Патент США № | 10266267 |
---|---|
Автор(ы) | Paunicka и др. |
Дата выдачи | 23 апреля 2019 г. |
Presently disclosed systems and methods are configured for in-flight retrieval of unmanned aerial vehicles (UAVs). Such systems generally include a retrieval ramp, a tether system including a tether, and a capture connector. The retrieval ramp is configured to be moved between a stowed configuration and an extended configuration, in which at least a portion of the retrieval ramp is positioned outside the aircraft for retrieval of the UAV. The tether system is moveable to a capture configuration, in which a terminal tether end of the tether is positioned beyond a terminal end of the retrieval ramp, typically outside of turbulence generated by the aircraft. The system is configured to position the retrieval ramp, the tether system, and the capture connector in order to engage the UAV with the capture connector. Once captured, the system may move the UAV into the aircraft as the tether is retracted towards a retracted configuration.
Авторы: | James Louis Paunicka (St. Louis, MO), Jacob R. Irwin (St. Peters, MO), Alexander David Lee (St. Peters, MO), Ryan L. Hupp (Creve Coeur, MO) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | The Boeing Company (Chicago, IL) |
||||||||||
ID семейства патентов | 60482982 | ||||||||||
Номер заявки: | 15/175,453 | ||||||||||
Дата регистрации: | 07 июня 2016 г. |
Document Identifier | Publication Date | |
---|---|---|
US 20170349283 A1 | Dec 7, 2017 | |
Класс патентной классификации США: | 1/1 |
Класс совместной патентной классификации: | B64D 5/00 (20130101); B64C 39/024 (20130101); B64C 2201/206 (20130101); B64C 2201/182 (20130101) |
Класс международной патентной классификации (МПК): | B64D 5/00 (20060101); B64C 39/02 (20060101) |
6869042 | March 2005 | Harrison |
7188807 | March 2007 | Smith |
7900866 | March 2011 | Kutzmann |
8231083 | July 2012 | Kutzmann |
8464981 | June 2013 | Goldie |
8991793 | March 2015 | Bernhardt |
9132916 | September 2015 | Hanna |
9878777 | January 2018 | Bernhardt |
9896208 | February 2018 | Retig |
2016/0221689 | August 2016 | Tridico |
2017/0144762 | May 2017 | Retig |
2017/0197725 | July 2017 | Foo |
2017/0341735 | November 2017 | Bernhardt |
Printout of webpage, "USS Macon (ZRS-5)," Wikipedia, the free encyclopedia, wikipedia.com, downloaded Feb. 22, 2016, last updated Feb. 4, 2016. cited by applicant . Printout of webpage, "McDonnell XF-85 Goblin," Wikipedia, the free encyclopedia, wikipedia.com, downloaded Feb. 22, 2016, last updated Jan. 24, 2016. cited by applicant . Printout of webpage article, "The Mothership--UAV swarms inspire research into flying aircraft carriers," Airforce Technology Market & Customer Insight, airforce-technology.com, downloaded Feb. 22, 2016, dated Feb. 10, 2015. cited by applicant . D. Stratman, "The Gathering Swarm," Boeing Frontiers, p. 20, Dec. 2011-Jan. 2012. cited by applicant . Printout of webpage article, R. Boyle, "In Boeing Demonstration, Different Autonomous Drones Swarm Together for Reconnaissance Missions," Popular Science, popsci.com, downloaded Feb. 22, 2016, dated Aug. 22, 2011. cited by applicant . B.D. Nelson et al., Document AD 529372, "Investigation of a Micro-Fighter/Airborne Aircraft Carrier Concept," Tactical Combat Aircraft Programs, The Boeing Aerospace Company, Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, AFFDL TR 73-93 (vol. 1), Sep. 1973. cited by applicant. |