Патент США № | 10217207 |
---|---|
Автор(ы) | Marra и др. |
Дата выдачи | 26 февраля 2019 г. |
An automated image capturing and processing system and method may allow a field user to operate a UAV via a mobile computing device to capture images of a structure area of interest (AOI). The mobile computing device receives user and/or third party data and creates UAV control data and a flight plan. The mobile computing device executes a flight plan by issuing commands to the UAV's flight and camera controller that allows for complete coverage of the structure AOI. After data acquisition, the mobile computing device then transmits the UAV output data to a server for further processing. At the server, the UAV output data can be used for a three-dimensional reconstruction process. The server then generates a vector model from the images that precisely represents the dimensions of the structure. The server can then generate a report for inspection and construction estimation.
Авторы: | Martin Marra (Louisville, CO), James F. Smyth (Richmond, VA) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | EZ3D, LLC (Louisville, CO) |
||||||||||
ID семейства патентов | 59313917 | ||||||||||
Номер заявки: | 15/411,182 | ||||||||||
Дата регистрации: | 20 января 2017 г. |
Document Identifier | Publication Date | |
---|---|---|
US 20170206648 A1 | Jul 20, 2017 | |
Application Number | Filing Date | Patent Number | Issue Date | ||
---|---|---|---|---|---|
62280803 | Jan 20, 2016 | ||||
Класс патентной классификации США: | 1/1 |
Класс совместной патентной классификации: | B64C 39/024 (20130101); G08G 5/0034 (20130101); G06T 7/0004 (20130101); G06K 9/52 (20130101); G05D 1/0038 (20130101); B64D 47/08 (20130101); G06T 19/20 (20130101); H04N 13/204 (20180501); G01C 11/00 (20130101); G01C 21/20 (20130101); G05D 1/0094 (20130101); G06K 9/00637 (20130101); G06T 19/00 (20130101); G06T 2215/16 (20130101); G06T 2207/30108 (20130101); G06T 2207/10032 (20130101); G06T 2200/08 (20130101); B64C 2201/127 (20130101); B64C 2201/12 (20130101) |
Класс международной патентной классификации (МПК): | G01C 21/20 (20060101); H04N 13/204 (20180101); G06T 7/00 (20170101); G06T 19/00 (20110101); G06K 9/00 (20060101); G01C 11/00 (20060101); G08G 5/00 (20060101); G06T 19/20 (20110101); G06K 9/52 (20060101); B64C 39/02 (20060101); B64D 47/08 (20060101); G05D 1/00 (20060101) |
7376284 | May 2008 | Tao et al. |
7509241 | March 2009 | Guo et al. |
7728833 | June 2010 | Verma et al. |
8346578 | January 2013 | Hopkins, III et al. |
8531472 | September 2013 | Freaund et al. |
8649632 | February 2014 | Neophytou et al. |
8731234 | May 2014 | Ciarcia et al. |
8805058 | August 2014 | Zebedin |
8897539 | November 2014 | Stone et al. |
9082015 | July 2015 | Christopulos et al. |
2004/0189524 | September 2004 | Saucier et al. |
2008/0262789 | October 2008 | Pershing et al. |
2009/0096884 | April 2009 | Schultz et al. |
2010/0110074 | May 2010 | Pershing |
2010/0268409 | October 2010 | Vian et al. |
2010/0286859 | November 2010 | Feigh et al. |
2011/0007962 | January 2011 | Johnson et al. |
2013/0317667 | November 2013 | Kruglick |
2014/0018979 | January 2014 | Goossen |
2014/0146132 | May 2014 | Bagnato et al. |
2014/0324483 | October 2014 | Plummer et al. |
2014/0316614 | November 2014 | Newman |
2015/0029182 | January 2015 | Sun et al. |
2015/0145704 | May 2015 | Dahan |
2015/0163993 | June 2015 | Pettersson |
2015/0332110 | November 2015 | Xin et al. |
2015/0347872 | December 2015 | Taylor et al. |
2016/0202695 | July 2016 | Deroos |
2016/0307447 | October 2016 | Johnson |
2017/0336806 | November 2017 | Blanc-Paques |
2018/0002010 | January 2018 | Bauer |
20110423560.4 | Apr 2014 | CN | |||
2013123354 | Aug 2013 | WO | |||
2014170060 | Oct 2014 | WO | |||
2015105886 | Jul 2015 | WO | |||
Sadeq. "Merging Digital Surface Models Sourced from Multi-Satellite Imagery and their Consequent Application in Automating 3D Modelling." [online] published Dec. 2015. [retrieved from internet]. cited by applicant . Boulassal, H., et al., Automatic Extraction of Planar Clusters and their Contours on Building Facades Recorded by Terrestrial Laser Scanner, International Journal of Architectural Computing, Issue 01, vol. 7. cited by applicant . Rothermel, M., Fast and Robust Generation of Semantic Urban Terrain Models from UAV Video Streams, Institute for Photogrammetry Stuttgart University, 2014. cited by applicant . Yuxiang, He, Automated 3D Building Modelling From Airbourne Lidar Data, Final Thesis, University of Melbourne, Feb. 2015. cited by applicant . James, M., Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks, Earth SUrface Processes and Landforms, Jun. 19, 2014, vol. 39. p. 1413-1420. cited by applicant . Jwa, Y., An Implicit Geometric Regularization of 3D Building Shape Using Airborne Lidar Data, www.researchgate.net/publication/228347970, Jul. 2008. cited by applicant . Dai, Fei, Photogrammetric Error Sources and Impacts on Modeling and Surveying in Construction Engineering Applications, Visualization in Engineering, a SpringerOpen Journal, 2014, 2:2. cited by applicant . Dorniger, Peter, et al, A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airbourne Laser Scanning Point Clouds, Sensors 2008, ISSN 1424-8220, vol. 8, p. 7323-7343. cited by applicant . Hoppe, Christof, et al., Photogrammetric Camera Network Design for Micro Aerial Vehicles, Institute for Computer Graphics and Vision Graz University of Technology, Austria, 17th Computer Vision Winter Workshop, Feb. 2012. cited by applicant . Ruijin, Ma, Building Model Reconstruction from Lidar Data and Aerial Photographs, Dissertation, Ohio State University, 2004. cited by applicant . Lewis, G., UAS Volumetric Analysis, A case study, AirGon LLC, presentation paper. cited by applicant . Huang, H, et al, Rule-based Roof Plane Detection and Segmentation from Laser Point Clouds, Institute of Cartography and Geoinformatics, Leibniz University, Hannover, Germany, 2011. cited by applicant . Hongchao, F, et al, Segmentation of Sloped Roofs from Airborne LiDar Point Clouds Using Ridge-Based Hierarchial Decomposition, Remote Sensing ISSN 2072-4292, 2014 vol. 6, p. 3284-3301. cited by applicant . Tarsha-Kurdi, F., Extended RANSAC Algorithm for Automatic Detection of Building Roof Planes from LiDar Data, ResearchGate, www.researchgate.net/publication/228781826, Jan. 2008. cited by applicant. |