.
2342773February 1944Wellman
2347561April 1944Howard et al.
2360220October 1944Goldman
2364527December 1944Haygood
2365778December 1944Schwab
2365827December 1944Liebert
2380702July 1945Persons
2390754December 1945Valdene
2401853June 1946Bailey
2435197February 1948Brodie
2436240February 1948Wiertz
2447945August 1948Knowler
2448209August 1948Boyer et al.
2465936March 1949Schultz
2488050November 1949Brodie
2488051November 1949Brodie
2515205July 1950Fieux
2526348October 1950Gouge
2669403February 1954Milligan
2671938March 1954Roberts
2735391February 1956Buschers
2747454May 1956Bowersett
2787185April 1957Rea et al.
2814453November 1957Trimble et al.
2843342July 1958Ward
2844340July 1958Daniels et al.
2908240October 1959Hodge
2919871January 1960Sorensen
2933183April 1960Koelsch
2937827May 1960Duce
2954946October 1960O'Neil et al.
3069118December 1962Bernard
RE25406June 1963Byrne et al.
3163380December 1964Brodie
3268090August 1966Wirkkala
3411398November 1968Blakeley et al.
3454244July 1969Walander
3468500September 1969Carlsson
3484061December 1969Niemkiewicz
3512447May 1970Vaughn
3516626June 1970Strance et al.
3589651June 1971Niemkiewicz et al.
3657956April 1972Bradley et al.
3672214June 1972Yasuda
3684219August 1972King
3708200January 1973Richards
3765625October 1973Myhr et al.
3771484November 1973Schott et al.
3827660August 1974Doolittle
3939988February 1976Wellman et al.
3943657March 1976Leckie et al.
3980259September 1976Greenhalgh et al.
4037807July 1977Johnston
4067139January 1978Pinkerton et al.
4079901March 1978Mayhew et al.
4143840March 1979Bernard et al.
4149840March 1979Tippmann
4147317April 1979Mayhew et al.
D256816September 1980McMahon et al.
4236686December 1980Barthelme et al.
4238093December 1980Siegel et al.
4267987May 1981McDonnell
4279195July 1981Miller
4296894October 1981Schnabele et al.
4296898October 1981Watson
4311290January 1982Koper
4372016February 1983LaViolette et al.
4408737October 1983Schwaerzler et al.
4410151October 1983Hoppner et al.
4457479July 1984Daude et al.
4471923September 1984Hoppner et al.
4523729June 1985Frick et al.
4566658January 1986DiGiovanniantonio et al.
4618291October 1986Wright
4645142February 1987Soelter
4653706March 1987Ragiab
4678143July 1987Griffin et al.
4720204January 1988Johnson
4730793March 1988Thurber, Jr. et al.
4753400June 1988Reuter et al.
4790497December 1988Yoffe et al.
4809933March 1989Buzby et al.
4842222June 1989Baird et al.
4909458March 1990Martin et al.
4979701December 1990Colarik et al.
4991739February 1991Levasseur
5007875April 1991Dasa
5039034August 1991Burgess et al.
5042750August 1991Winter
5054717October 1991Taylor et al.
5060888October 1991Vezain et al.
5109788May 1992Heinzmann et al.
5119935June 1992Stump et al.
5145129September 1992Gebhard
5169400December 1992Muhling
5176339January 1993Schmidt
5222694June 1993Smoot
5253605October 1993Collins
5253606October 1993Ortelli et al.
5259574November 1993Carrot
5378851January 1995Brooke et al.
5390550February 1995Miller
5407153April 1995Kirk et al.
5415507May 1995Janusz
5509624April 1996Takahashi et al.
5583311December 1996Rieger et al.
5603592February 1997Sadri et al.
5655944August 1997Fusselman
5687930November 1997Wagner et al.
5702214December 1997Duran
5762456June 1998Aasgaard
5816761October 1998Cassatt et al.
5906336May 1999Eckstein
5913479June 1999Westwood, III
5928236July 1999Augagneur
6056471May 2000Dinitz
6161797December 2000Kirk et al.
6237875May 2001Menne et al.
6264140July 2001McGeer et al.
6343768February 2002Muldoon et al.
6370455April 2002Larson et al.
6371410April 2002Cairo-locco et al.
6416019July 2002Hilliard et al.
6442460August 2002Larson et al.
6457673October 2002Miller
6478650November 2002Tsai et al.
6604882August 2003Gordon
6623492September 2003Berube
6626077September 2003Gilbert
6662511December 2003Alty
6695255February 2004Husain
6758440July 2004Repp et al.
6772488August 2004Jensen et al.
6835045December 2004Barbee et al.
6874729April 2005McDonnell
6925690August 2005Sievers
6939073September 2005Ahmed
7114680February 2006Dennis
7044688May 2006Dever
7059564June 2006Dennis
7066430June 2006Dennis et al.
7090166August 2006Dennis et al.
7121507October 2006Dennis et al.
7128294October 2006Roeseler et al.
7140575November 2006McGeer et al.
7143974December 2006Roeseler et al.
7152827December 2006McGeer
7155322December 2006Nakahara et al.
7165745January 2007McGeer et al.
7175135February 2007Dennis et al.
7219856May 2007Watts et al.
7259357August 2007Walker
7264204September 2007Portmann
7410125August 2008Steele
7422178September 2008DeLaune
7472461January 2009Anstee
7510145March 2009Snediker
7578467August 2009Goodrich
7686247March 2010Monson et al.
7740210June 2010Pilon et al.
7748661July 2010Harris et al.
7798445September 2010Heppe et al.
7806366October 2010Jackson
8016073September 2011Petzel
8028952October 2011Urnes, Sr.
8038090October 2011Wilson
8136766March 2012Dennis
8172177May 2012Lovell et al.
8205537June 2012Dupont
8313057November 2012Rednikov
8348714January 2013Newton
8387540March 2013Merems
8398345March 2013Pratt
8683770April 2014diGirolamo et al.
8820698September 2014Balfour et al.
8944373February 2015Dickson et al.
8950124February 2015Wellershoff
9085362July 2015Kilian et al.
9340301May 2016Dickson et al.
9359075June 2016von Flotow et al.
9512868December 2016Stempniewski
9932110April 2018McNally
2002/0011223January 2002Zauner et al.
2002/0049447April 2002Li
2002/0100838August 2002McGeer et al.
2003/0116107June 2003Laimbock
2003/0122384July 2003Swanson et al.
2003/0202861October 2003Nelson
2003/0222173December 2003McGeer et al.
2004/0129833July 2004Perlo et al.
2005/0008449January 2005Horita
2005/0132923June 2005Lloyd
2005/0187677August 2005Walker
2006/0006281January 2006Sirkis
2006/0091258May 2006Chiu et al.
2006/0102783May 2006Dennis et al.
2006/0249623November 2006Steele
2006/0271251November 2006Hopkins
2007/0023582February 2007Steele et al.
2007/0158498July 2007Snediker
2007/0200027August 2007Johnson
2007/0261542November 2007Chang et al.
2008/0156932July 2008McGeer et al.
2008/0191091August 2008Hoisington et al.
2009/0114761May 2009Sells
2009/0136294May 2009Porter
2009/0191019July 2009Billings
2009/0194638August 2009Dennis
2009/0224097September 2009Kariv
2009/0236470September 2009Goossen
2009/0294584December 2009Lovell et al.
2010/0181424July 2010Goossen
2010/0237183September 2010Wilson et al.
2010/0243799September 2010Al-Qaffas
2010/0318475December 2010Abrahamson
2012/0210853August 2012Abershitz
2012/0223182September 2012Gilchrist, III
2013/0082137April 2013Gundlach et al.
2015/0129716May 2015Yoffe
2015/0166177June 2015Bernhardt
2016/0114906April 2016McGeer et al.
2016/0137311May 2016Peverill et al.
2016/0144980May 2016Kunz et al.
2016/0152339June 2016von Flowtow
2016/0264259September 2016Dickson et al.
2016/0327945November 2016Davidson
2016/0375981December 2016McDonnell
2017/0191269July 2017Tsukamoto
2017/0225784August 2017Kunz et al.
2017/0369185December 2017Grub
2018/0001990January 2018Kossar
2018/0162528June 2018McGrew et al.

