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Preface

Radar imaging is a subject of tremendous mathematical richness, with many interest
ing applications and many challenging open problems that are of a mathematical nature. Yet
the topic is almost completely unknown in the mathematical community. This is because
the field was developed within the engineering community, and the engineering literature
is difficult for mathematicians to penetrate.

Mathematicians tend to like an axiomatic approach: they like to begin with one or more
partial differential equations, say, the wave equation or Maxwell's equations, and derive
everything from these equations. Physicists, on the other hand, are comfortable beginning
with solutions of the fundamental equations. Engineers, in contrast, are able to begin with
the key part of the solution, and proceed from there. Consequently mathematicians find
it difficult to read the engineering literature because they don'tunderstand where the first
equation comes from. The goal of this monograph is to fill that gap and to show how radar
imaging arises from the fundamental partial differential equations.

The focus here is on showing the connection between the physics and the mathematics,
and on supplying an intuitive mathematical understanding of the basic ideas. Consequently,
we ignore many issues of rigor, such as questions about the relevant function spaces and
the precise conditions under which interchange of integrals is valid, because attention to
these issues would only distract from the focus on the underlying ideas. We hope that this
approach will provide a foundation that will enable mathematical readers to begin to read
the extensive engineering literature and to start working in the field.

We have provided some references to ongoing work, but we have made no attempt at
a complete literature surveyor detailed history.

M.C. first developed this material for her Mathematical Sciences course "Introduction
to Radar Imaging," a course that borrowed liberally from material prepared by B.B. for
physics graduate students at the Naval Postgraduate School. M.C. then developed a ten
lecture version of the Radar Imaging course, first for a tutorial in September 2005 at the
Institute for Mathematics and Its Applications, and then again for a lecture series in May
2008 at the University of Texas at Arlington. The latter lecture series was arranged by
Tuncay Aktosun and was supported by the Conference Board of the Mathematical Sciences
(CBMS). The present monograph corresponds to the CBMS ten-lecture series.

The assumed background for this material consists of the following.

• A little complex analysis (in particular Eul~r's relation ei 8 = cos 8 + i sin 8). We
use a star (*) for complex conjugate.

xxi



Preface

where F(w) = F(2rrv) with co = 2rrv. There are different conventions regarding
whether f is called the Fourier transform of F or F or F/ (2rr) ; these correspond to
different choices about where to put the Zn , and we actually use different conventions
at different places in the text. We use :F to denote the Fourier transform operator.

- We also need the inverse Fourier transform

There are also different conventions regarding whether it is the forward trans
form or inverse transform that has the minus sign in the exponent; the important
thing is that the forward and inverse transforms have different signs.

- A simple consequence of the definition is that when f is real-valued, its Fourier
transform obeys the relation F(-v) = F*(v).

- We also need the convolution theorem

(8)

(9)

(10)

xxiii

v x (V x E) = V(V· E) - VZE

A x (B x C) = B(A . C) - C(A . B).

and the "BAC-CAB" identity

aZu 1 aZu
----=0axz cZ atZ

- The divergence theorem

- Spherical coordinates.

- If the vector field B has zero divergence, then B can be written as the curl of a
vector field.

- If the curl of a vector field E is zero, then E can be written as the gradient of a
scalar function.

- A few vector identities, including

and its traveling-wave solutions [62], [132] .

and the Fourier transform of the delta function,

o(t) = f eZ;rivfdv = 2~ f eiWfdw,

are used repeatedly throughout the text. If t is replaced by t - t' in (8), the resulting
identity can also be thought of as a shorthand for the Fourier transform followed by
its inverse.

• The one-dimensional wave equation

• Facts from vector calculus

Preface

(3)

(1)

(2)

(5)

(4)

F(w) = f eiWff(t)dt.

F(v) = f eZ;rivf f(t)dt

(f *g)(t) = f f(t - t')g(t')dt'.

(f *g)(t) = f e-Z;rivf F(v)G(v)dv,

f(t) = f e-Z;riVf F(v)dv = 2~ f e-iwt F(w)dw,

where the convolution is defined by

.or, depending on the 2rr convention,

• The Fourier transform [71, 97].
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- We also need the fact that smoothness of a function corresponds to rapid decay
of its Fourier transform [71]; this connection can be seen by integrating the
Fourier transform by parts.

- The connection between smoothness and decay is closely related to the Paley
Wiener theorem [71], which states that a function F(w) that is identically zero
for negative to has a Fourier transform that is analytic in the upper half-plane.

- Finally, we need the n-dimensional Fourier transform and its inverse:

f(x) = -1-fe-iX'~F(~)d~,
(2rr)1l

(6)

rV. V dx = r 11· V dSJQ JaQ
and its less well-known analogue [62]

r V x V dx = r 11 x V dS,JQ JaQ
where an denotes the boundary of n.

