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DETERMINING STOCKPILE VOLUME
BASED ON DIGITAL AERIAL IMAGES AND
THREE-DIMENSIONAL REPRESENTATIONS
OF A SITE

BACKGROUND

In recent years, individuals and businesses have increas-
ingly utilized UAVs to perform a variety of tasks. Indeed,
because of the reduced cost of UAVs relative to chartering
manned aerial vehicles, businesses and individuals utilize
UAVs to perform a variety of flight tasks that have tradi-
tionally been cost-prohibitive. For example, it is becoming
increasingly common to utilize UAVs to perform flight
missions for capturing digital aerial images of a site in
construction, land management, mining, or other applica-
tions.

Although some conventional systems are able to utilize
UAVs to capture digital aerial images of a site, such con-
ventional systems have a number of shortcomings. For
example, many customers in construction, land manage-
ment, or mining applications manage large material stock-
piles and need updated estimates of stockpile volumes.
Although conventional UAV systems can capture digital
aerial images of a site, such systems are unable to quickly
and easily identify stockpiles and estimate stockpile volume.
Rather, conventional systems require time consuming and
laborious processes, such as manually identifying stockpiles
and/or stockpile surveying.

Accordingly, a number of problems and disadvantages
exist with conventional systems for estimating stockpile
volumes utilizing digital aerial images captured by a UAV.

BRIEF SUMMARY

Embodiments of the present disclosure provide benefits
and/or solve one or more of the foregoing or other problems
in the art with systems and methods for automatically
identifying stockpiles and determining stockpile volumes
utilizing digital aerial images of a site captured by a UAV. In
particular, in one or more embodiments, the disclosed sys-
tems and methods utilize digital aerial images captured by a
UAV to generate a two-dimensional representation and
three-dimensional representation of a site. The disclosed
systems and methods can identify potential stockpiles by
applying an elevation filter to the three-dimensional repre-
sentation of the site. Moreover, the disclosed systems and
methods can determine whether a potential stockpile is an
actual stockpile by applying a neural network to both
three-dimensional features and two-dimensional features of
the potential stockpile. Upon confirming that the potential
stockpile is an actual stockpile utilizing the neural network,
the disclosed systems and methods can utilize the three-
dimensional representation of the site to accurately deter-
mine stockpile volume.

For example, in one or more embodiments, the disclosed
systems and methods utilize a plurality of digital aerial
images of a site captured by a UAV during a flight to
generate a three-dimensional representation of the site and a
two-dimensional representation of the site. Moreover, the
disclosed systems and methods apply an elevation filter to
the three-dimensional representation of the site to generate
a three-dimensional representation of a potential stockpile
on the site and a boundary of the potential stockpile. Further,
the disclosed systems and methods generate a two-dimen-
sional representation of the potential stockpile from the
two-dimensional representation of the site based on the
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identified boundary of the potential stockpile. Moreover, the
disclosed systems and methods determine that the potential
stockpile is a stockpile by applying a neural network to the
two-dimensional representation of the potential stockpile
and the three-dimensional representation of the potential
stockpile, wherein the neural network is trained to identify
stockpiles from two-dimensional training inputs and three-
dimensional training inputs. Upon confirming that the poten-
tial stockpile is a stockpile, the disclosed systems and
methods determine a volume of the stockpile based on the
three-dimensional representation of the potential stockpile.

Thus, the disclosed systems and methods can determine
stockpile volumes utilizing digital aerial images of a site
captured by a UAV. Accordingly, the disclosed systems and
methods can avoid the time and cost of manually identifying
and/or surveying stockpiles to determine volume. Moreover,
by utilizing a neural network that analyzes both two-dimen-
sional and three-dimensional features of potential stockpiles,
the disclosed systems and methods can accurately identify
stockpiles on a site and avoid incorrectly estimating non-
stockpile volumes.

Furthermore, in one or more embodiments, the disclosed
systems and methods can also apply a material classifier to
determine volumes of different materials within a stockpile.
Thus, where stockpiles include multiple materials, the dis-
closed systems and methods can automatically determine the
volume of each material within the stockpile.

Additional features and advantages of exemplary embodi-
ments of the present disclosure will be set forth in the
description which follows, and in part will be obvious from
the description, or may be learned by the practice of such
exemplary embodiments. The features and advantages of
such embodiments may be realized and obtained by means
of'the instruments and combinations particularly pointed out
in the appended claims. These and other features will
become more fully apparent from the following description
and appended claims, or may be learned by the practice of
such exemplary embodiments as set forth hereinafter. The
foregoing summary is not an extensive overview, and it is
not intended to identify key elements or indicate a scope.
Rather the foregoing summary identifies aspects of embodi-
ments as a prelude to the detailed description presented
below.

BRIEF DESCRIPTION OF THE DRAWINGS

Below is a brief description of the figures referenced in
the detailed description.

FIG. 1 illustrates a representation of utilizing a UAV to
capture digital aerial images of a site and estimate stockpile
volumes in accordance with one or more embodiments;

FIGS. 2A-2C illustrate a representation of utilizing digital
aerial images, a three-dimensional site representation, a
two-dimensional site representation, and a neural network to
estimate stockpile volumes in accordance with one or more
embodiments;

FIG. 3 illustrates a representation of applying an elevation
filter to a three-dimensional representation of a site to
identify potential stockpiles in accordance with one or more
embodiments;

FIG. 4 illustrates a representation of training a neural
network utilizing two-dimensional inputs and three-dimen-
sional inputs in accordance with one or more embodiments;

FIG. 5 illustrates a representation of determining a stock-
pile volume based on a ground reference surface in accor-
dance with one or more embodiments;
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FIG. 6 illustrates a representation of determining stock-
pile volume over time in accordance with one or more
embodiments;

FIG. 7 illustrates a schematic diagram of an aerial stock-
pile analysis system in accordance with one or more
embodiments;

FIG. 8 illustrates a schematic diagram of a network
environment in which the methods and systems disclosed
herein may be implemented in accordance with one or more
embodiments;

FIG. 9 illustrates a flowchart of a series of acts in a
method of determining a stockpile volume utilizing digital
aerial images captured by a UAV in accordance with one or
more embodiments; and

FIG. 10 illustrates a block diagram of an exemplary
computing device in accordance with one or more embodi-
ments.

DETAILED DESCRIPTION

The present disclosure includes various embodiments and
features of an aerial stockpile analysis system and corre-
sponding processes that assist in identifying stockpiles and
determining stockpile volume on a site based on digital
aerial images. In particular, in one or more embodiments the
aerial stockpile analysis system generates a three-dimen-
sional model of a site utilizing digital aerial images captured
by a UAV in flight and then utilizes the three-dimensional
model of the site to identify potential stockpiles. Moreover,
the aerial stockpile analysis system can analyze two-dimen-
sional features and the three-dimensional features of the
potential stockpiles utilizing a neural network to confirm
that the potential stockpiles reflect actual stockpiles. Further,
the aerial stockpile analysis system can determine volumes
of the stockpiles based on the three-dimensional represen-
tation of the site.

To illustrate, in one or more embodiments, the aerial
stockpile analysis system generates a two-dimensional rep-
resentation of a site and a three-dimensional representation
of' the site based on digital aerial images captured by a UAV.
The aerial stockpile analysis system can apply an elevation
filter to generate a three-dimensional representation of a
potential stockpile with a corresponding boundary of the
potential stockpile. Furthermore, the aerial stockpile analy-
sis system can generate a two-dimensional representation of
the potential stockpile utilizing the two-dimensional repre-
sentation of the site and the identified boundary. Utilizing
the two-dimensional representation of the potential stockpile
and the three-dimensional representation of the stockpile,
the aerial stockpile analysis system can then determine
whether the potential stockpile is an actual stockpile. Spe-
cifically, the aerial stockpile analysis system can analyze
both two-dimensional features (from the two-dimensional
representation of the stockpile) and three-dimensional fea-
tures (from the three-dimensional representation of the
stockpile) utilizing a neural network to determine whether
the potential stockpile is an actual stockpile.

Upon utilizing a neural network to confirm that the
potential stockpile is a stockpile, the aerial stockpile analysis
system can determine stockpile volume. In particular, the
aerial stockpile analysis system can utilize the three-dimen-
sional model of the stockpile and a reference surface to
determine a stockpile volume. Specifically, in one or more
embodiments, the aerial stockpile analysis system generates
a reference surface from the stockpile boundary and then
determines a stockpile volume by analyzing the volume
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between the reference surface and the three-dimensional
representation of the stockpile.

The aerial stockpile analysis system provides a number of
advantages over conventional systems. For instance, by
utilizing an elevation filter that analyzes a three-dimensional
representation of a site, and a neural network trained based
on both two-dimensional and three-dimensional features, the
aerial stockpile analysis system can quickly, automatically,
and accurately identify stockpiles on a site. Moreover, the
aerial stockpile analysis system can then estimate a volume
of the identified stockpiles utilizing the three-dimensional
representation of the site. Accordingly, the aerial stockpile
analysis system can automatically, quickly, and accurately
determine the volume of one or more stockpiles utilizing a
plurality of digital aerial images.

In addition, in one or more embodiments, the aerial
stockpile analysis system applies a material classifier to
identify different materials within the same stockpile. For
instance, the aerial stockpile analysis system can apply a
material classifier to a two-dimensional representation of a
stockpile to identify a boundary between two different
materials within the stockpile. The aerial stockpile analysis
system can then determine a volume of each material within
the stockpile. Thus, the aerial stockpile analysis system can
not only determine stockpile volume based on digital aerial
images, but can identify volumes of different materials
within a stockpile based on digital aerial images.

Furthermore, the aerial stockpile analysis system can also
track the volume of one or more stockpiles on a site over
time. Indeed, the aerial stockpile analysis system can utilize
identified stockpiles from a first collection of digital aerial
images of a site (captured during a first period of time, such
as a first flight of a UAV) to identify stockpiles and deter-
mine stockpile volumes in a second collection of digital
aerial images of the site (captured during a second period of
time, such as a second flight of one or more UAVs).
Accordingly, the aerial stockpile analysis system can auto-
matically determine, monitor, and report stockpile volumes
on a site over time.

As mentioned above, in one or more embodiments, the
aerial stockpile analysis system identifies stockpile locations
from a plurality of digital aerial images. In particular, in one
or more embodiments, the aerial stockpile analysis system
captures a plurality of digital aerial images of a site utilizing
a UAV. For example, the aerial stockpile analysis system can
utilize a UAV to traverse a site and capture digital aerial
images of the site.

Upon capturing a plurality of digital aerial images, the
aerial stockpile analysis system can utilize the digital aerial
images to generate a three-dimensional representation of the
site and a two-dimensional representation of the site. For
example, in one or more embodiments, the aerial stockpile
analysis system utilizes a structure from motion algorithm
and constrained bundle adjustment algorithm to generate a
three-dimensional representation of the site utilizing a plu-
rality of digital aerial images. Moreover, the aerial stockpile
analysis system can also utilize a structure from motion
algorithm and constrained bundle adjustment algorithm to
generate a two-dimensional representation of the site, such
as an orthophoto.

As mentioned above, the aerial stockpile analysis system
can also apply an elevation filter to the three-dimensional
representation of the site to identify potential stockpiles. For
example, the aerial stockpile analysis system can analyze
elevation data from the three-dimensional representation of
the site at the potential stockpile locations to determine
whether the elevation data reflects a stockpile or a non-
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ground object (e.g., a vehicle or structure). In response to
identifying non-ground objects, the aerial stockpile analysis
system can filter the non-ground objects from the three-
dimensional representation of the site and the potential
stockpile locations. Furthermore, upon removing non-
ground objects, the aerial stockpile analysis system can
analyze elevation data to identify stockpiles from the three-
dimensional representation of the site. Specifically, the aerial
stockpile analysis system can analyze elevation data in light
of a stockpile gradient threshold to identify stockpiles from
the three-dimensional site representation.

In addition, in one or more embodiments, the aerial
stockpile analysis system also utilizes a neural network to
ensure the accuracy of identified stockpiles. In particular, in
one or more embodiments, the aerial stockpile analysis
system trains the neural network to classify input models as
stockpiles or other objects. Specifically, the aerial stockpile
analysis system can train the neural network to classify
models as stockpiles based on two-dimensional inputs and
three-dimensional inputs. The aerial stockpile analysis sys-
tem then utilizes the trained neural network to identify
stockpiles based on two-dimensional representations of
potential stockpiles and three-dimensional representations
of potential stockpiles.

Upon identifying one or more stockpiles, the aerial stock-
pile analysis system can also determine stockpile volume. In
particular, the aerial stockpile analysis system can utilize a
boundary of the stockpile from the three-dimensional rep-
resentation of the site to determine a ground reference
surface (e.g., a three-dimensional representation of the
ground underlying the stockpile). Utilizing the ground ref-
erence surface and the three-dimensional representation of
the stockpile, the aerial stockpile analysis system can auto-
matically calculate the volume of the stockpile.

As used herein, the term “UAV” or “unmanned aerial
vehicle” refers to an aircraft that can be piloted autono-
mously or remotely by a control system. A UAV may include
any type of unmanned aircraft, including a micro UAV, low
altitude UAV, or high altitude UAV, whether autonomously
or remotely piloted. Moreover, a UAV may include a multi-
rotor UAV, single-rotor UAV, blimp UAV, or other types of
UAVs. In one or more embodiments, a UAV comprises a
camera and/or GPS receiver affixed to the UAV.

As used herein, the term “digital aerial image” refers to
any digital symbol, picture, icon, or illustration captured by
a camera in the air. For example, the term “digital aerial
image” includes a digital picture captured by a camera
affixed to a UAV in flight. The term “digital aerial image”
includes digital files with the following, or other, file exten-
sions: JPG, TIFF, BMP, PNG, RAW, or PDF. The term
“digital aerial image” also includes one or more images
(e.g., frames) in a digital aerial video (e.g., a digital video
captured from a UAV in flight).

As used herein the term “location” refers to a position
within a space. For example, the term “location” includes
coordinates, pixels, or some other indicator describing a
position within a two-dimensional or three-dimensional
space. To illustrate, a location of a stockpile includes a
position (e.g., pixels) of a stockpile within a digital aerial
image, a position of a stockpile (e.g., coordinates) within a
two-dimensional space comprising a two-dimensional rep-
resentation of a site, or a position of a stockpile (e.g.,
coordinates) within a three-dimensional space (e.g., a point
within a point cloud) comprising a three-dimensional rep-
resentation of a site.

As used herein, the term “three-dimensional representa-
tion” refers to any digital data depicting an object or site in
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three-dimensions. In particular, the term three-dimensional
representation includes a three-dimensional point cloud, a
three-dimensional mesh, a three-dimensional model, or a
three-dimensional surface. To illustrate, the term three-
dimensional site representation includes a three-dimensional
point cloud derived from the observation of a site from
multiple views.

As used herein, the term “two-dimensional representa-
tion” refers to any digital data depicting an object or site in
two-dimensions. In particular, the term two-dimensional
representation includes an orthophoto, a map, or an over-
head depiction of an object or a site.

As used herein, the term “site” refers to a location on
Earth. In particular, the term site includes a location on Earth
with one or more stockpiles. The term site can include a
construction site, a mining site, a property, a wilderness area,
a disaster area, or other location.