Зарубежные патентные документы

1032645May 1989CN
4301671Jul 1993DE
19602703Feb 1997DE
0742366Nov 1996EP
854371Apr 1940FR
1445153Aug 1976GB
2 080 216Feb 1982GB
2093414Sep 1982GB
2 150 895Jul 1985GB
2 219 777Dec 1989GB
2231011Nov 1990GB
76726Jan 1991IL
07-304498Nov 1995JP
2008540217Nov 2008JP
WO-00/75014Dec 2000WO
WO-01/07318Feb 2001WO
WO-2008015663Feb 2008WO
WO-2011066400Jun 2011WO
WO-2012047677Apr 2012WO
WO-2014080386May 2014WO

Другие источники


European Search Report and Written Opinion for European Patent Application No. 18178796, Applicant: Insitu, Inc., dated Oct. 22, 2018, 9 pages. cited by applicant .
Ames Builds Advanced Yawed-Wing RPV, Aviation Week and Space Technology, Jan. 22, 1973, p. 73. cited by applicant .
Article: Stephen A. Whitmore, Mike Fife, and ; Logan Brashear: "Development of a Closed-Loop Strap Down Attitude System for an Ultrahigh Altitude Flight Experiment," Jan. 1997, NASA Technical Memorandum 4775. cited by applicant .
Article: Robinson: R. Robinson, "Dynamic Analysis of a Carousel Remotely Piloted Vehicle Recovery System," 1977, Naval ; Post-Graduate School Master's Thesis, No. ADA052401. cited by applicant .
Galinski et al., "Results of the Gust Resistant MAV Programme," 28th International Congress of the Aeronautical Sciences, 2012, 10 pages. cited by applicant .
Gross, Jon L., Investigation of Lift, Drag, and; Aerodynamic Pitching Moment During In-Flight Recovery of a Remotely Piloted Vehicle, Air Force Institute of Technology, NTIS, ; Sep. 1973, 99 pages. cited by applicant .
Hunton, Lynn W. and James, Harry A., NACA Research Memorandum for the Air Material Command, U.S. Air Force, "An Investigation of the McDonnell XP-85 Airplane in the Ames 40 by 80 Foot Wind Tunnel--Force and Moment Tests," National Advisory Committee for Aeronautics, Sep. 27, 1948, 155 pages. cited by applicant .
Phillips, K.; "Alternate Aquila Recovery System Demonstration Recovery System Flight Test;" Final Report; Jan. 19, 1977; 67 pages. cited by applicant .
Plane Talk, The Newsletter of the War Eagles Air Museum, www.war-eagles-air-museum.com; vol. 25, No. 1, First Quarter Jan.-Mar. 2012, 8 pages. cited by applicant .
Study: US Army: H. E. Dickard, "Mini-RPV Recovery System Conceptual Study," Aug. 1977, Contract DA4J02-76-C-0048, Report No. USAAMRDL-TR077-24. cited by applicant .
Dorr, Robert F., "The XF-85 Goblin," http://www.defensemedianetwork.com/stories/the-xf-85-goblin-the-parasite-- fighter-that-didnt-work/, DefenseMediaNetwork, Sep. 11, 2014. cited by applicant .
European Patent Office, "Communication pursuant to Article 94(3) EPC," issued in connection with European Patent Application No. 18 178 7961, dated Jun. 24, 2020, 4 pages. cited by applicant.