• A little functional analysis, in particular the- following:

(11)

(12)

• The Dirac delta function 0 [54], which has the property

f o(t)f(t)dt = f(O), (7)

- The definition of L Z as the vector space of square-integrable functions, together
with its inner product (f, g) = J f(x)g*(x)dx.

- The adjoint of an operator. We denote the adjoint by a dagger.



with equality only when h is proportional to f .

• A little linear algebra: Properties of orthogonal matrices are needed in Chapter 7.

• A little familiarity with random processes: The expected value [75], [101] is needed
in Chapter 4 .

• A little physics:

- The notions of frequency (denoted by v), angular frequency (r»), wave speed
(c), wavelength (A), and wave number (k). The relationships v = ciA, k = to]«:
(in free space), to = 2n u, and k = 2n IA will be used.

- Current, voltage, and Ohm's law

The notion of a Green's function [119, 132] will also be needed in the text; readers are
not assumed to be familiar with this notion, but those who have some familiarity with the
concept will feel more comfortable.
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Radar Basics

(14)V =IR,

If h(t)!*(t)dt! :::: IIhIl211f112, where II!II~ = f 1!(t)12dt (13)

where V is voltage, I is current, and R is resistance.

- The Cauchy-Schwarz inequality:
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ntroduction

is an acronym for RAdio Detection And Ranging. Radar was originally developed
as a technology for detecting objects and determining their positions by means of echo
location, and this remains the principal function of modern radar systems. However, radar
systems have evolved over more than seven decades to perform a variety of very complex
functions; one such function is imaging.

Radar imaging is a technology that has been developed mainly within the engineering
community. There are good reasons for this: some of the critical ingredients are (I) transmit
ting microwave energy at high power, (2) detecting microwave energy, and (3) interpreting
and extracting information from the received signals. The first two problems have to do
with the development of appropriate hardware; however, these problems have now largely
been solved, although there is ongoing work to make the hardware smaller and lighter. The
third problem is essentially a set of mathematical challenges, and this is the area in which
most of the current effort is taking place.

Radar imaging is a subject with tremendous mathematical richness. In particular,
it involves partial differential equations, scattering theory, microlocal analysis, integral
geometry, linear algebra, electromagnetic theory, harmonic analysis, approximationtheory,
group theory, and statistics.

Chapter 1

1.1 Uses for Radar

There are many advantages to using radar for remote sensing. Unlike many optical systems,
radar systems can be used during either day or night. Because the long radar wavelengths
pass through clouds, smoke, sand, etc., radar systems can be used in all weather. Moreover,
some radar systems can penetrate foliage, buildings, soil, and other materials.

Radar can provide very accurate distance (range) measurements and can also measure
the rate at which this range is changing.

Radar waves scatter mainly from objects and features whose size is on the same order
as the wavelength. This means that radar is sensitive to objects whose length scales range
from centimeters to meters, and many objects of interest are in this range.

Radar has many applications, both military and civilian. It is widely used in avia
tion and transportation, for navigation, for collision avoidance, and for low-altitude flight.

3



5. Rudimentary Imaging Methods

1.3.1 Detection and Ranging

Active radar systems accomplish echo-location by transmitting an electromagnetic wave
and measuring the reflected field as a time-varying voltage in the radar receiver.

To understand the basic idea of echo-location, we consider an ideal radar system that
launches at time t = 0, a short pulse that travels at speed c, reflects from an object at
a range R, and returns to the radar. If the return pulse can be detected at a time r (~ee
Figure 1.2), then because cr = 2R (speed x time = round-trip distance), we can ~etermme

that the range R must be equal to R = cr/2. It is this basic principle upon WhICh much

radar theory is based.

1.3 Rudimentary Imaging Methods
At the end of the 1940s, the available radar imaging methods were the following.

1.3.2 High-Range-Resolution (HRR) Imaging

Most objects of interest are not simply isolated point-like targets. For example, if a .short
radar pulse reflects off a more complicated object like an airplane, the response Will be

their generation were unknown-the klystron tube, which was de~elo~ed in the l~te 1930s
as a microwave source, lacked the necessary power for radar applications. The big break
through came with the British development of the cavity magnetr~n at the e~d of the decade.