As used herein, the term “neural network™ refers to a
machine learning model that can be tuned (e.g., trained)
based on inputs to approximate unknown functions. In
particular, the term “neural network™ can include a model of
interconnected layers that communicate and analyze attri-
butes at varying degrees of abstraction to learn to approxi-
mate complex functions and generate outputs based on a
plurality of inputs provided to the model. For instance, the
term “neural network” includes one or more machine learn-
ing algorithms. In particular, the term “neural network”
includes deep convolutional neural networks (i.e., “CNNs”),
fully convolutional neural networks (i.e., “FCNs”), multi-
layer perceptron algorithms, or recurrent neural networks.
Thus, a neural network includes an algorithm that imple-
ments deep learning techniques, i.e., machine learning that
utilizes a set of algorithms to attempt to model high-level
abstractions in data.

As used herein, the term “training” refers to data utilized
to train a neural network. Thus, a “two-dimensional training
representation” refers to a two-dimensional representation
(or features corresponding to a two-dimensional represen-
tation) provided to a neural network to train the neural
network. Similarly, a “three-dimensional training represen-
tation” refers to a three-dimensional representation provided
to a neural network to train the neural network. Furthermore,
“training model” or “training input” refers to a model of a
stockpile (e.g., a three-dimensional stockpile representation
or a two-dimensional stockpile representation) or other
object utilized to train a neural network.

As used herein, the term “stockpile” refers to a collection
of matter. In particular, the term “stockpile” refers to a
collection of one or more materials on a surface (e.g., on a
ground surface). For example, the term stockpile includes a
large collection of earth, ore, rock, mining products, or other
material on a site. For instance, a stockpile includes a mound
of material collected at a location of a site.

As used herein, the term “potential stockpile” refers to an
object or data that may correspond to a stockpile. For
instance, the term “potential stockpile” includes pixels of a
digital image that may portray a stockpile. Similarly, a
potential stockpile includes a portion of a site that may
contain a stockpile (e.g., a portion of a site identified as a
stockpile but not yet confirmed as a stockpile). For example,
a potential stockpile includes a location of a three-dimen-
sional representation of a site that is identified as a stockpile
(e.g., by an elevation filter) but that has not yet been
confirmed as a stockpile (e.g., by a neural network).

As used herein, the term “elevation filter” refers to an
algorithm for identifying one or more stockpiles based on
three-dimensional coordinates of a three-dimensional repre-
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sentation. In particular, the term “elevation filter” includes
an algorithm that removes one or more points of a three-
dimensional representation based on elevation. For example,
the term “elevation filter” includes a ground return algorithm
that identifies non-ground and/or ground objects based on
elevation of points within a three-dimensional representa-
tion. Specifically, the term “elevation filter” includes a
ground return algorithm that removes non-ground objects
from a three-dimensional representation. Similarly, the term
“elevation filter” includes an algorithm that analyzes eleva-
tion of points in a three-dimensional representation of a site
and identifies potential stockpiles. For example, the term
“elevation filter” includes an algorithm that compares points
in a three-dimensional representation of a site to a stockpile
gradient threshold to identify potential stockpiles. Addi-
tional detail regarding elevation filters utilized by the aerial
stockpile analysis system in accordance with one or more
embodiments is provided below.

Turning now to FIG. 1, additional detail will be provided
regarding estimating stockpile volume in accordance with
one or more embodiments of the aerial stockpile analysis
system. In particular, FIG. 1 illustrates a UAV 100 capturing
a plurality of digital aerial images 102 of a site 104 during
a first period of time (e.g., during a first flight). As shown,
during the first period of time the site 104 includes a vehicle
106, structures 108a, 1085, and a plurality of stockpiles
110-116. Moreover, as shown in FIG. 1, the stockpile 116
comprises two different materials. Accordingly, the stock-
pile 116 includes a first stockpile 116a of a first material and
a second stockpile 1165 of a second material.

As discussed above, clients often seek to know volumes
of the stockpiles 110-116 (and the volume of the individual
materials within the first stockpile 116a and the second
stockpile 1165). For example, the site 104 can represent a
construction site with stockpiles of fill material utilized to
raise elevation of the construction site to satisfy engineering
demands. Construction managers often need to know the
amount of fill available as a construction project progresses
to ensure that the site has sufficient supply and/or to arrange
for sale and delivery of excess material.

Utilizing the plurality of digital aerial images 102, the
aerial stockpile analysis system identifies the stockpiles
110-116 (and the first and second stockpiles 116a, 1165) and
determines volumes 120-1265. For instance, the aerial
stockpile analysis system identifies locations of the stock-
piles 110-116 by generating a two-dimensional representa-
tion and a three-dimensional representation of the site 104.
In particular, the aerial stockpile analysis system applies an
elevation filter to the three-dimensional model of the site
104 to identify locations of potential stockpiles. Specifically,
the aerial stockpile analysis system applies an elevation filter
to identify locations of potential stockpiles and generate
three-dimensional representations of potential stockpiles
and corresponding boundaries.

Furthermore, the aerial stockpile analysis system gener-
ates two-dimensional representations of the potential stock-
piles. For example, utilizing the boundaries of the potential
stockpile, the aerial stockpile analysis system crops two-
dimensional representations of potential stockpiles from the
two-dimensional representation of the site 104.

The aerial stockpile analysis system utilizes the two-
dimensional representations of potential stockpiles to deter-
mine different materials within a stockpile. For example, the
aerial stockpile analysis system applies a material classifier
to a two-dimensional representation of the (potential) stock-
pile 116 to identify a boundary between the first material and
the second material. The aerial stockpile analysis system
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then utilizes the boundary to identify the first (potential)
stockpile 116a and the second (potential) stockpile 1164.

Utilizing the two-dimensional representations of the
potential stockpiles and the three-dimensional representa-
tions of the potential stockpiles, the aerial stockpile analysis
system determines whether the potential stockpiles are
actual stockpiles on the site 104. In particular, the aerial
stockpile analysis system extracts two-dimensional features
from the two-dimensional representations of potential stock-
piles and three-dimensional features from the three-dimen-
sional representations of potential stockpiles and analyzes
the two-dimensional features and three-dimensional features
utilizing a neural network. The neural network analyzes the
two-dimensional features and three-dimensional features to
classify the potential stockpiles as stockpiles on the site 104
or non-stockpiles. In this manner, the aerial stockpile analy-
sis system identifies the stockpiles 110-116 (and/or the first
stockpile 116a and the second stockpile 1165).

Upon confirming the actual stockpiles on the site 104
utilizing the neural network, the aerial stockpile analysis
system determines volumes of the actual stockpiles. In
particular, the aerial stockpile analysis system determines a
ground reference surface (i.e., a surface of the ground
underlying the stockpiles 110-1165) and then determines the
volumes 120-1265 based on three-dimensional representa-
tions of the stockpiles and the ground reference surface.

Although FIG. 1 illustrates a particular site with particular
stockpiles (e.g., a construction site with fill material stock-
piles), the aerial stockpile analysis system can identify
stockpiles and estimate stockpile volumes with regard to a
variety of sites and a variety of stockpiles. For example, the
aerial stockpile analysis system can identify stockpiles on a
mining site with regard to stockpiles containing a variety of
different mining materials.

Turning now to FIGS. 2A-2B additional detail will be
provided regarding identifying stockpiles and determining
stockpile volume in accordance with one or more embodi-
ments of the aerial stockpile analysis system. In particular,
FIG. 2A illustrates a plurality of digital aerial images 202a-
2027 of a site captured by a UAV 200. The aerial stockpile
analysis system utilizes the digital aerial images 202a-202n
to determine the volume of a stockpile 203 on the site.

Specifically, as shown, the aerial stockpile analysis sys-
tem provides the digital aerial images 2024-202z to a
three-dimensional representation generator 204 to generate a
three-dimensional site representation 206. The three-dimen-
sional representation generator 204 includes a system (e.g.,
one or more computing devices or processors) running one
or more algorithms to generate a three-dimensional repre-
sentation from a plurality of digital aerial images. For
example, in one or more embodiments, the three-dimen-
sional representation generator 204 utilizes a structure from
motion algorithm and a bundle adjustment algorithm to
generate a three-dimensional representation of a site utiliz-
ing digital aerial images of the site. Specifically, the aerial
stockpile analysis system can utilize a structure from motion
algorithm and a bundle adjustment algorithm to determine
camera position and other camera parameters utilized to
capture the digital aerial images 202¢-2027 and generate a
three-dimensional point cloud of the objects portrayed in the
digital aerial images 202a-202#. To illustrate, in one or more
embodiments, the three-dimensional representation genera-
tor 204 utilizes one or more approaches described in U.S.
patent application Ser. No. 14/857,238 (filed Sep. 17, 2015),
which is incorporated by reference herein in its entirety.

Accordingly, as shown, the aerial stockpile analysis sys-
tem can utilize the three-dimensional representation genera-
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tor 204 to generate the three-dimensional site representation
206. In relation to FIG. 2A, the three-dimensional site
representation 206 is a three-dimensional point cloud. Spe-
cifically, the three-dimensional site representation 206 is a
point cloud comprising a plurality of three-dimensional
points that reflect elevations of different portions of the site,
including buildings, vegetation, and the stockpile 203.

Furthermore, as shown in FIG. 2A, the aerial stockpile
analysis system also provides the digital aerial images
202a-2027 to a two-dimensional representation generator
208 to generate a two-dimensional site representation 210.
Similar to the three-dimensional representation generator
204, the two-dimensional representation generator 208 can
also utilize a structure from motion algorithm and/or a
bundle adjustment algorithm to generate a two-dimensional
representation of the site, such as an orthophoto.

The two-dimensional representation generator 208 can
utilize a variety of alternative approaches to generate the
two-dimensional site representation 210. For example, in
one or more embodiments, the two-dimensional representa-
tion generator 208 aligns digital aerial images to generate a
two-dimensional aerial map of a site. Moreover, in one or
more embodiments, the two-dimensional representation
generator 208 utilizes the three-dimensional site represen-
tation 206 to generate the two-dimensional site representa-
tion 210.

As mentioned above, in one or more embodiments, the
aerial stockpile analysis system identifies a potential stock-
pile by applying an elevation filter to a three-dimensional
representation of a site. For example, as shown in FIG. 2A,
the aerial stockpile analysis system utilizes an elevation
filter 212 to generate a three-dimensional potential stockpile
representation 214 and a potential stockpile boundary 216.
Specifically, the aerial stockpile analysis system applies the
elevation filter 212 that filters non-ground objects from the
three-dimensional site representation 206 based on elevation
data and then identifies potential stockpiles based on eleva-
tion and a stockpile threshold gradient.

As just mentioned, in one or more embodiments, the
elevation filter 212 comprises a ground return algorithm. In
particular, in relation to FIG. 2A, the aerial stockpile analy-
sis system applies the elevation filter 212 by applying a
ground return algorithm to the three-dimensional site rep-
resentation 206 to generate a filtered three-dimensional site
representation. For example, the aerial stockpile analysis
system applies a ground return algorithm that identifies
ground objects and/or non-ground objects within the three-
dimensional site representation 206. The aerial stockpile
analysis system then removes the non-ground objects from
the three-dimensional site representation 206 to generate a
filtered three-dimensional site representation.

The aerial stockpile analysis system can apply a variety of
ground return algorithms. For example, in one or more
embodiments, the elevation filter 212 analyzes slope and/or
elevation of the three-dimensional site representation 206 to
determine whether the slope and/or elevation corresponds to
a ground object or non-ground object. In particular, the
three-dimensional stockpile location filter 212 can analyze
elevation of data points of the three-dimensional site repre-
sentation 206, identify non-ground objects based on the
elevation of the data points, and remove the non-ground
objects. In this manner, the aerial stockpile analysis system
can utilize the elevation filter 212 to remove structures,
vehicles, individuals, equipment, vegetation, or any other
non-ground objects from the three-dimensional site repre-
sentation 206.
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For instance, in one or more embodiments, the aerial
stockpile analysis system can apply an initial morphological
filter comprising erosion and dilation operations to the
three-dimensional site representation 206. In this manner,
the aerial stockpile analysis system can enhance elevation
changes and more accurately apply a height or slope thresh-
old to identify and filter non-ground objects. Similarly, the
aerial stockpile analysis system can apply a clustering
algorithm to data points of the three-dimensional site rep-
resentation 206 (e.g., points of a point cloud) and remove
small clusters that reflect non-ground points. Moreover, in
one or more embodiments, the aerial stockpile analysis
system divides a site into different regions based on slope,
adjusts segmentation parameters based on the different
regions, and then applies the different segmentation param-
eters to the different regions. Specifically, the aerial stock-
pile analysis system can apply the approach described in
U.S. patent application Ser. No. 15/047,512 (filed Feb. 18,
2016), which is incorporated by reference herein in its
entirety. Thus, the aerial stockpile analysis system can
identify and remove non-ground objects from the three-
dimensional site representation 206 to generate a filtered
three-dimensional site representation.

In addition to removing non-ground objects, as mentioned
above, the aerial stockpile analysis system can also apply the
elevation filter 212 to identify potential stockpiles. In par-
ticular, the aerial stockpile analysis system can apply the
elevation filter 212 to identify potential stockpiles by uti-
lizing a stockpile gradient threshold. To illustrate, in one or
more embodiments, the elevation filter 212 identifies poten-
tial stockpile locations by comparing slopes of potential
stockpiles to a stockpile gradient threshold. For example, the
aerial stockpile analysis system can determine a slope of a
potential stockpile and compare the determined slope to the
stockpile gradient threshold. If the slope of the potential
stockpile does not satisfy the stockpile gradient threshold
(e.g., falls outside a range of expected slopes corresponding
to a stockpile), the aerial stockpile analysis system can filter
out the potential stockpile location (e.g., determine that the
potential stockpile is not a stockpile).

More specifically, as shown in FIG. 2A, in one or more
embodiments, the elevation filter 212 generates a three-
dimensional potential stockpile representation 214 by apply-
ing a stockpile gradient threshold. For example, the eleva-
tion filter 212 identifies a highest remaining point of a
filtered three-dimensional site representation (e.g., after all
non-ground objects have been removed). Upon identifying
the highest point in the filtered three-dimensional site rep-
resentation, the elevation filter 212 identifies a set of points
within a radius of the highest point and applies the stockpile
gradient threshold to the set of points. In particular, the
elevation filter 212 determines whether one or more points
in the set of points satisfies the stockpile gradient threshold
(e.g., falls within a range of expected slopes corresponding
to a stockpile). If one or more points in the set of points
satisfies the stockpile gradient threshold, the aerial stockpile
analysis system adds the one or more points to the three-
dimensional potential stockpile representation 214.

The aerial stockpile analysis system can continue this
approach to expand the three-dimensional potential stock-
pile representation 214. For example, the aerial stockpile
analysis system can select a new point (e.g., one of the newly
added points from the first set of points) and identify a
second set of points within a radius of the new point.
Moreover, the aerial stockpile analysis system can apply the
stockpile gradient threshold to the second set of points. If
points in the second set of points satisfy the stockpile
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gradient threshold, the aerial stockpile analysis system can
add the points to the three-dimensional potential stockpile
representation 214.