Главный эксперт: Topolski; Magdalena
Assistant Examiner: Conlon; Marisa V
Уполномоченный, доверенный или фирма: Hanley, Flight & Zimmerman, LLC


ФОРМУЛА ИЗОБРЕТЕНИЯ



We claim:

1. An unmanned aircraft, comprising: a wing; a winglet carried by the wing; and a frangible fastener coupling the winglet to the wing, the frangible fastener including: an outer body having a first portion terminating at a first end of the outer body and in contact with the wing, a second portion terminating at a second end of the outer body opposite the first end of the outer body and in contact with the winglet, and a frangible portion located between the first and second portions, the first portion including a head integrally formed at the first end of the outer body, the second portion including external threads; a flexible member positioned at least partially within the outer body, the flexible member having a first end oriented toward the first end of the outer body, and a second end oriented toward the second end of the outer body, the first end of the flexible member fixedly connected to the first portion, the flexible member extending through the second portion such that the second end of the flexible member is located outside of the outer body; and a stop element fixedly connected to the second end of the flexible member and spaced apart from the second end of the outer body, the stop element being configured to contact the second end of the outer body when the second portion separates from the first portion in response to the frangible portion breaking.

2. The aircraft of claim 1, wherein the first portion is crimped to the flexible member.

3. The aircraft of claim 1, wherein the flexible member includes a cable.

4. The aircraft of claim 1, wherein the flexible member includes a solid wire.

5. The aircraft of claim 1, wherein the stop element is crimped to the flexible member.

6. The aircraft of claim 1, wherein the outer body has a hollow internal cavity with an opening located at the second end of the outer body, and wherein the flexible member includes a cable positioned within the hollow cavity, the cable extending through the opening and away from the second end of the outer body, the stop element having an outer diameter that is larger than an inner diameter of the opening.

7. The aircraft of claim 6, wherein the cable has an outer diameter that is less than the outer diameter of the stop element.

8. The aircraft of claim 1, wherein an outer diameter of the first portion is greater than an outer diameter of the frangible portion.

9. The aircraft of claim 1, wherein the winglet includes an internally threaded aperture, and wherein the external threads of the second portion of the frangible fastener are threadably received in the internally threaded aperture.

10. The aircraft of claim 1, wherein the second portion is configured to slide along the flexible member between the first portion and the stop element when the second portion is separated from the first portion in response to the frangible portion breaking.

11. The aircraft of claim 1, wherein the winglet includes an interior region, the second end of the flexible member being located within the interior region.

12. The aircraft of claim 1, wherein the winglet includes an internally threaded aperture, the external threads of the second portion of the frangible fastener being threadably received in the internally threaded aperture.

13. The aircraft of claim 12, wherein the winglet includes a nut plate located within an interior region of the winglet, the nut plate including the internally threaded aperture.

14. A frangible fastener for coupling a first component to a second component, the frangible fastener comprising: an outer body having: a first portion terminating at a first end of the outer body, the first portion including a head integrally formed at the first end of the outer body and positionable to contact the first component; a second portion terminating at a second end of the outer body opposite the first end of the outer body, the second portion including external threads positionable to contact the second component; and a frangible portion located between the first and second portions; a flexible member positioned at least partially within the outer body, the flexible member having a first end oriented toward the first end of the outer body, and a second end oriented toward the second end of the outer body, the first end of the flexible member fixedly connected to the first portion, the flexible member extending through the second portion such that the second end of the flexible member is located outside of the outer body; and a stop element fixedly connected to the second end of the flexible member and spaced apart from the second end of the outer body, the stop element being configured to contact the second end of the outer body when the second portion separates from the first portion in response to the frangible portion breaking.

15. The frangible fastener of claim 14, wherein the first portion is crimped to the flexible member.

16. The frangible fastener of claim 14, wherein the flexible member includes a cable.

17. The frangible fastener of claim 16, wherein the stop element is crimped to the cable.

18. The frangible fastener of claim 14, wherein the outer body includes an opening through which the flexible member extends, and wherein the stop element includes a tapered portion configured to slideably enter the opening when the second portion separates from the first portion in response to the frangible portion breaking.

19. The frangible fastener of claim 14, wherein the outer body includes an opening through which the flexible member extends, and wherein the stop element includes a tapered edge configured to cut into the outer body around the opening when the second portion separates from the first portion in response to the frangible portion breaking.

20. The frangible fastener of claim 14, wherein the outer body includes an opening through which the flexible member extends, the opening having a key slot, and wherein the stop element includes a key positioned to slideably enter the key slot when the second portion separates from the first portion in response to the frangible portion breaking.

21. The frangible fastener of claim 14, wherein the outer body has a hollow internal cavity with an opening located at the second end of the outer body, and wherein the flexible member includes a cable positioned within the hollow cavity, the cable extending through the opening and away from the second end of the outer body, the stop element being having an outer diameter that is larger than an inner diameter of the opening.

22. The frangible fastener of claim 14, wherein an outer diameter of the first portion is greater than an outer diameter of the frangible portion.

23. A method for manufacturing an unmanned aircraft, the method comprising: attaching a first component of the unmanned aircraft to a second component of the unmanned aircraft with a frangible fastener, the frangible fastener including: an outer body having a first portion terminating at a first end of the outer body, a second portion terminating at a second end of the outer body opposite the first end of the outer body, and a frangible portion located between the first and second portions, the first portion including a head integrally formed at the first end of the outer body, the second portion including external threads; a flexible member positioned at least partially within the outer body, the flexible member having a first end oriented toward the first end of the outer body, and a second end oriented toward the second end of the outer body, the first end of the flexible member fixedly connected to the first portion, the second end of the flexible member extending through the second portion such that the second end of the flexible member is located outside of the outer body; and a stop element fixedly connected to the second end of the flexible member and spaced apart from the second end of the outer body, the stop element being configured to contact the second end of the outer body when the second portion separates from the first portion in response to the frangible portion breaking; and wherein attaching the first aircraft component to the second aircraft component includes: threadably engaging the second portion of the outer body to the second aircraft component; and operably engaging the first portion of the outer body with the first aircraft component.

24. The method of claim 23, wherein threadably engaging the second portion of the outer body to the second aircraft component includes positioning the second end of the flexible member within an interior region of the second aircraft component.

25. The method of claim 23, wherein operably engaging the first portion of the outer body with the first aircraft component includes contacting the head of the first portion of the outer body with a surface of the first aircraft component.

26. The method of claim 23, wherein operably engaging the first portion of the outer body with the first aircraft component includes contacting the head of the first portion of the outer body with a washer, and contacting the washer with a surface of the first aircraft component.

27. The method of claim 23, wherein the first aircraft component includes an aircraft wing.

28. The method of claim 23, wherein the second aircraft component includes a winglet.

29. A method for operating an unmanned aircraft, the method comprising: launching the unmanned aircraft, the unmanned aircraft having a first component and a second component connected to the first component with a frangible fastener, the frangible fastener including: an outer body having a first portion terminating at a first end of the outer body, a second portion terminating at a second end of the outer body opposite the first end of the outer body, and a frangible portion located between the first and second portions, the first portion including a head integrally formed at the first end of the outer body, the second portion including external threads, the first portion being operably engaged to the first component, the second portion being threadably engaged to the second component; a flexible member positioned at least partially within the outer body, the flexible member having a first end oriented toward the first end of the outer body, and a second end oriented toward the second end of the outer body, the first end of the flexible member fixedly connected to the first portion, the second end of the flexible member extending through the second portion such that the second end of the flexible member is located outside of the outer body; and a stop element fixedly connected to the second end of the flexible member and spaced apart from the second end of the outer body, the stop element being configured to contact the second end of the outer body when the second portion separates from the first portion in response to the frangible portion breaking; and placing a load on the unmanned aircraft, the load breaking the frangible portion, the first component remaining connected to the second component by the flexible member following the breaking of the frangible portion, the flexible member allowing movement of the first component relative to the second component following the breaking of the frangible portion, the movement being limited by the stop element.

30. The method of claim 29, wherein the stop element does not limit the movement of the first component relative to the second component prior to the breaking of the frangible portion.

31. The method of claim 29, wherein placing the load on the unmanned aircraft includes contacting the unmanned aircraft with a capture line, and releasably securing the unmanned aircraft to the capture line.

32. The method of claim 29, wherein the frangible fastener is a first frangible fastener, and wherein the method further comprises: detaching the second component from the first component by removing the first frangible fastener following the breaking of the frangible portion of the first frangible fastener; and re-attaching the second component to the first component with a second frangible fastener.

33. The method of claim 29, wherein the method further comprises removing the frangible fastener by: placing tension on the flexible member to draw the stop element into contact with the second end of the outer body; and rotating the first portion, while the flexible member is under tension, to unthread the second portion from the second component.


ОПИСАНИЕ




ОБЛАСТЬ ТЕХНИКИ



The present technology is directed generally to frangible fasteners with flexible connectors for unmanned aircraft, and associated systems and methods.


УРОВЕНЬ ТЕХНИКИ



Frangible fasteners are commonly used in unmanned aircraft or air vehicles (UAVs) to secure various components (e.g., fuselage, wings, winglets, empennage, etc.) of the aircraft together. Frangible fasteners can help minimize damage to the aircraft during landing and/or other high-impact operations. For example, many conventional unmanned aircraft include wings connected to the fuselage with frangible (e.g., plastic) screws. If the aircraft crashes or is subjected to a high-impact load, the plastic screws break, thereby allowing the wings to completely separate from the fuselage. This arrangement often results in less damage to the wings and fuselage as compared to configurations in which the wings are rigidly connected to the fuselage.