In this manner, the aerial stockpile analysis system can
expand a three-dimensional potential stockpile representa-
tion to include all points reflecting the potential stockpile.
Indeed, in one or more embodiments, the aerial stockpile
analysis system expands the three-dimensional potential
stockpile representation 214 until points within a radius of
the potential stockpile fail to satisfy the stockpile gradient
threshold.

Similarly, the aerial stockpile analysis system can also
identify the potential stockpile boundary 216. For example,
the aerial stockpile analysis system can expand the three-
dimensional potential stockpile representation 214 until sur-
rounding points do not satisfy the stockpile gradient thresh-
old. The aerial stockpile analysis system can then identify
points along the edge of the three-dimensional potential
stockpile representation 214 as the potential stockpile
boundary 216.

In one or more embodiments, the aerial stockpile analysis
system identifies the potential stockpile boundary 216 by
also applying a boundary gradient threshold. In particular,
the aerial stockpile analysis system can apply a boundary
gradient threshold to identify boundary points that transition
from a steep slope to a more gradual slope. To illustrate, the
aerial stockpile analysis system applies a boundary gradient
threshold that comprises a first slope in a first direction and
a second slope in a second direction. The aerial stockpile
analysis system then identifies the potential stockpile bound-
ary 216 by identifying points that satisfy the boundary
gradient.

In one or more embodiments, the aerial stockpile analysis
system can determine and/or select a stockpile gradient
threshold and/or a boundary gradient threshold. For
instance, the aerial stockpile analysis system can analyze
known stockpiles to determine a stockpile gradient threshold
and/or a boundary gradient threshold. To illustrate, the aerial
stockpile analysis system can analyze known stockpiles and
determine a range of slopes corresponding to the known
stockpiles (and/or boundaries of the known stockpiles). The
aerial stockpile analysis system can then apply the deter-
mined range of slopes as a stockpile gradient threshold
and/or boundary gradient threshold.

As mentioned above, in some circumstances, application
of an elevation filter can still result in some potential
stockpile locations that do not correspond to actual stock-
piles. Accordingly, in one or more embodiments, the aerial
stockpile analysis system analyzes potential stockpiles to
ensure that they reflect actual stockpiles. In particular, the
aerial stockpile analysis system can analyze both two-
dimensional features and three-dimensional features of a
potential stockpile to ensure that the potential stockpile is an
actual stockpile.

For example, as shown in FIG. 2A, the aerial stockpile
analysis system utilizes the three-dimensional potential
stockpile representation 214 (and/or the potential stockpile
boundary 216) together with the two-dimensional site rep-
resentation 210 to generate a two-dimensional potential
stockpile representation 218. For example, the aerial stock-
pile analysis system can utilize the potential stockpile
boundary 216 to crop the two-dimensional site representa-
tion 210 and generate the two-dimensional potential stock-
pile representation 218.

Moreover, as shown in FIG. 2A, the aerial stockpile
analysis system can then utilize the two-dimensional poten-
tial stockpile representation 218 and the three-dimensional
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potential stockpile representation 214 in conjunction with a
neural network 220 to determine whether the potential
stockpile is a stockpile. For instance, the aerial stockpile
analysis system can provide the two-dimensional potential
stockpile representation 218 and the three-dimensional
potential stockpile representation 214 to the neural network
220. The neural network can then analyze features of the
two-dimensional potential stockpile representation 218 and
the three-dimensional potential stockpile representation 214
to determine whether the potential stockpile is a stockpile
(i.e., whether the potential stockpile belongs to a stockpile
classification).

Rather than providing a two-dimensional representation
and a three-dimensional representation to a neural network,
in one or more embodiments, the aerial stockpile analysis
system extracts two-dimensional features from a two-di-
mensional representation, extracts three-dimensional fea-
tures from a three-dimensional representation, and provides
the two-dimensional features and the three-dimensional fea-
tures to a neural network. For example, in relation to FIG.
2A, the aerial stockpile analysis system extracts two-dimen-
sional features from the two-dimensional potential stockpile
representation 218 and extracts three-dimensional features
from the three-dimensional stockpile representation 214.
Moreover, the aerial stockpile analysis system provides the
two-dimensional features and the three-dimensional features
to the neural network 220. The neural network 220 then
analyzes the two-dimensional features and the three-dimen-
sional features to determine whether the potential stockpile
is an actual stockpile.

The aerial stockpile analysis system can extract and
provide a variety of different two-dimensional and three-
dimensional features. For example, the two-dimensional
features can include shape (e.g., an exterior shape of an
overhead view of the potential stockpile), area, perimeter
(e.g., length of the perimeter around the potential stockpile),
width, length, circularity (e.g., a measure of how close a
two-dimensional overhead view of the potential stockpile is
to a circular shape), color (e.g., a single color, color grada-
tion, color histogram, or color profile), or texture. Similarly,
the three-dimensional features can include slope (e.g., slope
along one or more surfaces of the three-dimensional stock-
pile representation 214), elevation profile (e.g., a profile
shape generated from the three-dimensional stockpile rep-
resentation 214), height (e.g., maximum height or average
height), volume (e.g., a rough volume estimation), or surface
coarseness (e.g., a measure of variation in surface elevation
that indicate a smooth or jagged surface).

In relation to FIG. 2A, the aerial stockpile analysis system
provides the two-dimensional features and the three-dimen-
sional features to the neural network 220. The neural net-
work 220 analyzes the two-dimensional features and the
three-dimensional features and determines whether the fea-
tures indicate an actual stockpile or a non-stockpile.

As mentioned above, the aerial stockpile analysis system
can utilize a neural network that comprises a machine
learning algorithm trained to classify objects as stockpiles
(or non-stockpiles). In relation to FIG. 2A, the neural
network 220 comprises a deep neural network (e.g., a
convolutional neural network) that includes a plurality of
hidden layers that analyze features of two-dimensional
inputs and/or three-dimensional inputs to determine a stock-
pile classification.

Specifically, the aerial stockpile analysis system trains the
neural network 220 utilizing two-dimensional training
inputs and three-dimensional training inputs. Specifically,
the aerial stockpile analysis system provides positive two-
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dimensional training inputs (e.g., two-dimensional inputs of
a stockpile), positive three-dimensional training inputs (e.g.,
three-dimensional inputs of a stockpile), negative two-di-
mensional training inputs (e.g., two-dimensional inputs of
non-stockpiles), and/or negative three-dimensional training
inputs (e.g., three-dimensional inputs of non-stockpiles).
The aerial stockpile analysis system then generates predicted
classifications utilizing the neural network for these training
inputs. The aerial stockpile analysis system then compares
the predicted classifications with ground-truth classifications
and trains the neural network 220 based on the comparison.
In this manner, the aerial stockpile analysis system trains the
neural network 220 to identify significant features from
two-dimensional and three-dimensional inputs for predict-
ing a stockpile classification. Moreover, the aerial stockpile
analysis system trains the neural network to classify poten-
tial stockpile representations utilizing two-dimensional
stockpile representations and/or three-dimensional stockpile
representations. Additional detail regarding training neural
networks is provided below (e.g., in relation to FIG. 4).

As shown in FIGS. 2A, 2B the aerial stockpile analysis
system utilizes the neural network 220 (i.e., a trained neural
network) to determine a stockpile classification (e.g.,
whether the potential stockpile belongs to a stockpile clas-
sification or a non-stockpile classification). As illustrated in
FIG. 2B, if the aerial stockpile analysis system determines
(via the neural network 220) that the potential stockpile is a
stockpile, the aerial stockpile analysis system can determine
the volume of the stockpile.

Specifically, utilizing the neural network 220, the aerial
stockpile analysis system identifies the final stockpile 222.
For instance, upon determining that the potential stockpile is
a stockpile, the aerial stockpile analysis system identifies the
final stockpile 222 from the three-dimensional potential
stockpile representation 214.

Moreover, as shown in FIG. 2B, upon identifying the final
stockpile 222, the aerial stockpile analysis system also
determines a final stockpile boundary 224 (i.e., an outer
border between the final stockpile 222 and the ground
surrounding the final stockpile 222). In particular, the aerial
stockpile analysis system can determine the final stockpile
boundary 224 for the final stockpile 222 by analyzing the
three-dimensional site representation 206 and/or the three-
dimensional potential stockpile representations 214. For
instance, in one or more embodiments, the aerial stockpile
analysis system applies a segmentation algorithm to the
location of the final stockpile 222 within the three-dimen-
sional site representation 206 to determine the final stockpile
boundary 224.

The aerial stockpile analysis system can also utilize the
potential stockpile boundary 216 to determine the final
stockpile boundary 224. For instance, the aerial stockpile
analysis system can utilize the potential stockpile boundary
216 as an initial boundary for the final stockpile 222. The
aerial stockpile analysis system can then utilize a segmen-
tation algorithm in relation to the three-dimensional site
representation 206 to refine the boundary of the final stock-
pile 222 and generate the final stockpile boundary 224.

In particular, the aerial stockpile analysis system can
utilize a segmentation algorithm that analyzes variations in
elevation data to determine segments of a three-dimensional
representation. Specifically, the aerial stockpile analysis
system utilizes a segmentation algorithm that detects
changes in slope within a three-dimensional representation
to identify where the final stockpile 222 begins and ends. In
this manner, the aerial stockpile analysis system identifies
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the final stockpile boundary 224, which defines an outer
boundary that encompasses the final stockpile 222.

As shown in FIG. 2B, the aerial stockpile analysis system
also utilizes the final stockpile boundary 224 to determine a
final stockpile volume 226. For example, the aerial stockpile
analysis system utilizes the final stockpile boundary 224 to
generate a three-dimensional representation of the final
stockpile 222 (e.g., by cropping the stockpile from the
three-dimensional site representation 206 utilizing the final
stockpile boundary 224). Moreover, the aerial stockpile
analysis system can utilize the final stockpile boundary 224
to generate a ground reference surface corresponding to the
final stockpile 222. In particular, the aerial stockpile analysis
system can utilize the final stockpile boundary 224 to
generate a ground reference surface that approximates a
ground surface underlying the final stockpile 222.

The aerial stockpile analysis system can then determine
the final stockpile volume 226 based on the difference
between the three-dimensional representation of the final
stockpile 222 and the ground reference surface. In particular,
the aerial stockpile analysis system can determine a volume
between the ground reference surface defined by the final
stockpile boundary 224 and the three-dimensional represen-
tation of the final stockpile 222. Thus, as outlined in FIGS.
2A-2B, based on the digital aerial images 202a-202x, the
aerial stockpile analysis system can identify the final stock-
pile 222 and determine the final stockpile volume 226.

Although FIG. 2B only illustrates a single final stockpile
222 and the corresponding final stockpile volume 226, the
aerial stockpile analysis system can identify a plurality of
final stockpiles and corresponding stockpile volumes.
Indeed, the aerial stockpile analysis system can determine
any type or number of stockpiles on a site and their corre-
sponding volumes.

For instance, as shown in FIG. 2B, upon determining the
final stockpile volume 226 the aerial stockpile analysis
system can repeat one or more steps or acts to identify a final
volume of additional stockpiles. For example, as shown in
FIGS. 2A, 2B, the aerial stockpile analysis system repeats
the process of applying the elevation filter 212, identifying
potential stockpiles, generating two-dimensional potential
stockpile representations and three-dimensional potential
stockpile representations, applying the neural network 220
to determine if the potential stockpile is an actual stockpile,
and determining final stockpile volume.

More specifically, the aerial stockpile analysis system
removes the final stockpile 222 from the filtered three-
dimensional stockpile representation and applies the eleva-
tion filter 212 by identifying the highest point remaining in
the filtered three-dimensional stockpile representation and
utilizing the stockpile gradient threshold to identify a second
potential stockpile. The aerial stockpile analysis system then
generates a second three-dimensional potential stockpile
representation, generates a second two-dimensional stock-
pile representation, and applies the neural network 220 to
determine if the second potential stockpile is an actual
stockpile. If the second potential stockpile is a second
stockpile, the aerial stockpile analysis system can determine
the volume of the second stockpile.

As shown in FIG. 2B, if the aerial stockpile analysis
system determines (via the neural network 220) that the
potential stockpile is not an actual stockpile, the aerial
stockpile analysis system discards the potential stockpile.
Specifically, the aerial stockpile analysis system removes the
potential stockpile from the three-dimensional site represen-
tation 206 and identifies another potential stockpile from the
three-dimensional site representation 206. To illustrate, the
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aerial stockpile analysis system can remove the potential
stockpile from the filtered three-dimensional site represen-
tation and then repeat the process described above, by
applying the elevation filter 212 to identify an additional
potential stockpile, and applying the neural network 220.

The aerial stockpile analysis system can repeat this pro-
cess until identifying one or more stopping conditions. The
aerial stockpile analysis system can utilize a variety of
different stopping conditions depending on the embodiment.
For example, the aerial stockpile analysis system can utilize
a stopping condition that includes a threshold limit of points
in the three-dimensional site representation 206. Indeed, as
just described, the aerial stockpile analysis system can
remove stockpiles (or potential stockpiles) from the three-
dimensional site representation 206 (or the filtered three-
dimensional site representation) after analysis by the neural
network 220. The aerial stockpile analysis system can utilize
a threshold of points remaining in the three-dimensional site
representation 206 (or a threshold of points removed from
the three-dimensional site representation 206) as a stopping
condition. To illustrate, the aerial stockpile analysis system
can apply a threshold percentage (e.g., 50%) of points as a
stopping condition. Upon detecting that more than 50% of
the points in the original three-dimensional site representa-
tion 206 have been removed (or remain), the aerial stockpile
analysis system can stop repeating.

Although the foregoing example describes a threshold
percentage of points, the aerial stockpile analysis system can
also apply a threshold number of points removed (or remain-
ing). For example, in one or more embodiments, the aerial
stockpile analysis system continues repeating until no points
(or 50 points or 100 points) remain in the three-dimensional
site representation 206.

In addition to a threshold of points, the aerial stockpile
analysis system can also apply a stopping condition that
includes a threshold number of iterations. For example, the
aerial stockpile analysis system can repeat 10 (or 20, 50,
100, etc.) times until reaching the threshold number of
iterations.

In one or more embodiments, the aerial stockpile analysis
system can select the threshold number of iterations. For
example, the aerial stockpile analysis system can select the
threshold number of iterations based on the size of a site.
Similarly, the aerial stockpile analysis system can select the
threshold number of iterations based on user input (e.g., user
selection of a threshold number of iterations).

As mentioned above, in some circumstances, application
of an elevation filter can result in identifying potential
stockpiles with potential stockpile boundaries that are over-
inclusive. For example, applying an elevation filter can
result in a stockpile boundary that includes stockpiles having
multiple different materials (e.g., two stockpiles of different
material that have grown together so that they overlap).
Similarly, applying an elevation filter can sometimes result
in a stockpile boundary that includes part of the ground (part
of the ground surrounding the stockpile boundary in addition
to the stockpile).

Accordingly, in one or more embodiments, the aerial
stockpile analysis system applies a material classifier. In
particular, the aerial stockpile analysis system can apply a
material classifier that identifies stockpiles that include
multiple materials and corresponding material boundaries.
The aerial stockpile analysis system can then utilize a neural
network to analyze revised stockpiles that correspond to
each material to ensure that the revised stockpiles reflect
actual stockpiles.
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For example, as shown in FIG. 2A the aerial stockpile
analysis system can apply a material classifier 230 to the
two-dimensional potential stockpile representation 218
(e.g., prior to providing the two-dimensional potential stock-
pile representation 218 to the neural network 220). The
aerial stockpile analysis system can apply the material
classifier 230 to determine a boundary between multiple
materials in a potential stockpile. The aerial stockpile analy-
sis system can then crop the potential stockpile along the
boundary to generate revised potential stockpiles reflecting
the different materials. The aerial stockpile analysis system
can then analyze the revised potential stockpiles (e.g., uti-
lizing the neural network) to determine whether each of the
revised potential stockpiles is an actual stockpile.

For example, FIG. 2C illustrates applying the material
classifier 230 to generate revised potential stockpiles in
accordance with one or more embodiments. Specifically,
FIG. 2C illustrates an example embodiment of the aerial
stockpile analysis system where the two-dimensional poten-
tial stockpile representation 218 includes multiple different
materials. Indeed, as shown in FIG. 2C, the two-dimensional
potential stockpile representation 218 includes a first mate-
rial 2324 (i.e., a first material in the stockpile 203), a second
material 2325 (i.e., a second material in the stockpile 203),
and a third material 232¢ (i.e., ground material surrounding
the stockpile 203). Indeed, in relation to the embodiment of
FIG. 2C, the stockpile 203 includes two different materials,
and the two-dimensional potential stockpile representation
218 is over-inclusive in that it includes a region of the
ground surrounding the stockpile 203.

The aerial stockpile analysis system can isolate the three
different materials in the two-dimensional potential stock-
pile representation 218, determine which materials actually
reflect stockpiles, and then determine the volume of the
actual stockpiles. Specifically, as shown in FIG. 2C, the
aerial stockpile analysis system can apply the material
classifier 230 to the two-dimensional potential stockpile
representation 218 to determine material boundaries 234a,
2345, and 234c.

The material classifier 230 can include a variety of
algorithms for classifying different materials. In particular,
the material classifier 230 can include algorithms for clas-
sifying different materials from a two-dimensional represen-
tation. For instance, in one or more embodiments, the
material classifier 230 comprises a clustering algorithm. To
illustrate, the material classifier 230 can comprise a k-means
clustering algorithm that identifies clusters based on portions
(e.g., pixels) of a two-dimensional representation. The aerial
stockpile analysis system can apply the material classifier
230 in the form of a k-means clustering algorithm to a
two-dimensional representation and group pixels of the
two-dimensional representation into clusters corresponding
to the materials 232a, 2325, 232c.

In other embodiments, the material classifier 230 includes
a neural network. For example, in one or more embodi-
ments, the aerial stockpile analysis system trains a neural
network with training two-dimensional representations to
identify different materials within a potential stockpile. To
illustrate, the aerial stockpile analysis system can provide
training two-dimensional representations comprising one or
more materials to the material classifier 230. The aerial
stockpile analysis system can then utilize the material clas-
sifier 230 to predict materials (e.g., material boundaries)
within the training two-dimensional representations. The
aerial stockpile analysis system can train the material clas-
sifier 230 by comparing the predicted materials with the
ground truth materials (e.g., ground-truth material boundar-
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ies). Once trained, the aerial stockpile analysis system can
utilize the material classifier 230 (i.e., a trained neural
network) to determine the materials 232a-232¢ and/or the
material boundaries 234a-234c.

Upon determining that a stockpile contains more than one
material (and identifying corresponding material boundar-
ies), the aerial stockpile analysis system can generate revised
potential stockpile representations. In particular, the aerial
stockpile analysis system can utilize material boundaries and
potential stockpile representations to generate revised poten-
tial stockpile representations. For example, in FIG. 2C, the
aerial stockpile analysis system utilizes the two-dimensional
potential stockpile representation 218 and the material
boundaries 234a, 2345, and 234c¢ to generate the revised
two-dimensional potential stockpile representations 236a,
2365, and 236¢. Specifically, the aerial stockpile analysis
system crops the two-dimensional potential stockpile rep-
resentation 218 along the material boundaries 234a, 2345,
and 234c¢, resulting in three revised two-dimensional poten-
tial stockpile representations 2364 (corresponding to the first
material 232a), 2365 (corresponding to the second material
232b), and 236¢ (corresponding to the third material 232¢).

Similarly, as illustrated in FIG. 2C, the aerial stockpile
analysis system utilizes the three-dimensional potential
stockpile representation 214 and the material boundaries
234a, 234b, and 234c¢ to generate revised three-dimensional
potential stockpile representations 238a, 2385, and 238c.
Specifically, the aerial stockpile analysis system divides the
three-dimensional potential stockpile representation 214
along the material boundaries 234a, 2345, and 234c, result-
ing in three revised three-dimensional potential stockpile
representations 238a (corresponding to the first material
232a), 238b (corresponding to the second material 2325),
and 238c¢ (corresponding to the third material 232¢).

Upon generating revised potential stockpile representa-
tions, the aerial stockpile analysis system can analyze the
revised potential stockpile representations utilizing a neural
network. In particular, the aerial stockpile analysis system
can analyze the revised potential stockpile representations to
determine whether they reflect actual stockpiles.

For example, as shown in FIG. 2C, the aerial stockpile
analysis system utilizes the neural network 220 to analyze
the revised two-dimensional potential stockpile representa-
tions 236a-236¢ and the revised three-dimensional potential
stockpile representations 238a-238¢. Specifically, the aerial
stockpile analysis system utilizes the neural network 220 to
analyze the revised two-dimensional potential stockpile rep-
resentation 236a (corresponding to the first material 232q)
and the revised three-dimensional potential stockpile repre-
sentations 238a (also corresponding to the first material
232a). Utilizing the neural network 220, the aerial stockpile
analysis system determines that the revised two-dimensional
potential stockpile representation 236a and the revised
three-dimensional potential stockpile representations 238a
reflect a first stockpile 240a. Thus, the aerial stockpile
analysis system identifies the first stockpile 240a based on
the material boundary 234a, the revised potential two-
dimensional stockpile representations 236a, and/or the
revised potential three-dimensional stockpile representation
238a.

Similarly, the aerial stockpile analysis system utilizes the
neural network 220 to analyze the revised two-dimensional
potential stockpile representation 2365 (corresponding to
the second material 2325) and the revised three-dimensional
potential stockpile representations 2385 (corresponding to
the second material 2325). In particular, utilizing the neural
network 220, the aerial stockpile analysis system determines
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that the revised two-dimensional potential stockpile repre-
sentation 2365 and the revised three-dimensional potential
stockpile representations 2386 reflect a second stockpile
2405.

Upon identifying the first stockpile 240a and/or the sec-
ond stockpile 2404, the aerial stockpile analysis system
determines a volume of the first stockpile 240a and a volume
of'the second stockpile 2405. Indeed, as described in relation
to FIG. 2B, the aerial stockpile analysis system can deter-
mine a final stockpile boundary (e.g., the final stockpile
boundary 224) and determine a final stockpile volume (e.g.,
the final stockpile volume 226) for the first stockpile 240a
and/or the second stockpile 2406.

As shown in FIG. 2C, the aerial stockpile analysis system
also utilizes the neural network 220 to analyze the revised
two-dimensional potential stockpile representation 236¢
(corresponding to the third material 232¢) and the revised
three-dimensional potential stockpile representations 238c¢
(corresponding to the third material 232¢). Utilizing the
neural network 220, the aerial stockpile analysis system
determines that the revised two-dimensional potential stock-
pile representation 236¢ and the revised three-dimensional
potential stockpile representations 238¢ do not reflect an
actual stockpile, but a non-stockpile 240c. Accordingly, as
discussed in relation to FIG. 2B, the aerial stockpile analysis
system dismisses the non-stockpile 240c. Specifically, the
aerial stockpile analysis system removes the non-stockpile
240c¢ from the three-dimensional site representation 206
(and/or the filtered three-dimensional site representation
discussed in relation to FIG. 2A).

Although FIG. 2C illustrates a potential stockpile with a
plurality of materials 232a-232¢, in many circumstances
potential stockpiles will only have a single material. In such
circumstances, the aerial stockpile analysis system can apply
the material classifier 230 and determine that the there is no
boundary between multiple different material types. For
instance, upon determining that a potential stockpile
includes a single material, the aerial stockpile analysis
system can proceed to utilizing the neural network 220 to
determine whether the potential stockpile is an actual stock-
pile. In other words, the aerial stockpile analysis system can
omit the act of generating revised potential stockpile repre-
sentations and analyzing the revised potential stockpile
representations based on a determination that a potential
stockpile is made up of a single material.

As mentioned above, in one or more embodiments, the
aerial stockpile analysis system applies an elevation filter to
a three-dimensional representation of a site to identify a
potential stockpile. In particular, the aerial stockpile analysis
system can apply an elevation filter by identifying a highest
point in a three-dimensional site representation and then
analyzing surrounding points based on a stockpile gradient
threshold. For example, FIG. 3 illustrates identifying a
potential stockpile from a three-dimensional site represen-
tation in accordance with one or more embodiments.

In particular, FIG. 3 illustrates a three-dimensional site
representation 300. As shown, the three-dimensional site
representation comprises a plurality of points 302a-3027.
The aerial stockpile analysis system analyzes the points
302a-3027 to identify a set of points 320 included in a
potential stockpile 322 and a set of boundary points 324
included in a potential stockpile boundary 326.

Specifically, as shown in FIG. 3, the aerial stockpile
analysis system analyzes the plurality of points 302a-302»
and identifies a highest point 302%. The aerial stockpile
analysis system adds the highest point 302/ to the set of
points 320 included in the potential stockpile 322. Moreover,
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the aerial stockpile analysis system then utilizes the highest
point 302/ to add additional points to the potential stockpile
322. Specifically, the aerial stockpile analysis system ana-
lyzes additional points 304 within a radius 306 of the highest
point 3024

As mentioned above, in one or more embodiments, the
aerial stockpile analysis system adds points to a potential
stockpile based on a stockpile gradient threshold. For
example, as shown in FIG. 3, the aerial stockpile analysis
system includes the additional points 304 in the set of points
320 corresponding to the potential stockpile 322 based on a
determination that the additional points 304 satisfy the
stockpile gradient threshold. Specifically, the aerial stock-
pile analysis system compares the difference in height
(and/or distance) between the highest point 302/ and each of
the additional points 304 to determine whether the gradient
between the highest point 302/ and each of the additional
points 304 satisfies the stockpile gradient threshold.

The stockpile gradient threshold can comprise a variety of
gradient measures. For example, the stockpile gradient
threshold can comprise a slope or a vertical distance relative
to the highest point 302%. To illustrate, the aerial stockpile
analysis system can apply the stockpile gradient threshold as
a slope of 10 percent (in either direction, up or down). The
aerial stockpile analysis system can then analyze the addi-
tional points 304 and determine that the additional points are
more than a 10 percent slope from the highest point 302/%.
For instance, one of the additional points 304 may be three
inches away from the highest point 302/ but one inch below
the highest point 302/ (resulting in a 33 percent slope that
satisfies the 10 percent stockpile gradient threshold).

As shown in FIG. 3, the aerial stockpile analysis system
can continue adding points to the set of points 320 included
in the potential stockpile 322 based on the stockpile gradient
threshold. For example, as shown, the aerial stockpile analy-
sis system identifies a next set of points 308 from the
plurality of points 302a-302x. In particular, the aerial stock-
pile analysis system applies the radius 306 to a point 302x
from the additional points 304 to identify the next set of
points 308. The aerial stockpile analysis system analyzes the
next set of points 308 and determines that each of the points
in the next set of points 308 satisfies the stockpile gradient
threshold. Accordingly, the aerial stockpile analysis system
adds the next set of points 308 to the set of points 320
included in the potential stockpile 322.

The aerial stockpile analysis system can continue analyz-
ing points and adding points to the potential stockpile until
identifying points that do not satisfy the stockpile gradient
threshold. Upon identifying points that do not satisfy the
stockpile gradient threshold, the aerial stockpile analysis
system can build a stockpile boundary (i.e., a boundary that
defines the end of the potential stockpile and the beginning
of the ground).

Indeed, as shown in FIG. 3, the aerial stockpile analysis
system analyzes a further set of points 310 within a radius
306 of a point 3024 within the set of points 320 included in
the potential stockpile 322. The aerial stockpile analysis
system determines that one or more of the points in the
further set of points 310 do not satisty the stockpile gradient
threshold. For example, one or more of the points in the
further set of points 310 lie on a plane that is less than a 10
percent gradient from the point 302d.

The aerial stockpile analysis system can add points that do
not satisfy the stockpile gradient threshold to a set of
boundary points 324 defining the boundary 326 between the
potential stockpile 322 and the ground. For instance, upon
determining that the further set of points 310 do not satisfy
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the stockpile gradient threshold, the aerial stockpile analysis
system can add the further set of points 310 to the set of
boundary points 324.

In one or more embodiments, the aerial stockpile analysis
system utilizes a boundary gradient threshold (in addition to,
or in the alternative to, utilizing the stockpile gradient
threshold) in generating the set of boundary points 324. For
example, in one or more embodiments, the potential stock-
pile gradient applies a boundary gradient threshold in two
different directions to identify boundary points. For
example, in one or more embodiments, the aerial stockpile
analysis system identifies the set of boundary points 324 by
identifying points that have a steep gradient in one direction
(e.g., greater than a 10 percent gradient up toward the
stockpile) and a small gradient in another direction (e.g., less
than a 3 percent gradient in the direction of the ground).
Thus, the aerial stockpile analysis system can determine
when it encounters points within a flatter region, indicating
a boundary of the potential stockpile 322.

In this manner, the aerial stockpile analysis system can
define the set of points 320 included in the potential stock-
pile 322 and the set of boundary points 324. Specifically, the
aerial stockpile analysis system can repeatedly add points
from the three-dimensional site representation 300 to the
potential stockpile 322 based on the stockpile gradient
threshold and then add points to the set of boundary points
324 upon entering a flat region at the edge of the stockpile
based on the stockpile boundary threshold. In one or more
embodiments, the aerial stockpile analysis system repeats
this process until there are no additional points that satisfy
the stockpile gradient threshold (and/or the boundary gra-
dient threshold). Thus, as shown in FIG. 3, the result of this
process is two point clouds: one that reflects a potential
stockpile (e.g., the set of points 320), and another that
reflects a stockpile boundary (e.g., the set of boundary points
324).

In one or more embodiments, the aerial stockpile analysis
system compares the set of points 320 and the set of
boundary points 324 to more clearly define a potential
stockpile and its corresponding boundary. Specifically, the
aerial stockpile analysis system can apply a snitch algorithm
to the two point clouds to remove noise (e.g., points erro-
neously included in the potential stockpile or the stockpile
boundary).

For example, in one or more embodiments, the aerial
stockpile analysis system applies a snitching algorithm that
compares the set of points 320 and the set of boundary points
324. Specifically, the aerial stockpile analysis system can
compare the set of points 320 and the set of boundary points
324 and identify overlapping points. The aerial stockpile
analysis system can analyze and remove the overlapping
points to remove noise between the potential stockpile and
the boundary.