One concern with this arrangement, however, is that in many cases it may be undesirable to allow many of the relatively expensive, delicate components of the aircraft to break free from the aircraft during operation. These components can be seriously damaged and/or destroyed after detachment from the aircraft. Another concern with this arrangement is that when such components break completely free from the aircraft, the electrical connections or other system connections between the aircraft and the respective component are completely broken. Repairing these connections can be extremely expensive and time-consuming.


КРАТКОЕ ОПИСАНИЕ РИСУНКОВ



FIG. 1 is a partially schematic, isometric illustration of an unmanned aircraft having one or more components coupled with frangible fasteners or links configured in accordance with embodiments of the present technology.

FIG. 2A is a partially schematic, side elevation view of a fastener having a flexible member configured in accordance with an embodiment of the present technology.

FIG. 2B is a partially schematic, side cross-sectional illustration of an embodiment of the frangible fastener taken substantially along line 2B-2B of FIG. 2A.

FIG. 2C is a partially schematic, cross-sectional illustration of an embodiment of the frangible fastener taken substantially along line 2C-2C of FIG. 2B.

FIG. 3 is a partially schematic, partially cross-sectional illustration of a frangible fastener installation in accordance with embodiments of the present technology.

FIG. 4 is a partially schematic, partially cross-sectional illustration of a frangible fastener installation with the frangible fastener broken in accordance with an embodiment of the present technology.

FIG. 5 is a partially schematic, partially cross-sectional illustration of a frangible fastener installation with the frangible fastener broken in two places in accordance with an embodiment of the present technology.

FIG. 6 is a partially schematic, cross-sectional illustration of a process for removing post-break frangible fasteners in accordance with embodiments of the present technology.

FIG. 7A is a partially schematic, side elevation view of a frangible fastener having a stop element configured in accordance with some embodiments of the present technology.

FIG. 7B is a partially schematic, cross-sectional illustration of an embodiment of a frangible fastener taken substantially along line 7B-7B of FIG. 7A.

FIG. 7C is a partially schematic, isometric view of a frangible fastener having a stop element configured in accordance with some embodiments of the present technology.

FIG. 8 is a partially schematic cross-sectional illustration of a frangible fastener having a flexible member with two stop elements in accordance with an embodiment of the present technology.

FIG. 9 is a partially schematic, isometric cut-away illustration of a wing and winglet connected with frangible fasteners in accordance with embodiments of the present technology, and taken substantially along line 9-9 of FIG. 1.


ПОДРОБНОЕ ОПИСАНИЕ



The present technology is directed generally to frangible fasteners with flexible connectors for unmanned aircraft, and associated systems and methods. In particular embodiments, the frangible fastener is installed on an unmanned aircraft having a fuselage, a wing, and a winglet carried by the wing. The frangible fastener can couple the winglet to the wing, and can include an outer body with a first portion in contact with the wing, a second portion in contact with the winglet, and a frangible portion between the first and second portions. The frangible fastener can further include a flexible member positioned at least partially within the outer body and connected to the first portion. The flexible member can extend through and out of the second portion, and can carry a stop element. In operation, when the wing or winglet is subjected to a load above a threshold load, the frangible fastener breaks at the frangible portion, allowing the winglet to move away from the wing, but in a manner constrained by the flexible member. As will be described in further detail below, the flexible member can provide advantages over existing devices that include frangible fasteners with more rigid connections.

Many specific details of certain embodiments of the disclosure are set forth in the following description and in FIGS. 1-9 to provide a thorough understanding of these embodiments. Well-known structures, systems, and methods often associated with such systems have not been shown or described in detail to avoid unnecessarily obscuring the description of the various embodiments of the disclosure. In addition, those of ordinary skill in the relevant art will understand that additional embodiments may be practiced without several of the details described below.

FIG. 1 is a partially schematic, isometric illustration of an unmanned aircraft 100 having one or more components coupled with frangible fasteners or links configured in accordance with some embodiments of the present technology. The unmanned aircraft 100 can include a fuselage (or a fuselage portion) 101, a pair of wings (or wing portions) 170 extending outwardly from the fuselage 101, and a propeller 104 positioned at the aft end of the fuselage 101 to propel the aircraft 100 during flight. Each wing 170 can include an upwardly extending winglet (or winglet portion) 180 for lateral stability and control. Each wing 170 can also include a capture device 105 (e.g., a hook or wing hook). After completing a mission, the aircraft 100 is "captured" in flight by flying the wing 170 into a capture line 106 or other elongated fixture. The capture device 105 engages the capture line 106, bringing the aircraft 100 to rest. In the illustrated embodiment, the winglets 180 are partially removable elements releasably coupled to the corresponding wings 170 with one or more frangible fasteners or links 110 (shown schematically). Although each winglet 180 is shown in FIG. 1 attached with two frangible fasteners 110, it will be appreciated that a different number of fasteners 110 may be used in some embodiments. Furthermore, the frangible fasteners 110 may be used throughout the aircraft 100 to couple any of a variety of suitable different components together.