To illustrate, the set of points 320 may erroneously
include a ground point that extends beyond the stockpile
boundary. The aerial stockpile analysis system can compare
the set of points 320 with the set of boundary points 324 and
identify the ground point that extends beyond the stockpile
boundary. The aerial stockpile analysis system can apply a
snitching algorithm to remove the ground point from the set
of points 320. Similarly, the aerial stockpile analysis system
can apply a snitching algorithm to remove points within the
set of boundary points 324 that extend into the potential
stockpile 322.

Although the foregoing discussion of FI1G. 3 describes the
radius 306, the stockpile gradient threshold, and the bound-
ary gradient threshold as given constants, in one or more
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embodiments, the aerial stockpile analysis system selects
(and/or modifies) the radius 306, the stockpile gradient
threshold, and/or the boundary gradient threshold. For
example, the aerial stockpile analysis system can select the
stockpile gradient and/or the boundary gradient threshold
based on an anticipated material on a site. For instance, if a
gravel material on the site has an approximate resting slope
of 15 percent, the aerial stockpile analysis system can select
a stockpile threshold gradient based on the approximate
resting slope (e.g., a stockpile threshold gradient of 10
percent, which is 5 percent less than the approximate resting
slope).

In addition, the aerial stockpile analysis system can select
a stockpile gradient threshold and/or a boundary gradient
threshold based on known slopes or elevation changes on a
site (e.g., is the site mountainous, hilly, or flat), a number of
anticipated stockpiles on a site, or based on user input. For
example, as discussed above, in one or more embodiments,
the aerial stockpile analysis system applies a ground-return
algorithm that divides a site into different regions based on
slope. The aerial stockpile analysis system can select a
stockpile gradient threshold and/or the boundary gradient
threshold based on an identified region of a site. For
example, in a steep region of a site, the aerial stockpile
analysis system can apply a steeper stockpile gradient
threshold and/or boundary gradient threshold than in a flat
region of the site.

Similarly, the aerial stockpile analysis system can select
the radius 306 based on a variety of different factors. For
instance, the aerial stockpile analysis system can select the
radius 306 based on elevation changes in a particular site
region, materials in a particular stockpile, approximate
stockpile size, site conditions, and/or user input.

Turning now to FIG. 4, additional detail will be provided
regarding training a neural network (e.g., the neural network
220) to classify stockpiles in accordance with one or more
embodiments. In particular, FIG. 4 illustrates training a
neural network 404 with training inputs 400 to classify
stockpiles based on two-dimensional training inputs and
three-dimensional training inputs.

For example, FIG. 4 illustrates a positive three-dimen-
sional training input 402a (e.g., a three-dimensional input of
a stockpile), a positive two-dimensional training input 4025
(e.g., a two-dimensional input of a stockpile), a negative
three-dimensional training input 402¢ (e.g., a three-dimen-
sional input of a non-stockpile, such as a building), and a
negative two-dimensional training input 4024 (e.g., a two-
dimensional input of a non-stockpile, such as a building). As
shown, the aerial stockpile analysis system utilizes the
training inputs 402a-402d together ground-truth classifica-
tions 4084-408d corresponding to the training inputs 402a-
402d to generate a trained neural network 414.

Although FIG. 4 illustrates individual training inputs
402a-4024, in one or more embodiments, the aerial stockpile
analysis system utilizes pairs of two-dimensional training
inputs and three-dimensional training inputs to train a neural
network. Specifically, the aerial stockpile analysis system
can utilize a two-dimensional training input and a three-
dimensional training input that correspond to the same
object. Thus, in relation to FIG. 4, the aerial stockpile
analysis system utilizes the positive three-dimensional train-
ing input 402q and the positive three-dimensional training
input 40256 that reflect the same stockpile. Similarly, the
aerial stockpile analysis system utilizes the negative three-
dimensional training input 402¢ and the negative two-
dimensional training input 4024 that reflect the same object
(e.g., a building). In this manner, the aerial stockpile analysis
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system can teach the neural network 404 to identify signifi-
cant features across two-dimensional and three-dimensional
inputs.

As shown, the aerial stockpile analysis system provides
the training inputs 402a-402d to the neural network 404, and
the neural network 404 generates stockpile classification
predictions 406a-4064. In particular, the neural network 404
predicts a classification (e.g., stockpile or non-stockpile) for
each of the training inputs 402a-402d. For example, the
neural network 404 can predict that the positive three-
dimensional training input 402a corresponds to a stockpile.

As just mentioned, in one or more embodiments, the
aerial stockpile analysis system provides the training inputs
as training input pairs (rather than individual training
inputs). Thus, rather than predicting a classification for each
of the individual training inputs 402a-402d, in one or more
embodiments, the aerial stockpile analysis system utilizes
the neural network 404 to predict a stockpile classification
for each training input pair. To illustrate, the aerial stockpile
analysis system can generate a single combined prediction
for the positive three-dimensional training input 402a and
the positive two-dimensional training input 4025. Similarly,
the aerial stockpile analysis system can generate another
combined prediction for the negative three-dimensional
training input 402¢ and the negative two-dimensional train-
ing input 402d.

The aerial stockpile analysis system can train the neural
network 404 by comparing the stockpile classification pre-
dictions 406a-406d and the ground-truth classifications
408a-4084. In particular, as shown in FIG. 4, the aerial
stockpile analysis system can utilize a loss function 410 to
compare the stockpile classification predictions 406a-406d4
and the ground-truth classifications 408a-4084. The loss
function 410 determines differences between the stockpile
classification predictions 4064-406d and the ground-truth
classifications 408a-408d. For example, the loss function
410 can generate a loss measure for each predicted classi-
fication that differs from the corresponding ground-truth
classification.

As shown in FIG. 4, the aerial stockpile analysis system
can then utilize the loss function 410 to generate the trained
neural network 414. In particular, the aerial stockpile analy-
sis system can provide the loss function 410 to the neural
network 404 and the neural network 404 can learn to identify
attributes that result in accurate stockpile classifications.
More specifically, the aerial stockpile analysis system can
identify attributes that accurately predict stockpile classifi-
cations, reduce the difference between the stockpile classi-
fication predictions 406a-4064 and the ground-truth classi-
fications 408a-408d, and minimize the loss function 410. In
this manner, the aerial stockpile analysis system can gener-
ate the trained neural network 414 (i.e., the neural network
220).

Although FIG. 4 illustrates generating the trained neural
network 414 utilizing both positive and negative training
inputs, the aerial stockpile analysis system can also train a
neural network utilizing only positive training inputs. In one
or more embodiments, however, the aerial stockpile analysis
system utilizes both positive and negative training inputs to
increase accuracy and reduce the amount of time to generate
the trained neural network 414. Indeed, by calculating the
loss function 410 based on both positive training inputs and
negative training inputs, the aerial stockpile analysis system
can train the neural network 404 to not only quickly and
accurately classify stockpiles but to quickly and accurately
classify non-stockpile objects (such as cars, buildings, etc.).
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In addition, although the positive training inputs 402a,
4025 illustrate whole stockpiles, in one or more embodi-
ments, the aerial stockpile analysis system also trains the
neural network 404 utilizing portions of stockpiles. For
example, the aerial stockpile analysis system can utilize
positive training inputs 402a, 4025 that reflect a first portion
of'a stockpile having a first material (e.g., as discussed above
in relation to FIG. 3). Thus, the aerial stockpile analysis
system can train the neural network 404 to classify a portion
of a stockpile (e.g., half of a stockpile of a first material).

As discussed above, the training inputs 402a-402d4 can
take a variety of forms. In one or more embodiments, the
training inputs 402a-402d comprise two-dimensional repre-
sentations and three-dimensional representations. In other
embodiments, the training inputs 402a¢-402d comprise fea-
tures extracted from two-dimensional representations and
three-dimensional representations. For example, the aerial
stockpile analysis system can extract two-dimensional fea-
tures from a two-dimensional representation and provide the
two-dimensional features to the neural network 404 to
generate the trained neural network 414. To illustrate, the
aerial stockpile analysis system can train the neural network
404 by providing two-dimensional features that include
shape (e.g., an exterior shape of an overhead view of a
training stockpile), area, perimeter (e.g., length of the perim-
eter around a training stockpile), width, length, circularity
(e.g., a measure of how close a two-dimensional overhead
view of a training stockpile is to a circular shape), color
(e.g., a single color, color gradation, color histogram, or
color profile), or texture.

Similarly, the aerial stockpile analysis system can also
extract three-dimensional features from a three-dimensional
representation and provide the three-dimensional features to
the neural network 404 to generate the trained neural net-
work 414. To illustrate, the aerial stockpile analysis system
can train the neural network 404 by providing three-dimen-
sional features that include slope (e.g., slope along one or
more surfaces of a three-dimensional stockpile representa-
tion), elevation profile (e.g., a profile shape generated from
a three-dimensional stockpile representation), height (e.g.,
maximum height or average height), volume, or surface
coarseness (e.g., a measure of variation in surface elevation
that indicate a smooth or jagged surface).

Furthermore, although FIG. 4 illustrates only four training
inputs 402a-4024, the aerial stockpile analysis system can
generate and utilize any number of training inputs. Indeed,
in one or more embodiments, the aerial stockpile analysis
system utilizes thousands of training inputs from a reposi-
tory of training inputs to train the neural network 404.

As mentioned above, in one or more embodiments, upon
identifying one or more stockpiles from a three-dimensional
site representation, the aerial stockpile analysis system
determines a volume of the one or more identified stock-
piles. In particular, the aerial stockpile analysis determines a
ground reference surface from a stockpile boundary and then
determines a volume based on the ground reference surface.
For example, FIG. 5 illustrates determining a volume of a
stockpile based on a ground reference surface.

In particular, FIG. 5 illustrates an aerial view and a profile
view of a stockpile boundary 502. As shown, the stockpile
boundary 502 comprises a plurality of points delineating the
outer border of a stockpile 500 (i.e., the border between the
stockpile material and the ground). In particular, the stock-
pile boundary 502 comprises a plurality of points of a
three-dimensional point cloud defining the outer border the
stockpile 500.
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As shown in FIG. 5, the aerial stockpile analysis system
utilizes the stockpile boundary 502 to determine a ground
reference surface 508. In particular, in one or more embodi-
ments, the aerial stockpile analysis system utilizes the three-
dimensional coordinates of the boundary points to calculate
the ground reference surface 508, which approximates the
ground underlying the stockpile 500. Specifically, in one or
more embodiments, the aerial stockpile analysis system
generates the ground reference surface 508 by providing the
three-dimensional coordinates of the boundary points to a
RANSAC sampling algorithm. The RANSAC sampling
algorithm generates a best fitting plane for the collection of
points making up the stockpile boundary 502 to generate the
ground reference surface 508.

Although the ground reference surface 508 appears as a
horizontal plane in FIG. 5, the aerial stockpile analysis
system can determine a ground reference surface that is a
much more complex reference surface. Indeed, stockpile
boundaries are often made up of boundary points that are not
level. For example, a stockpile may rest on an incline (e.g.,
a hill or mountainside), or otherwise uneven ground (e.g., on
an unpaved construction site). The aerial stockpile analysis
system can generate a ground reference surface that approxi-
mates an underlying ground surface, even when the under-
lying ground surface is uneven.

Upon determining the ground reference surface 508, the
aerial stockpile analysis system determines a volume 510 of
the stockpile 500. In particular, the aerial stockpile analysis
system can determine the difference between the stockpile
500 and the ground reference surface 508.

In one or more embodiments, the aerial stockpile analysis
system determines a volume based on a resolution of a
stockpile (e.g., a point cloud representing a stockpile). For
example, in relation to FIG. 5, the aerial stockpile analysis
system determines a resolution of the stockpile 500 (e.g., a
density of points in a point cloud in an x and/or y direction).
Moreover, the aerial stockpile analysis system maps the
stockpile 500 into a two-dimensional grid 504 comprising a
plurality of cells 506a-506#. The size of each cell 506a-5061
is based on (e.g., equal to or a multiple of) the determined
resolution.

As shown in FIG. 5, the aerial stockpile analysis system
determines the volume of the stockpile 500 based on the
cells 506a-5067. In particular, the aerial stockpile analysis
system determines the height of each cell 506a-506n
between the stockpile 500 and the ground reference surface
508. The aerial stockpile analysis system then determines
the volume 510 of the stockpile 500 based on the area of
each cell 506a-5067 and the height of each cell 506a-5067
(e.g., by multiplying the area of each cell times the height
and adding the resulting values together). In this manner, the
aerial stockpile analysis system can determine the volume of
a stockpile based on a ground reference surface.

As mentioned above, in one or more embodiments, the
aerial stockpile analysis system can also determine a change
in volume of stockpiles over time. In particular, the aerial
stockpile analysis system can identify and calculate a vol-
ume of stockpiles in relation to digital aerial images of a site
captured at first point in time (e.g., during a first flight). The
aerial stockpile analysis system can then obtain a plurality of
digital aerial images of the site captured at a second point in
time (e.g., during a second flight). The aerial stockpile
analysis system can utilize the stockpiles identified at the
first point in time to identify stockpiles and calculate vol-
umes of the stockpiles at the second point in time. Moreover,
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the aerial stockpile analysis system can then determine a
change in volume between the first point in time and the
second point in time.

For example, FIG. 6 illustrates the site 104 (from FIG. 1)
at a second period of time. Moreover, FIG. 6 illustrates the
UAV 100 capturing a second plurality of digital images 602
of'the site 104 during a second flight conducted at the second
period of time. As shown, the site 104 has changed between
the first period of time (shown in FIG. 1) and the second
period of time (shown in FIG. 6). In particular, the stockpiles
110 and 112 have grown into a single large stockpile 612.
Moreover, the stockpiles 114, 116 have grown to stockpiles
614, 616 (with the first stockpile 116a of the first material
growing to the first stockpile 616a and the second stockpile
1165 of the second material growing to the second stockpile
6164). Furthermore, the site 104 includes a new stockpile
618.

The aerial stockpile analysis system can determine three-
dimensional stockpile representations and volumes 622-628
corresponding to each of the stockpiles 612-618. For
example, in one or more embodiments, the aerial stockpile
analysis system repeats the process described in relation to
FIGS. 2A-2C to determine the volumes of the stockpiles
612-618. In particular, the aerial stockpile analysis system
generates a new two-dimensional representation of the site
104 and a new three-dimensional representation of the site
104 based on the second plurality of digital aerial images
602. Moreover, the aerial stockpile analysis system can
apply an elevation filter to identify potential stockpiles and
potential stockpile boundaries. The aerial stockpile analysis
system can then utilize the potential stockpile boundaries
and generate three-dimensional potential stockpile represen-
tations and two-dimensional potential stockpile representa-
tions. The aerial stockpile analysis system can then utilize
the three-dimensional potential stockpile representations
and the two-dimensional potential stockpile representations
with a neural network to determine whether the potential
stockpiles are the actual stockpiles 612-618. Moreover, the
aerial stockpile analysis system can determine a boundary
for each of the stockpiles 612-618, identify a ground refer-
ence surface for each of the stockpiles 612-618, and calcu-
late the volumes 622-628 for each of the stockpiles 612-618
based on the three-dimensional stockpile representations of
each identified stockpile and a corresponding ground refer-
ence surface.

Furthermore, the aerial stockpile analysis system can also
apply a material classifier to identify and determine volumes
for the first stockpile 616a and the second stockpile 6165.
Specifically, the aerial stockpile analysis system can apply a
material classifier to determine a boundary between the first
stockpile 616a and the second stockpile 6165. The aerial
stockpile analysis system can generate revised potential
three-dimensional stockpile representations and revised
potential two-dimensional stockpile representations for the
first stockpile 616a and the second stockpile 6164. Further,
the aerial stockpile analysis system can then utilize a neural
network to determine that the revised potential three-dimen-
sional stockpile representations and the revised potential
two-dimensional stockpile representations reflect the first
stockpile 616a and the second stockpile 6165. The aerial
stockpile analysis system can then determine the volume of
the first stockpile 616a and the second stockpile 6165.

As mentioned above, however, in one or more embodi-
ments, the aerial stockpile analysis system utilizes the pre-
viously identified stockpiles 110-116 at the first point in time
to identify the stockpiles 612-616 at the second point in
time. For example, the aerial stockpile analysis system can
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utilize stockpile locations from a first point time to guide or
emphasize application of an elevation filter (e.g., the eleva-
tion filter 212). In particular, the aerial stockpile analysis
system can apply the elevation filter 212 based on the
stockpile 114 at the first point in time to identify the
stockpile 614 at the second point in time. To illustrate, the
aerial stockpile analysis system can look for a highest point
in a region based on the stockpile 114 (e.g., an area twice as
large as the stockpile 114) and then identify a potential
stockpile based on the highest point in that region.

Similarly, in one or more embodiments, the aerial stock-
pile analysis system can omit one or more steps based on a
determination that a stockpile at a second point in time
overlaps a region corresponding to a stockpile at a first point
in time. For example, the aerial stockpile analysis system
can utilize an elevation filter at the second point in time to
identify potential stockpiles from the second plurality of
digital aerial images 602. The aerial stockpile analysis
system can then determine the potential stockpiles at the
second point in time overlap the original stockpiles 110-116
at the first point in time. For the potential stockpile locations
that overlap the original stockpiles 110-116, the aerial stock-
pile analysis system can omit one or more steps to streamline
identification of the stockpiles and determination of stock-
pile volume.

To illustrate, upon determining that the stockpile 612
overlaps the stockpiles 110, 112 on the site 104, the aerial
stockpile analysis system can proceed to determine a volume
of the stockpile 612 (i.e., without applying a neural network
to confirm that that it is an actual stockpile). More particu-
larly, based on a determination that a potential stockpile
location at a second point in time overlaps a stockpile at a
first point in time, the aerial stockpile analysis system can
omit application of a neural network (e.g., the neural net-
work 220). Thus, the aerial stockpile analysis system can
utilize the stockpiles 110-116 from the first point in time to
identify the stockpiles 612-616 at the second point in time
and determine the volumes 622-626 of the stockpiles 612-
616 at the second point in time.

As shown in FIG. 6, the aerial stockpile analysis system
can also identify new stockpiles at a second point in time
that did not exist at a first point in time. For instance, in
relation to the stockpile 618, the aerial stockpile analysis
system can apply an elevation filter to identify a potential
stockpile location corresponding to the stockpile 618. The
aerial stockpile analysis system can also determine that the
potential stockpile location does not overlap a previously
identified stockpile. In response to the determination that
potential stockpile is new (i.e., does not overlap a previously
identified stockpile), the aerial stockpile analysis system can
apply a neural network (e.g., the neural network 220) to
confirm that the potential stockpile is actually the stockpile
618. The aerial stockpile analysis system can then determine
a boundary of the stockpile 618, identify a ground reference
surface based on the boundary, and calculate a volume 628
of the stockpile 618 based on the ground reference surface
and a three-dimensional stockpile representation.

Thus, as shown, the aerial stockpile analysis system
determines volumes of the stockpiles 612-618 at the second
point in time. Moreover, the aerial stockpile analysis system
determines a change in volume between the first point in
time and the second point in time. For example, as shown in
FIG. 6, the aerial stockpile analysis system calculates the
volumes 622-628 for each of the stockpiles 612-618. More-
over, the aerial stockpile analysis system determines a
correspondence between the stockpiles 612-618 and the
stockpiles 110-116 (e.g., that the stockpiles 110, 112 overlap
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the stockpile 612, that the stockpile 114 overlaps the stock-
pile 614, that the first stockpile 116a overlaps the first
stockpile 6164, and that the second stockpile 1165 overlaps
the second stockpile 6165). Based on the determined cor-
respondence, the aerial stockpile analysis system determines
a change in volume (i.e., increase or decrease in volume)
between the first point in time and the second point in time
for each of the stockpiles. Moreover, as illustrated in the
table 630 the aerial stockpile analysis system determines a
total change in volume for all stockpiles on the site 104
between the first period of time and the second period of
time.

Although FIG. 6 illustrates stockpiles that have increased
in volume, the aerial stockpile analysis system can also
analyze and determine volume changes for stockpiles that
have decreased in volume. Moreover, the aerial stockpile
analysis system can also analyze and determine volume
changes for stockpiles that have been removed. Thus, for
example, the aerial stockpile analysis system can determine
a total (or partial) negative change in stockpiles on a site
between a first period of time and a second period of time.

In one or more embodiments, the aerial stockpile analysis
system can also provide changes in stockpile volume for
display to a user via a computing device. For example, the
aerial stockpile analysis system can provide the table 630 for
display via a display screen of computing device, allowing
auser to see how volume of stockpiles on a site changes over
time. Similarly, the aerial stockpile analysis system can also
provide a three-dimensional site representation (e.g., three-
dimensional rendering) or a two-dimensional site represen-
tation (e.g., a map) that illustrates the size of stockpiles over
time (e.g., as shown in relation to the stockpiles 110-116 and
612-618 of FIG. 6). Moreover, the aerial stockpile analysis
system can also provide three-dimensional stockpile repre-
sentations or two-dimensional stockpile representations over
different periods of time for display via a computing device.

Turning now to FIG. 7, additional detail will be provided
regarding components and capabilities of one or more
embodiments of the aerial stockpile analysis system. In
particular, FIG. 7 shows a schematic diagram illustrating an
example embodiment of an aerial stockpile analysis system
700 (e.g., the aerial stockpile analysis system discussed
above). As shown in FIG. 7, in one or more embodiments,
the aerial stockpile analysis system 700 includes a digital
aerial image facility 702, a three-dimensional representation
engine 704, a two-dimensional representation engine 705, an
elevation filter 706, a neural network training facility 708, a
neural network manager 710, a reference surface generator
712, a stockpile volume engine 714, and a storage manager
716 (comprising digital aerial images 716a, three-dimen-
sional site representations 7165, two-dimensional site rep-
resentations 716¢, three-dimensional stockpile representa-
tions 7164, two-dimensional stockpile representations 716e,
reference surfaces 716f, training data 716g, and stockpile
volumes 716/%).

As just mentioned, and as illustrated in FIG. 7, the aerial
stockpile analysis system 700 includes the digital aerial
image facility 702. The digital aerial image facility 702 can
obtain, capture, receive, and/or identify digital aerial images.
For instance, the digital aerial image facility 702 can capture
or receive (e.g., via a UAV) digital aerial images of a site.
More particularly, the digital aerial image facility 702 can
receive digital aerial images of a site portraying stockpiles
located on the site.

Moreover, as shown in FIG. 7, the aerial stockpile analy-
sis system 700 includes the three-dimensional representation
engine 704. The three-dimensional representation engine
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704 can generate, create, and/or determine a three-dimen-
sional representation from a plurality of digital aerial
images. In particular, the three-dimensional representation
engine 704 can generate a three-dimensional site represen-
tation and/or a three-dimensional stockpile representation
from a plurality of digital aerial images. For instance, as
described above, the three-dimensional representation
engine 704 can generate a three-dimensional site represen-
tation from a plurality of digital images utilizing a structure
from motion and/or bundle adjustment algorithm.

Moreover, as shown in FIG. 7, the aerial stockpile analy-
sis system 700 includes the two-dimensional representation
engine 705. The two-dimensional representation engine 705
can generate, create, and/or determine a two-dimensional
representation from a plurality of digital aerial images
(and/or from a three-dimensional representation). In particu-
lar, the two-dimensional representation engine 705 can
generate a two-dimensional site representation and/or a
two-dimensional stockpile representation from a plurality of
digital aerial images (and/or from a three-dimensional rep-
resentation of a site). For instance, as described above, the
two-dimensional representation engine 705 can generate an
orthophoto from a plurality of digital images utilizing a
structure from motion and/or bundle adjustment algorithm.

In addition, as illustrated in FIG. 7, the aerial stockpile
analysis system 700 includes the elevation filter 706. The
elevation filter 706 can identify, generate, determine, and/or
isolate one or more stockpiles from a three-dimensional site
representation. In particular, the elevation filter 706 can filter
non-ground objects (such as cars, structures, individuals, or
equipment) from a three-dimensional site representation by
analyzing elevation data from the three-dimensional site
representation. For example, as described above, the eleva-
tion filter 706 can analyze a three-dimensional site repre-
sentation and remove non-ground objects (e.g., non-ground
objects erroneously identified as potential stockpile loca-
tions).

In addition, as discussed above, the elevation filter 706
can analyze a three-dimensional site representation to iden-
tify stockpiles (or potential stockpiles). For example, as
discussed above, the elevation filter 706 can identify a
highest point in a three-dimensional site representation (or
filtered three-dimensional site representation) and then add
points from the three-dimensional site representation to
identify a potential stockpile.

As shown in FIG. 7, in addition to the elevation filter 706,
the aerial stockpile analysis system 700 also includes the
neural network training facility 708. The neural network
training facility 708 can train, teach, instruct, or program one
or more neural networks. In particular, the neural network
training facility 708 can train a neural network to classify
stockpiles based on two-dimensional training input and/or
three-dimensional training input. Moreover, the neural net-
work training facility 708 can also train a material classifier
(in relation to embodiments that utilize a material classifier
to identify materials and/or material boundaries).

For example, the aerial stockpile analysis system can train
a neural network utilizing positive training two-dimensional
representations, positive training three-dimensional repre-
sentations, negative training two-dimensional representa-
tions, and/or negative training three-dimensional represen-
tations to classify stockpiles. Moreover, the aerial stockpile
analysis system can train a neural network utilizing training
two-dimensional inputs (e.g., two-dimensional representa-
tions portraying different materials) to identify materials
and/or material boundaries within a stockpile.
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As shown in FIG. 7, the aerial stockpile analysis system
700 also includes the neural network manager 710. The
neural network manager 710 can utilize and/or apply a
neural network (e.g., one or more neural networks trained
via the neural network training facility 708). In particular,
the neural network manager 710 can apply a neural network
to a two-dimensional stockpile representation and/or a three-
dimensional stockpile representation to classify a potential
stockpile. Similarly, the neural network manager 710 can
apply a neural network to a two-dimensional representation
to identify multiple materials and/or material boundaries
within a stockpile.

Moreover, as shown in FIG. 7, the aerial stockpile analy-
sis system 700 also includes the reference surface generator
712. The reference surface generator 712 can determine,
identify, calculate, or approximate one or more reference
surfaces. In particular, the reference surface generator 712
can determine a ground reference surface underlying a
stockpile based on a stockpile boundary. In particular, the
reference surface generator 712 can include a segmentation
algorithm that identifies a boundary of a stockpile from a
three-dimensional site representation. Moreover, the refer-
ence surface generator 712 can utilize a RANSAC sampling
algorithm to generate a ground reference surface from a
stockpile boundary.

As illustrated in FIG. 7, the aerial stockpile analysis
system 700 also includes the stockpile volume engine 714.
The stockpile volume engine 714 can determine, calculate,
estimate, or identify one or more volumes of one or more
stockpiles. In particular, the stockpile volume engine 714
can generate a grid of cells based on a resolution of a
three-dimensional site representation and overlay the grid of
cells on a three-dimensional stockpile representation. The
stockpile volume engine 714 can then determine a height of
each cell based on the three-dimensional stockpile repre-
sentation and a ground reference surface. Based on the
height and area of each cell, the aerial stockpile analysis
system can determine a volume of a stockpile.

Moreover, as illustrated in FIG. 7, the aerial stockpile
analysis system 700 also includes the storage manager 716.
The storage manager 716 maintains data for the aerial
stockpile analysis system 700. The storage manager 716 can
maintain data of any type, size, or kind, as necessary to
perform the functions of the aerial stockpile analysis system
700. For instance, as shown in FIG. 7, the storage manager
716 includes digital aerial images 716a (e.g., a plurality of
digital aerial images of a plurality of sites captured at a
plurality of times), three-dimensional site representations
7165 (e.g., three-dimensional site representations corre-
sponding to a plurality of sites), two-dimensional site rep-
resentations 716¢ (e.g., two-dimensional site representations
corresponding to a plurality of sites), three-dimensional
stockpile representations 7164 (e.g., three-dimensional rep-
resentations of potential or final stockpiles), two-dimen-
sional stockpile representations 716e (e.g., two-dimensional
representations of potential or final stockpiles), reference
surfaces 716/ (e.g., ground reference surfaces reflecting the
ground underlying one or more stockpiles), training data
716g (e.g., three-dimensional training representations or
two-dimensional training representations), and stockpile
volumes 716/ (e.g., volumes of stockpiles and/or materials
on a site).

Each of the components 702-716 of the aerial stockpile
analysis system 700 and their corresponding elements may
be in communication with one another using any suitable
communication technologies. It will be recognized that
although components 702-716 are shown to be separate in
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FIG. 7, any of components 702-716 may be combined into
fewer components (such as into a single component),
divided into more components, or configured into different
components as may serve a particular embodiment. More-
over, one or more embodiments of the aerial stockpile
analysis system 700 may include additional components or
fewer components than those illustrated in FIG. 7.

The components 702-716 and their corresponding ele-
ments can comprise software, hardware, or both. For
example, the components 702-716 and their corresponding
elements can comprise one or more instructions stored on a
computer-readable storage medium and executable by pro-
cessors of one or more computing devices. When executed
by the one or more processors, the computer-executable
instructions of the aerial stockpile analysis system 700 can
cause one or more computing systems (e.g., one or more
server devices) to perform the methods and provide the
functionality described herein. Alternatively, the compo-
nents 702-716 can comprise hardware, such as a special
purpose processing device to perform a certain function or
group of functions. Moreover, the components 702-716 can
comprise a combination of computer-executable instructions
and hardware.

Furthermore, the components 702-716 of the aerial stock-
pile analysis system 700 and their corresponding elements
may, for example, be implemented as one or more stand-
alone applications, as one or more modules of an applica-
tion, as one or more plug-ins, as one or more library
functions or functions that may be called by other applica-
tions, and/or as a cloud-computing model. Thus, compo-
nents 702-716 of the aerial stockpile analysis system 700
and their corresponding elements may be implemented as
one or more stand-alone applications, such as a desktop or
mobile application. Furthermore, the components 702-716
of the aerial stockpile analysis system 700 may be imple-
mented as one or more web-based applications hosted on a
remote server. Moreover, the components of the aerial
stockpile analysis system 700 may be implemented in a suite
of mobile device applications or “apps.”