As described in detail below, the frangible fasteners 110 are fasteners that will readily break when a threshold force (e.g., a force above a predetermined level) is applied to the winglet 180 and/or the wing 170, e.g., during the capture operation described above. Such a force may cause the winglet 180 to rotate toward and away from the wing 170 (as indicated by arrows R in FIG. 1), and/or twist, rotate and/or translate in other directions. The frangible fasteners 110 in the illustrated embodiment, however, do not completely break. Rather, the frangible fasteners 110 include two discrete members that can move relative to each other by up to a fixed distance while remaining coupled to each other. Compared with conventional frangible fasteners that completely break when subjected to a force, the frangible fasteners 110 are expected to prevent components of the aircraft (e.g., the winglets 180) from breaking completely away from the aircraft 100 and contacting the ground or other structures. In addition, by not completely breaking apart, the frangible fasteners 110 are expected to prevent damage and/or destruction of the electrical (or other system) connections between the wing 170 and a respective winglet 180 if the winglet 180 breaks away from the aircraft 100. Further details regarding the frangible fasteners 110 are described further below with reference to FIGS. 2A-9.

FIG. 2A is a partially schematic side elevation view of a representative frangible fastener 110, configured in accordance with embodiments of the present technology. The frangible fastener 110 can include an outer body 120 having a first portion 121, a second portion 122, and a frangible portion 150 between the first and second portions 121, 122. The outer body 120 can have a hollow internal cavity with an opening 126 from which a flexible member 160 extends. The flexible member 160 can carry a stop element 140. The frangible fastener 110 can be connected between two components and, when it breaks at the frangible portion 150, the stop member 140 can prevent the two components from moving apart from each other by more than the length of the flexible member 160.

The outer body 120 can include a first end 123 (e.g., at the first portion 121) having a first attachment element 127, and a second end 124 (e.g., at the second portion 122) having a second attachment element 128. The first attachment element 127 can include a head 125 (e.g., a hexagonal bolt head) that contacts one component, and the second attachment element 128 can include external threads 129 that contact another component.

FIG. 2B is a partially schematic, cross-sectional illustration of an embodiment of the frangible fastener shown in FIG. 2A. FIG. 2B illustrates the internal cavity 130 of the outer body 120 from which the flexible member 160 extends. The flexible member 160 can be fixedly attached to the first portion 121 for example, at a crimp region 131. To fasten the flexible member 160 to the first portion, the first portion 121 is crimped at the crimp region 131, as indicated by arrows C, forming a crimp joint 132 with the flexible member 160.

The outer body 120 has an outer diameter D1 at the first portion 121 and/or the second portion 122, that is greater than a corresponding diameter D2 at the frangible portion 150. Accordingly, when a bending load is applied to the outer body 120, it will preferentially fracture at the frangible portion 150. The internal cavity 130 has a diameter D3 that is greater than an outer diameter D4 of the flexible member 160. Accordingly, when the frangible portion 150 breaks, the second portion 122 can slide over the flexible member 160 toward the stop element 140. The stop element 140 has an outer diameter D5 that is greater than the inner diameter D3 of the internal cavity 130. Accordingly, the stop element 140 prevents the second portion 122 from moving beyond the stop element 140. The stop element 140 can be fastened to the flexible member 160 at a crimp joint 141 positioned toward a second end 163 of the flexible member 160. A corresponding first end 162 of the flexible member 160 can be recessed from the first end 123 of the outer body 120, or, it may protrude slightly from the first end 123 by virtue of the crimping operation performed at the crimp region 131.

In particular embodiments, the foregoing diameters, and in particular, the concentricity of the foregoing diameters is controlled to provide consistency from one frangible fastener 110 to another. For example, the internal cavity diameter D3 is deliberately kept concentric with the frangible portion diameter D2, as eccentricity between these two diameters may weaken the frangible portion 150.

The flexible member 160 can have any of a variety of suitable configurations. In a particular configuration, the flexible member 160 is formed from a stranded cable 161. It is expected that the cable construction of the flexible member 160 facilitates forming the crimp joint 132, and is expected to allow the flexile member 160 to undergo significant bending (e.g., elastic bending) without breaking. For example, during the crimping operation, material from the outer body 120 can enter the interstices between strands and/or filaments of the cable 161 to further secure the cable 161 to the outer body 120. In addition, the stranded nature of the cable is expected to better resist fracturing than a solid construction. For example, some individual strands may break during operation, without causing the break to extend to other strands and/or causing the flexible member 160 to fail.

FIG. 2C is a cross-sectional illustration of a representative cable 161 formed from multiple strands 164, in particular, seven strands 164. Each strand 164 can be formed from multiple (e.g., seven) filaments 165. In other embodiments, the cable 161 can include other suitable numbers of strands 164 and/or other suitable numbers of filaments 165. In still further embodiments, the flexible member 160 can have other constructions, including a solid wire construction, although a stranded construction may provide better fatigue resistance and/or a better connection with the outer body 120, as described above.