Turning now to FIG. 8, further information will be
provided regarding implementation of the aerial stockpile
analysis system 700. Specifically, FIG. 8 illustrates a sche-
matic diagram of one embodiment of an exemplary system
environment (“environment”) 800 in which the aerial stock-
pile analysis system 700 can operate. As illustrated in FIG.
8, the environment 800 can include client devices(s) 802, a
UAV 804, a docking station 806, a network 808, and
server(s) 810. The client device(s) 802, the UAV 804, the
docking station 806, the network 808, and/or the server(s)
810 may be communicatively coupled with each other either
directly or indirectly. The client device(s) 802, the UAV 804,
the docking station 806, the network 808, and the server(s)
810 may communicate using any communication platforms
and technologies suitable for transporting data and/or com-
munication signals, including any known communication
technologies, devices, media, and protocols supportive of
remote data communications, examples of which will be
described in more detail below with respect to FIG. 11.

As just mentioned, and as illustrated in FIG. 8, the
environment 800 can include the client device(s) 802. The
client device(s) 802 may comprise any type of computing
device. For example, the client device(s) 802 may comprise
one or more personal computers, laptop computers, mobile
devices, mobile phones, tablets, special purpose computers,
TVs, or other computing devices. In one or more embodi-
ments, the client device(s) 802 may comprise computing
devices capable of communicating with the UAV 804, the
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docking station 806, and/or the server(s) 810. More specifi-
cally, in one or more embodiments, a pilot may utilize the
client device(s) 802 to locally control and/or communicate
with the UAV 804. The client device(s) 802 may comprise
one or more computing devices as discussed in greater detail
below with regard to FIG. 11.

Moreover, FIG. 8 also illustrates that the environment 800
can include the UAV 804, which represents one example
embodiment of the UAV 100 or the UAV 200. As described
above, the UAV 804 can comprise any type of unmanned
aerial vehicle. Moreover, the UAV 804 can include a camera
capable of capturing digital aerial images. In at least one
embodiment, the UAV 804 is a multi-rotor vehicle, such as
a quadcopter, and includes a carbon fiber shell, integrated
electronics, a battery bay, a global positioning system
(“GPS”) receiver, a fixed or swappable imaging system (e.g.,
a digital camera), and various additional sensors and/or
receivers. The UAV 804 may contain one or more computer-
readable storage media and/or one or more processors with
instructions stored thereon that, when executed by the one or
more processors cause the UAV 804 to perform functions
described herein.

As shown in FIG. 8, the environment 800 may include the
docking station 806. The docking station 806 may be
utilized to land, store, charge, guide, or repair the UAV 804.
In particular, in one or more embodiments, the docking
station 806 can charge or replace batteries exhausted by the
UAV 804 during flight. Moreover, the docking station 806
may be utilized to communicate with the UAV 804 prior to,
during, or after a flight.

As illustrated in FIG. 8, the client device(s) 802, the UAV
804, the docking station 806, and/or the server(s) 810 may
communicate via the network 808. The network 808 may
represent a network or collection of networks (such as the
Internet, a corporate intranet, a virtual private network
(VPN), alocal area network (LLAN), a wireless local network
(WLAN), a cellular network, a wide area network (WAN),
a metropolitan area network (MAN), or a combination of
two or more such networks. Thus, the network 808 may be
any suitable network over which the client device(s) 802 (or
other components) may access the server(s) 810 or vice
versa. The network 808 will be discussed in more detail
below with regard to FIG. 11.

Moreover, as illustrated in FIG. 8, the environment 800
also includes the server(s) 810. The server(s) 810 may
generate, store, receive, and/or transmit any type of data,
including digital aerial images 716q, three-dimensional site
representations 7165, two-dimensional site representations
716¢, three-dimensional stockpile representations 7164,
two-dimensional stockpile representations 716e, reference
surfaces 716f, training data 716g, and stockpile volumes
7164. For example, the server(s) 810 can receive data from
the client device(s) 802 and send the data to the UAV 804,
and/or the docking station 806. In one example embodiment,
the server(s) 810 comprise a data server. The server(s) 810
can also comprise a communication server or a web-hosting
server. Additional details regarding the server(s) 810 will be
discussed below with respect to FIG. 10.

Although FIG. 8 illustrates client device(s) 802, the single
UAV 804, and the single docking station 806, it will be
appreciated that the client device(s) 802, the UAV 804, and
the docking station 806 can represent any number of com-
puting devices, UAVs, or docking stations (fewer or greater
than shown). Similarly, although FIG. 8 illustrates a par-
ticular arrangement of the client device(s) 802, the UAV
804, the docking station 806, the network 808, and the
server(s) 810 various additional arrangements are possible.
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For example, the client device(s) 802, the UAV 804 and/or
the docking station 806 may communicate directly one with
another via a local connection 812. The local connection 812
may comprise any recognized form of wired or wireless
communication. For example, in one or more embodiments
the client device(s) 802 may include a mobile computing
device (e.g., tablet) utilized by a UAV operator to commu-
nicate with the UAV 804 and the docking station 806 using
BLUETOOTH technology.

By way of an additional example, in one or more embodi-
ments, the UAV 804 captures (at a first period of time such
as a first flight) a plurality of digital aerial images of a site
(e.g., via the digital aerial image facility 702). Moreover, the
UAV 804 transmits the plurality of digital aerial images of
the site to the server(s) 810 (e.g., via the docking station 806
and/or the client device(s) 802). The server(s) 810 analyze
the plurality of digital aerial images and predict volumes of
stockpiles portrayed in the plurality of digital aerial images.
In particular, the server(s) 810 generate a two-dimensional
representation of the site and a three-dimensional represen-
tation of the site (e.g., via the three-dimensional represen-
tation engine 704 and the two-dimensional representation
engine 705) from the plurality of digital aerial images.
Moreover, the server(s) 810 apply an elevation filter (e.g.,
the elevation filter 706) to identify potential stockpiles
(and/or stockpile boundaries). Further, the server(s) 810
apply a neural network trained to classify the potential
stockpiles (e.g., via the neural network manager 710). The
server(s) 810 then utilize three-dimensional models of the
identified stockpiles to determine volumes of the stockpiles
(e.g., via the reference surface generator 712 and the stock-
pile volume engine 714).

Furthermore, at a second period of time, the UAV 804 can
capture a second plurality of digital aerial images of the site.
The UAV 804 can transmit the second plurality of digital
aerial images of the site to the server(s) 810. Moreover, the
server(s) 810 can estimate the volumes of the stockpiles at
the second period of time. Further, the server(s) 810 can
determine changes in the volumes of the stockpiles between
the first period of time and the second period of time by
comparing the volumes of the stockpiles at the first period of
time and the volumes of the stockpiles at the second period
of time.

Moreover, in one or more embodiments, the server(s) 810
also train the neural network. For example, the server(s) 810
can train the neural network utilizing a plurality of two-
dimensional training inputs and three-dimensional training
inputs (e.g., via the neural network training facility 708).
Furthermore, the server(s) 810 can train a material classifier
utilizing a plurality of training models (e.g., via the neural
network training facility 708).

As illustrated by the previous example embodiments, the
aerial stockpile analysis system 700 may be implemented in
whole, or in part, by the individual elements 802-810 of the
environment 800. Although the previous examples describe
certain components of the aerial stockpile analysis system
700 implemented with regard to certain elements of the
environment 800, it will be appreciated that components of
the aerial stockpile analysis system 700 can be implemented
in any of the elements of the environment 800. For example,
the aerial stockpile analysis system 700 may be imple-
mented entirely on the UAV 804. Similarly, the aerial
stockpile analysis system 700 may be implemented on the
client device(s) 802, the docking station 806, and/or the
server(s) 810. Moreover, different components and functions
of the aerial stockpile analysis system 700 may be imple-
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mented separately among the client device(s) 802, the UAV
804, the docking station 806, the network 808, and the
server(s) 810.

FIGS. 1-8, the corresponding text, and the examples,
provide a number of different systems and devices for
determining volume of stockpiles utilizing a plurality of
digital aerial images. In addition to the foregoing, one or
more embodiments can also be described in terms of flow-
charts comprising acts and steps in a method for accom-
plishing a particular result. For example, FIG. 9 illustrates
flowcharts of an exemplary method in accordance with one
or more embodiments. The method described in relation to
FIG. 9 may be performed with less or more steps/acts or the
steps/acts may be performed in differing orders. Addition-
ally, the steps/acts described herein may be repeated or
performed in parallel with one another or in parallel with
different instances of the same or similar steps/acts.

FIG. 9 illustrates a flowchart of one example method 900
of determining stockpile volumes utilizing a plurality of
digital aerial images in accordance with one or more
embodiments. As illustrated, the method 900 includes an act
910 of generating a three-dimensional representation of a
site and a two-dimensional representation of the site. In
particular, the act 910 can include utilizing a plurality of
digital aerial images of a site captured by a UAV during a
flight to generate a three-dimensional representation of the
site and a two-dimensional representation of the site. For
example, the act 910 can include utilizing a structure from
motion algorithm and bundle adjustment algorithm to gen-
erate a three-dimensional representation of the site and a
two-dimensional representation of the site. In one or more
embodiments, the three-dimensional representation of the
site comprises a three-dimensional point cloud and the
two-dimensional representation of the site comprises a two-
dimensional orthophoto.

As shown in FIG. 9, the method 900 also includes an act
920 of applying an elevation filter to generate a three-
dimensional representation of a potential stockpile. In par-
ticular, the act 920 can include applying, by at least one
processor, an elevation filter to the three-dimensional rep-
resentation of the site to generate a three-dimensional rep-
resentation of a potential stockpile on the site and a bound-
ary of the potential stockpile. For example, the act 920 can
include applying a ground return algorithm that identifies
and removes non-ground objects from the three-dimensional
representation to generate a filtered three-dimensional rep-
resentation of the site. Moreover, in one or more embodi-
ments, the act 920 also includes identifying a highest point
of the plurality of points from the filtered three-dimensional
representation of the site; determining additional points
within a radius of the highest point; and based on a deter-
mination that the additional points satisfy a threshold stock-
pile gradient relative to the highest point, utilizing the
additional points to generate the three-dimensional repre-
sentation of the potential stockpile. Furthermore, the act 920
can also include identifying a set of points in the three-
dimensional representation of the site adjacent to the three-
dimensional representation of the potential stockpile that do
not satisty the threshold stockpile gradient relative to the
three-dimensional representation; and generating the bound-
ary of the potential stockpile based on the identified set of
points.

In addition, as illustrated in FIG. 9, the method 900 also
includes an act 930 of generating a two-dimensional repre-
sentation of the potential stockpile based on the three-
dimensional representation of the potential stockpile. In
particular, the act 930 can include generating a two-dimen-
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sional representation of the potential stockpile from the
two-dimensional representation of the site based on the
identified boundary of the potential stockpile. For example,
the act 930 can include cropping the two-dimensional rep-
resentation of the site based on the identified boundary of the
potential stockpile to generate the two-dimensional repre-
sentation of the stockpile.

Further, as shown in FIG. 9, the method 900 also includes
an act 940 of determining that the potential stockpile is a
stockpile by applying a neural network to the three-dimen-
sional representation of the potential stockpile and the
two-dimensional representation of the potential stockpile. In
particular, the act 940 can include determining, by the at
least one processor, that the potential stockpile is a stockpile
by applying a neural network to the two-dimensional rep-
resentation of the potential stockpile and the three-dimen-
sional representation of the potential stockpile, wherein the
neural network is trained to identify stockpiles from two-
dimensional training inputs and three-dimensional training
inputs. For example, the act 940 can include extracting
two-dimensional features from the two-dimensional repre-
sentation and extracting three-dimensional features from the
three-dimensional representation and applying the neural
network to the two-dimensional features and the three-
dimensional features to determine if the potential stockpile
is a stockpile

As shown in FIG. 9, the method 900 also includes an act
950 of determining a volume of the stockpile. In particular,
the act 950 can include determining, by the at least one
processor, a volume of the stockpile based on the three-
dimensional representation of the stockpile. For example, in
one or more embodiments, the act 950 includes determining
a ground reference surface based on the boundary of the
potential stockpile; and calculating the volume of the stock-
pile by comparing the ground reference surface and the
three-dimensional representation of the stockpile.

In one or more embodiments, the method 900 also
includes applying a material classifier to the two-dimen-
sional representation of the potential stockpile to identify a
material boundary between a first material in the potential
stockpile and a second material in the potential stockpile;
and utilizing the three-dimensional representation of the
potential stockpile and the material boundary between the
first material and the second material to generate a three-
dimensional representation of a first revised potential stock-
pile corresponding to the first material and a three-dimen-
sional representation of a second revised potential stockpile
corresponding to the second material. For example, in one or
more embodiments, the material classifier comprises at least
one of: a clustering algorithm that clusters portions of the
two-dimensional representation based on color or a neural
network trained to identify different materials in potential
stockpiles based on training two-dimensional representa-
tions. Furthermore, the method 900 can also include gener-
ating a two-dimensional representation of the first revised
potential stockpile corresponding to the first material based
on the material boundary; and applying the neural network
to the three-dimensional representation of the first revised
potential stockpile and the two-dimensional representation
of the first revised potential stockpile.

Moreover, in one or more embodiments, the method 900
also includes receiving a second plurality of digital aerial
images of a site captured by one or more UAVs during a
second flight; based on a known location of the stockpile
from the plurality of digital aerial images, identifying the
stockpile from the second plurality of digital aerial images
captured during the second flight; generating a new three-



US 10,235,566 B2

35

dimensional representation of the stockpile from the second
plurality of digital aerial images; and determining a change
in volume of the stockpile based on the three-dimensional
representation of the stockpile and the new three-dimen-
sional representation of the stockpile.

Further, in one or more embodiments, the method 900
also includes training the neural network. For example, the
method 900 can also include providing the neural network
with a training two-dimensional representation and a train-
ing three-dimensional representation corresponding to a
ground-truth stockpile classification; utilizing the neural
network to predict a stockpile classification for the two-
dimensional representation and the three-dimensional rep-
resentation; and determining one or more loss functions by
comparing the predicted stockpile classification and the
ground-truth stockpile classification.

Embodiments of the present disclosure may comprise or
utilize a special purpose or general-purpose computer
including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater
detail below. Embodiments within the scope of the present
disclosure also include physical and other computer-read-
able media for carrying or storing computer-executable
instructions and/or data structures. In particular, one or more
of the processes described herein may be implemented at
least in part as instructions embodied in a non-transitory
computer-readable medium and executable by one or more
computing devices (e.g., any of the media content access
devices described herein). In general, a processor (e.g., a
microprocessor) receives instructions, from a non-transitory
computer-readable medium, (e.g., a memory, etc.), and
executes those instructions, thereby performing one or more
processes, including one or more of the processes described
herein.

Computer-readable media can be any available media that
can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com-
puter-executable instructions are non-transitory computer-
readable storage media (devices). Computer-readable media
that carry computer-executable instructions are transmission
media. Thus, by way of example, and not limitation,
embodiments of the disclosure can comprise at least two
distinctly different kinds of computer-readable media: non-
transitory computer-readable storage media (devices) and
transmission media.

Non-transitory computer-readable storage media (de-
vices) includes RAM, ROM, EEPROM, CD-ROM, solid
state drives (“SSDs”) (e.g., based on RAM), Flash memory,
phase-change memory (“PCM”), other types of memory,
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store desired program code means in the form of
computer-executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer.