FIG. 3 schematically illustrates a representative frangible fastener 110 connecting a first component 171 and a second component 181 in accordance with an embodiment of the present technology. The first component 171 can include the wing or wing portion 170 described above, and the second component 181 can include the winglet or winglet portion 180 described above. The wing 170 has a lower surface 172, an upper surface 173, and an interior region 174 in between. The winglet 180 has a lower surface 184 carrying an internally threaded nut plate 183, and an interior region 182. The frangible fastener 110 can be installed with the first portion 121 operably engaged with the wing lower surface 172, e.g., with the head 125 bearing against the wing lower surface 172, or with an intermediate member (such as a washer 111) bearing against the wing lower surface 172 to distribute the load from the fastener 110 to the wing 170. The first portion 121 of the frangible fastener 110 extends into the wing interior 174, and the second portion 122 is threadably engaged with the nut plate 183 of the winglet 180. In some embodiments, the external threads 129 of the second portion 122 are not further bonded to the nut plate 183, e.g., with Loctite.RTM. or another chemical agent. This arrangement can facilitate removing the frangible fastener 110, as described later with reference to FIG. 6. Because the installed frangible fastener 110 is under tension, the need for a chemical locking agent can be reduced or eliminated. The flexible member 160 and stop element 140 project into the winglet interior region 182. The stop element 140 is not directly or fixedly connected to the winglet 180 so that when the frangible fastener 110 breaks, the winglet 180 and the stop element 140 can move relative to each other. Upon installation, the head 125 is torqued, e.g., to a specified seating torque which is a specific percentage below the torsional strength of the frangible region, to place the frangible fastener 110 in tension, without overly stressing the frangible portion 150.

If the joint between the wing 170 and the winglet 180 is subject to a load (e.g., a bending load) greater than a threshold load, the frangible fastener 110 will break at the frangible portion 150, as shown in FIG. 4. Once the frangible fastener 110 breaks, the winglet 180 will move relative to the wing 170, within the constraints provided by the flexible member 160 and the stop element 140. As the winglet 180 moves relative to the wing 170, the flexible member 160 may put a bending load on the projecting second portion 122, which remains threadably attached to the nut plate 183. This in turn may cause the second portion to break, e.g., near the winglet lower surface 184, as shown in FIG. 5. Accordingly, the second portion 122 now includes an attached second portion 133, and a loose second portion 134. The loose second portion 134 can move along the flexible member 160, but is still constrained by the first portion 121 and the attached second portion 133.

Once the unmanned aircraft 100 (FIG. 1) has been brought to rest after capture, the frangible fastener 110 is removed. The first component (e.g., the wing 170) and the second component (e.g., the winglet 180) are inspected, and the second component is reattached to the first component with a new frangible fastener 110.

FIG. 6 illustrates a representable technique for removing the broken frangible fastener 110. As described above, the external threads 129 are not further secured to the nut plate 183 with a chemical agent but are simply threaded. Accordingly, the frangible fastener 110 can be removed by unthreading it from the winglet 180. As a result of the flexibility of the flexible member 160 connecting the fastener head 125 to the external threads 129, and the sliding fit between the flexible member 160 and the second portion 122 the operator may employ additional steps to complete the removal process. In particular, the operator can apply a tension to the flexible member 160 by pulling the winglet 180 upwardly away from the wing 170 (as indicated by arrows T), causing the stop element 140 to bear tightly against the attached second portion 133. While the flexible member 160 remains under tension, with the stop element 140 positioned tightly against the attached second portion 133, the operator can rotate the head 125 counterclockwise as indicated by arrow R1, causing the flexible member 160 to rotate counterclockwise, as indicated by arrow R2, which in turn causes the stop element 140 and the attached second portion 133 to rotate counterclockwise as indicated by arrow R3 so as to unthread the external threads 129 from the nut plate 183. In this manner, the frangible fastener 110 can be removed and replaced. This process can be used whether the second portion 122 is in two pieces (as shown in FIG. 6) or one piece (as shown in FIG. 4). To facilitate this operation, the elements making up the flexible member 160 (e.g., the strands and filaments described above) can be deliberately twisted in a direction that causes them to tighten together when the flexible member is rotated counter-clockwise. If, as may occur in some instances, the foregoing operation is not easily accomplished, the operator can clip the flexible member 160 and can remove the remaining elements of the fastener 110 by accessing the interior region 182 of the winglet 180.

As discussed above, the process of removing a broken frangible fastener 110 can be aided by tightly, snugly, or intimately engaging the stop element 140 with the attached second portion 133. FIGS. 7A-7C illustrate representative techniques for facilitating such an engagement. Beginning with FIG. 7A, a representative stop element 740 in accordance with a particular embodiment can include an inwardly tapered surface 742 facing toward the opening 126 at the second end 124 of the outer body 120. When the stop element 740 is drawn tightly against the outer body 120, the inwardly tapered surface 742 can enter the opening 126 and provide additional friction that facilitates rotating a second portion 122 in the manner described above with reference to FIG. 6.

To provide additional friction, the frangible fastener 110 can include one or more of further friction-enhancing elements. For example, the interior surfaces of the opening 126 at the second end 124 of the outer body 120 can be tapered, as shown in FIG. 7A, to provide additional contact with the correspondingly tapered surface 742 of the stop element 740. In addition to or in lieu of the foregoing feature, the stop element 740 can include ribs or other projections 743 that extend away from the tapered surface 742 and that can engage with (e.g., cut into) the surfaces of the opening 126 in the outer body 120. For example, the stop element 740 can be formed from a harder material (e.g., stainless steel) than the material forming the outer body 120 (e.g., aluminum). FIG. 7B is a cross-sectional illustration of the fastener 110, illustrating the stop element 740 with four ribs 743, in accordance with some embodiments of the present technology. In other embodiments, the stop element 740 can include other numbers of ribs 743 (e.g. 2, 3, 5) and/or other friction-enhancing features.