Further, upon reaching various computer system compo-
nents, program code means in the form of computer-execut-
able instructions or data structures can be transferred auto-
matically from transmission media to non-transitory
computer-readable storage media (devices) (or vice versa).
For example, computer-executable instructions or data
structures received over a network or data link can be
buffered in RAM within a network interface module (e.g., a
“NIC”), and then eventually transferred to computer system
RAM and/or to less volatile computer storage media (de-
vices) at a computer system. Thus, it should be understood
that non-transitory computer-readable storage media (de-

10

15

20

25

30

35

40

45

50

55

60

65

36

vices) can be included in computer system components that
also (or even primarily) utilize transmission media.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. In some embodi-
ments, computer-executable instructions are executed on a
general-purpose computer to turn the general-purpose com-
puter into a special purpose computer implementing ele-
ments of the disclosure. The computer executable instruc-
tions may be, for example, binaries, intermediate format
instructions such as assembly language, or even source code.
Although the subject matter has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described
features or acts described above. Rather, the described
features and acts are disclosed as example forms of imple-
menting the claims.

Those skilled in the art will appreciate that the disclosure
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like. The disclosure may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. In a distributed system environment, program
modules may be located in both local and remote memory
storage devices.

Embodiments of the present disclosure can also be imple-
mented in cloud computing environments. In this descrip-
tion, “cloud computing” is defined as a model for enabling
on-demand network access to a shared pool of configurable
computing resources. For example, cloud computing can be
employed in the marketplace to offer ubiquitous and con-
venient on-demand access to the shared pool of configurable
computing resources. The shared pool of configurable com-
puting resources can be rapidly provisioned via virtualiza-
tion and released with low management effort or service
provider interaction, and then scaled accordingly.

A cloud-computing model can be composed of various
characteristics such as, for example, on-demand self-service,
broad network access, resource pooling, rapid elasticity,
measured service, and so forth. A cloud-computing model
can also expose various service models, such as, for
example, Software as a Service (“SaaS”), Platform as a
Service (“PaaS”), and Infrastructure as a Service (“laaS™). A
cloud-computing model can also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description
and in the claims, a “cloud-computing environment” is an
environment in which cloud computing is employed.

FIG. 10 illustrates, in block diagram form, an exemplary
computing device 1000 that may be configured to perform
one or more of the processes described above. One will
appreciate that the aerial stockpile analysis system 700 can
comprise implementations of the computing device 1000. As
shown by FIG. 10, the computing device can comprise a
processor 1002, memory 1004, a storage device 1006, an I/O
interface 1008, and a communication interface 1010. In
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certain embodiments, the computing device 1000 can
include fewer or more components than those shown in FIG.
10. Components of computing device 1000 shown in FIG.
10 will now be described in additional detail.

In particular embodiments, processor(s) 1002 includes
hardware for executing instructions, such as those making
up a computer program. As an example and not by way of
limitation, to execute instructions, processor(s) 1002 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 1004, or a storage device 1006
and decode and execute them.

The computing device 1000 includes memory 1004,
which is coupled to the processor(s) 1002. The memory
1004 may be used for storing data, metadata, and programs
for execution by the processor(s). The memory 1004 may
include one or more of volatile and non-volatile memories,
such as Random Access Memory (“RAM”), Read Only
Memory (“ROM?”), a solid state disk (“SSD”), Flash, Phase
Change Memory (“PCM”), or other types of data storage.
The memory 1004 may be internal or distributed memory.

The computing device 1000 includes a storage device
1006 includes storage for storing data or instructions. As an
example and not by way of limitation, storage device 1006
can comprise a non-transitory storage medium described
above. The storage device 1006 may include a hard disk
drive (HDD), flash memory, a Universal Serial Bus (USB)
drive or a combination of these or other storage devices.

The computing device 1000 also includes one or more
input or output (“I/0”) devices/interfaces 1008, which are
provided to allow a user to provide input to (such as user
strokes), receive output from, and otherwise transfer data to
and from the computing device 1000. These 1/O devices/
interfaces 1008 may include a mouse, keypad or a keyboard,
a touch screen, camera, optical scanner, network interface,
modem, other known I/O devices or a combination of such
1/0 devices/interfaces 1008. The touch screen may be acti-
vated with a stylus or a finger.

The I/O devices/interfaces 1008 may include one or more
devices for presenting output to a user, including, but not
limited to, a graphics engine, a display (e.g., a display
screen), one or more output drivers (e.g., display drivers),
one or more audio speakers, and one or more audio drivers.
In certain embodiments, devices/interfaces 1008 is config-
ured to provide graphical data to a display for presentation
to a user. The graphical data may be representative of one or
more graphical user interfaces and/or any other graphical
content as may serve a particular implementation.

The computing device 1000 can further include a com-
munication interface 1010. The communication interface
1010 can include hardware, software, or both. The commu-
nication interface 1010 can provide one or more interfaces
for communication (such as, for example, packet-based
communication) between the computing device and one or
more other computing devices 1000 or one or more net-
works. As an example and not by way of limitation, com-
munication interface 1010 may include a network interface
controller (NIC) or network adapter for communicating with
an Ethernet or other wire-based network or a wireless NIC
(WNIC) or wireless adapter for communicating with a
wireless network, such as a WI-FI. The computing device
1000 can further include a bus 1012. The bus 1012 can
comprise hardware, software, or both that couples compo-
nents of computing device 1000 to each other.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. Various embodiments and aspects of the invention
(s) are described with reference to details discussed herein,
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and the accompanying drawings illustrate the various
embodiments. The description above and drawings are illus-
trative of the invention and are not to be construed as
limiting the invention. Numerous specific details are
described to provide a thorough understanding of various
embodiments of the present invention.

The present invention may be embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. For
example, the methods described herein may be performed
with less or more steps/acts or the steps/acts may be per-
formed in differing orders. Additionally, the steps/acts
described herein may be repeated or performed in parallel
with one another or in parallel with different instances of the
same or similar steps/acts. The scope of the invention is,
therefore, indicated by the appended claims rather than by
the foregoing description. All changes that come within the
meaning and range of equivalency of the claims are to be
embraced within their scope.

We claim:

1. A method comprising:

utilizing a plurality of digital aerial images of a site

captured by a UAV during a flight to generate a
three-dimensional representation of the site and a two-
dimensional representation of the site;

applying, by at least one processor, an elevation filter to

the three-dimensional representation of the site to gen-
erate a three-dimensional representation of a potential
stockpile on the site and a boundary of the potential
stockpile;

generating a two-dimensional representation of the poten-

tial stockpile from the two-dimensional representation
of the site based on the boundary of the potential
stockpile;

determining, by the at least one processor, that the poten-

tial stockpile is a stockpile by applying a neural net-
work to the two-dimensional representation of the
potential stockpile and the three-dimensional represen-
tation of the potential stockpile, wherein the neural
network is trained to identify stockpiles from two-
dimensional training inputs and three-dimensional
training inputs; and

determining, by the at least one processor, a volume of the

stockpile based on the three-dimensional representation
of the stockpile.

2. The method of claim 1, wherein applying the elevation
filter comprises applying a ground return algorithm that
identifies and removes non-ground objects from the three-
dimensional representation to generate a filtered three-di-
mensional representation of the site.

3. The method of claim 2, wherein the filtered three-
dimensional representation of the site comprises a plurality
of points and applying the elevation filter further comprises:

identifying a highest point of the plurality of points from

the filtered three-dimensional representation of the site;
determining additional points within a radius of the high-
est point; and

based on a determination that the additional points satisty

a threshold stockpile gradient relative to the highest
point, utilizing the additional points to generate the
three-dimensional representation of the potential stock-
pile.

4. The method of claim 3, wherein applying the elevation
filter further comprises:

identifying a set of points in the three-dimensional rep-

resentation of the site adjacent to the three-dimensional
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representation of the potential stockpile that do not
satisfy the threshold stockpile gradient relative to the
three-dimensional representation; and

generating the boundary of the potential stockpile based

on the identified set of points.
5. The method of claim 1, further comprising:
applying a material classifier to the two-dimensional
representation of the potential stockpile to identify a
material boundary between a first material in the poten-
tial stockpile and a second material in the potential
stockpile; and
utilizing the three-dimensional representation of the
potential stockpile and the material boundary between
the first material and the second material to generate a
three-dimensional representation of a first revised
potential stockpile corresponding to the first material
and a three-dimensional representation of a second
revised potential stockpile corresponding to the second
material.
6. The method of claim 5, wherein determining that the
potential stockpile is the stockpile comprises:
generating a two-dimensional representation of the first
revised potential stockpile corresponding to the first
material based on the material boundary; and

applying the neural network to the three-dimensional
representation of the first revised potential stockpile
and the two-dimensional representation of the first
revised potential stockpile.

7. The method of claim 1, wherein determining the
volume of the stockpile based on the three-dimensional
representation of the stockpile comprises:

determining a ground reference surface based on the

boundary of the potential stockpile; and

calculating the volume of the stockpile by comparing the

ground reference surface and the three-dimensional
representation of the stockpile.

8. The method of claim 1, further comprising:

receiving a second plurality of digital aerial images of the

site captured by one or more UAVs during a second
flight;

based on a known location of the stockpile from the

plurality of digital aerial images, identifying the stock-
pile from the second plurality of digital aerial images
captured during the second flight;

generating a new three-dimensional representation of the

stockpile from the second plurality of digital aerial
images; and

determining a change in volume of the stockpile based on

the three-dimensional representation of the stockpile
and the new three-dimensional representation of the
stockpile.

9. A system comprising:

at least one processor; and

at least one non-transitory computer readable storage

medium storing instructions that, when executed by the

at least one processor, cause the system to:

utilize a plurality of digital aerial images of a site
captured by a UAV during a flight to generate a
three-dimensional representation of the site and a
two-dimensional representation of the site;

apply an elevation filter to the three-dimensional rep-
resentation of the site to generate a three-dimen-
sional representation of a potential stockpile on the
site and a boundary of the potential stockpile;
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generate a two-dimensional representation of the
potential stockpile from the two-dimensional repre-
sentation of the site based on the boundary of the
potential stockpile;

determine that the potential stockpile is a stockpile by
applying a neural network to the two-dimensional
representation of the potential stockpile and the
three-dimensional representation of the potential
stockpile, wherein the neural network is trained to
identify stockpiles from two-dimensional training
inputs and three-dimensional training inputs; and

determine a volume of the stockpile based on the
three-dimensional representation of the stockpile.

10. The system of claim 9, further comprising instructions
that, when executed by the at least one processor, cause the
system to train the neural network by:

providing the neural network with a training two-dimen-

sional representation and a training three-dimensional
representation corresponding to a ground-truth stock-
pile classification;

utilizing the neural network to predict a stockpile classi-

fication for the two-dimensional representation and the
three-dimensional representation; and

determining one or more loss functions by comparing the

predicted stockpile classification and the ground-truth
stockpile classification.

11. The system of claim 9, wherein the three-dimensional
representation of the site comprises a three-dimensional
point cloud and the two-dimensional representation of the
site comprises a two-dimensional orthophoto.

12. The system of claim 11, wherein the three-dimen-
sional representation of the site comprises a plurality of
points and further comprising instructions that, when
executed by the at least one processor, cause the system to
apply the elevation filter by:

identifying a highest point of the plurality of points from

the three-dimensional representation of the site;
determining additional points within a radius of the high-
est point; and

based on a determination that the additional points satisty

a threshold stockpile gradient relative to the highest
point, utilizing the additional points to generate the
three-dimensional representation of the potential stock-
pile.

13. The system of claim 9, further comprising instructions
that, when executed by the at least one processor, cause the
system to:

apply a material classifier to the two-dimensional repre-

sentation of the potential stockpile to identify a material
boundary between a first material in the potential
stockpile and a second material in the potential stock-
pile;

generate a two-dimensional representation of a first

revised potential stockpile corresponding to the first
material based on the material boundary; and

apply the neural network to the two-dimensional repre-

sentation of the first revised potential stockpile.

14. The system of claim 9, further comprising instructions
that, when executed by the at least one processor, cause the
system to:

receive a second plurality of digital aerial images of the

site captured by one or more UAVs during a second
flight;

based on a known location of the stockpile from the

plurality of digital aerial images, identify the stockpile
from the second plurality of digital aerial images cap-
tured during the second flight;
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generate a new three-dimensional representation of the
stockpile from the second plurality of digital aerial
images; and

determine a change in volume of the stockpile based on

the three-dimensional representation of the stockpile
and the new three-dimensional representation of the
stockpile.

15. A non-transitory computer readable medium storing
instructions thereon that, when executed by at least one
processor, cause a computer system to:

utilize a plurality of digital aerial images of a site captured

by a UAV during a flight to generate a three-dimen-
sional representation of the site and a two-dimensional
representation of the site;

apply an elevation filter to the three-dimensional repre-

sentation of the site to generate a three-dimensional
representation of a potential stockpile on the site and a
boundary of the potential stockpile;

generate a two-dimensional representation of the potential

stockpile from the two-dimensional representation of
the site based on the boundary of the potential stock-
pile;

determine that the potential stockpile is a stockpile by

applying a neural network to the two-dimensional
representation of the potential stockpile and the three-
dimensional representation of the potential stockpile,
wherein the neural network is trained to identify stock-
piles from two-dimensional training inputs and three-
dimensional training inputs; and

determine a volume of the stockpile based on the three-

dimensional representation of the stockpile.

16. The non-transitory computer readable medium of
claim 15, further comprising instructions that, when
executed by the at least one processor, cause the computer
system to apply the elevation filter by applying a ground
return algorithm that identifies and removes non-ground
objects from the three-dimensional representation to gener-
ate a three-dimensional representation of the site.

17. The non-transitory computer readable medium of
claim 16, wherein the three-dimensional representation of
the site comprises a plurality of points and further compris-
ing instructions that, when executed by the at least one
processor, cause the computer system to apply the elevation
filter by:
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identifying a highest point of the plurality of points from
the three-dimensional representation of the site;

determining additional points within a radius of the high-
est point; and

based on a determination that the additional points satisty

a threshold stockpile gradient relative to the highest
point, utilizing the additional points to generate the
three-dimensional representation of the potential stock-
pile.

18. The non-transitory computer readable medium of
claim 17, further comprising instructions that, when
executed by the at least one processor, cause the computer
system to apply the elevation filter by:

identifying a set of points in the three-dimensional rep-

resentation of the site adjacent to the three-dimensional
representation of the potential stockpile that do not
satisfy the threshold stockpile gradient relative to the
three-dimensional representation; and

generating the boundary of the potential stockpile based

on the identified set of points.

19. The non-transitory computer readable medium of
claim 15, further comprising instructions that, when
executed by the at least one processor, cause the computer
system to:

apply a material classifier to the two-dimensional repre-

sentation of the potential stockpile to identify a material
boundary between a first material in the potential
stockpile and a second material in the potential stock-
pile;

generate a two-dimensional representation of a first

revised potential stockpile corresponding to the first
material based on the material boundary; and

apply the neural network to the two-dimensional repre-

sentation of the first revised potential stockpile.

20. The non-transitory computer readable medium of
claim 19, wherein the material classifier comprises at least
one of: a clustering algorithm that clusters portions of the
two-dimensional representation based on color or a neural
network trained to identify different materials in potential
stockpiles based on training two-dimensional representa-
tions.