FIG. 7C illustrates still another representative arrangement in which the stop element 740 has been shaped (e.g., crimped or otherwise formed) to include an outwardly extending key 744. The outer body 120 can include a corresponding keyway or key slot 745 sized to receive the key 744. In operation, the operator draws the stop element 740 against the outer body 120, rotates the flexible member 160 until the key 744 drops into the keyway 745, and then continues to rotate the flexible member 160 to unscrew the second portion 722 from the component to which it is attached. In a particular aspect of this embodiment, the end of the outer body 120 in which the keyway 745 is located can be unthreaded so as to reduce or eliminate the likelihood for cross-threading the fastener 110 during installation.

In a further representative embodiment, the flexible member 160 can include multiple stop elements 140, rather than one stop element and a crimp joint. For example, as shown in FIG. 8, the flexible member 160 can include a first stop element 140a toward the first end 162, and a second element 140b toward the second end 163. The presence of the second stop element 140b can eliminate the need for the crimp joint 141 described above. Instead, the internal cavity 130 within the outer body 120 can have a clearance fit throughout its length, relative to the flexible member 160. A potential advantage of this construction is that it eliminates the need to crimp the outer body 120. Conversely, an advantage of the arrangement described above with reference to FIGS. 2A and 2B is that the crimp joint 141 reduces or eliminates the extent to which the flexible member 160 (or the first stop element 140a) protrudes outwardly from the head 125.

In some embodiments, the frangible fastener 110 shown in FIG. 8 may be installed in an upside-down orientation, with the head 125 below the second stop element 140b. To prevent the flexible member 160 and the second stop element 140b from sliding downwardly through the cavity 130, and causing the first stop element 140a and a portion of the flexible member 160 to project further beyond the head 125, the frangible fastener 110 can include a resistance element 166. The resistance element 166 can include a rubber band, RTV silicone bead, or another flexible element positioned on or around the flexible member 160 and/or at the end of the outer body 120 to prevent the flexible member 160 from sliding downwardly under the force of gravity. When larger forces are placed on the frangible fastener 110 (e.g., the frangible portion 150 breaks), the motion of the flexible member 160 can overcome the resistance provided by the resistance element 166, to allow relative motion between the wing and winglet.

In still further embodiments, the outer body 120 can include a recess 135 into which the first stop element 140a fits. This arrangement can reduce or eliminate the extent to which the first stop element 140a extends outwardly from the head 125, so as to reduce drag and/or the likelihood for the first stop element 140a to snag foreign objects. In this embodiment, the frangible fastener 110 can also include a resistance element 166 to prevent the flexible member 160 from moving under the force of gravity, as discussed above.

FIG. 9 is a partially schematic, partially cut-away illustration of a representative wing 170 and winglet 180 fastened with two frangible fasteners 110 in accordance with some embodiments of the present technology. As shown in FIG. 9, the nut plate 183 can extend into the interior 182 of the winglet 180 to account for the curvature of the wing upper surface 173. As is also shown in FIG. 9, the wing 170 and the winglet 180 can include access apertures that allow access to the respective interior regions 174, 182 to service these components, and if necessary, remove portions of the frangible fasteners 110 after use.

Embodiments of the present technology can provide one or more of several advantages when compared with existing frangible fasteners. For example, some existing frangible fasteners include a threaded connection between the first end of a generally rigid member (instead of a flexible member) and the outer body. If, during installation, the outer body is overtightened relative to the rigid threaded member inside, the torque can weaken the frangible portion and cause it to fail prematurely. By crimping the flexible member to the outer body at a position spaced apart from the frangible region, embodiments of the presently disclosed frangible fastener are expected to be less likely to produce such stresses at the frangible region.

Another expected advantage of embodiments that include a flexible member (when compared with a relatively non-flexible member) is that a flexible member can bend multiple times (after the frangible region breaks), without itself breaking. For example, when the frangible fastener is used to attach a winglet to wing, after the frangible region breaks, the winglet can move rapidly and repeatedly back and forth relative to the wing before coming to rest. This movement can cause a rigid attachment member to break, and thereby cause the winglet to fall completely away from the wing. By integrating a flexible member into the frangible fastener, this outcome can be avoided.

From the foregoing, it will be appreciated that specific embodiments of the present technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. For example, representative frangible fasteners can be used to connect components other than a wing and a winglet. The aircraft can have configurations other than those specifically shown and described herein, for example configurations in which portions of components (e.g., fuselages, wings, and/or winglets) are blended with each other (e.g., a blended wing/body configuration). The flexible members described above can have constructions other than the stranded constructions described above, for example, a solid construction that is configured to limit breakage caused by repeated bending. Representative frangible fasteners have been shown herein with the first portion in contact with the aircraft wing, and the second portion in contact with the winglet. In other embodiments, the orientation of the frangible fastener can be reversed. The frangible portion can have a rounded or radiused cross-sectional shape, as shown in several of the Figures, or it can have a "V-shaped" or other suitably shaped cross-section.

In a particular embodiment, the outer body can be manufactured from aluminum and the flexible member from stainless steel. In other embodiments, these components can be made from other suitable materials. The surface finishes of these components (and in particular at the frangible region) can be controlled to produce consistent results.

Certain aspects of the technology described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the crimp connection between the flexible member and the outer body may be eliminated in favor of a second stop element. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present technology. Accordingly, the present disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

* * * * *