In 1940 the British began a collaborative research effort With the United States, and,
at this time, U.S. researchers were informed of the existence of the cavity magnet~on as a
means for producing high-power microwaves. A new researc~ center was establIshe~ at
the Radiation Laboratory at MIT, and a usable microwave trackmg. radar, capable of being
mounted in an aircraft, followed in less than six months. Other microwave radar syst~ms

were developed for artillery fire-control, improved bombing accuracy, and U-boat detection,
Microwave radar components captured from downed British ~nd Am.erican ai~craft led
Germany to adopt the cavity magnetron and begin manufactunng their own microwave
radars-although these came too late to have a significant wartime impact. By the end of
the war, radar frequencies of 10 gigahertz (GHz) were common.. ..

Radar developments during the war were transitioned to peacetime applications after
Notable among these were navigation aids for commercial ships and aircra~t as well

as shipborne collision avoidance systems. It was the Cold War and Korea~ conflict, how
that reinvigorated many of the radar research efforts that were downsized.after World

II. Improvements in radar sensitivity and the application of frequency shift (D.oppler
shift) measurements for determining target speed-which were never really us~d dunng t~e
war-enabled radars to meet the more demanding requirements imposed by high-speed Jet
aircraft. In addition, radar sets became small enough to be placed within guided missiles.
Advances in signal processing algorithms allowed for the development of increased effec
tive range and improved clutter rejection techniques. Significantly, the tendency tow?rd
computer control of radars and computer processing of radar data has become something
of a "theme" in modern radar research and development [11, 20,24, 51, 128, 143] and has
led to a need for mathematical research in radar.

Chapter 1. Introduction

police radar for monitoring vehicle speed. Radar is also used
weather, including Doppler measurements of precipitation and wind velocity.

is used for land-use monitoring, agricultural monitoring, and environmental
Radar systems are used to map surface topography and to measure crustal

change. Medical microwave tomography is currently under development.

1.2 A Brief History of Radar up to 1950
The name "radar" was coined in late 1940, but the earliest radar-like devices predate this
appellation by almost four decades. (As a palindrome, this name also evokes the basic send/
echo idea behind these measurement systems.) Of course, the principles underlying radar
are those underlying all classical electromagnetic phenomena and can be formally traced
back to James Clerk Maxwell, but this seems to imply an idealized sequential development
from theory to experiment that does not really apply to the radar story. Rather, it was
probably Heinrich Hertz who started the idea of radio echo-location in the last quarter of
the nineteenth century by experimentally demonstrating that radio waves could be reflected
from objects.

Devotees ofNikola Tesla sometimes attribute the "invention" of radar to his legendary
year of 1899 in Colorado Springs. It is more realistic to say that Tesla's actual contribution
appears to be only a conceptual description that was probably unknown by other remote
sensing investigators until after the first radar sets were being refined. The distinction of
"first electromagnetic echo-location device" is generally awarded to a ship anticollision
system developed by Christian Htilsmeyer in 1904. Htilsmeyer's invention operated at a
frequency of about 700 megahertz (MHz) and was successfully demonstrated to the German
Navy and a Dutch shipping company. Because of its limited range, however, it was never
put into service.

Radar development began in earnest after Taylor and Young (who were studying radio
propagation for the U.S. Navy in 1922) observed reflection phenomena from buildings, trees,
and other objects. These results were based on 60 MHz continuous-wave measurements,
but, at about the same time, radio pulse echo measurements of the altitude of the ionosphere
were also (independently) performed. In 1930, Young and Hyland, using a network of
transmitters and receivers, observed signal variations that were due to passing aircraft. This
event initiated the first significant American radar research effort, which was directed by
the Naval Research Laboratory.

In the 1930s, Great Britain and Germany also began their own radar programs. The
British program appears to have begun as a fallback effort when the original idea of an
electromagnetic "death ray" was shown to be infeasible as a method for air-defense. The
German effort, which was initially applied to ship detection, quickly included aircraft echo
location as an important goal. The prewar British radar aircraft detection effort resulted
in the famous Chain Home early-warning system, which was a widespread collection of
radar transmitters and receivers operated (typically) at about 22-50 MHz. The Chain Home
system is credited with saving England from a Nazi invasion.

British and German radar systems were also used for fire control (i.e., systems for
aiming and detonating munitions) and aircraft navigation, and, late in the decade, the British
succeeded in developing an airborne radar. These radar systems were operated at frequen
cies from tens to hundreds of megahertz. Higher frequencies, which could increase antenna
directivity and allow for smaller antenna sizes, were not used because efficient methods for



1.3.3 Real-Aperture Imaging
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Figure 1.3. Radar reflections from a complex target.
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Figure 1.1. A radar system measuring the distance to a target.
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Figure 1.2. A pulse is transmitted at time zero (top) and received at time r (bottom).
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a superposition of reflections (see Figure 1.3). Such a response is called a high-range
resolution (HRR) profile, and can be considered to be a one-dimensional "image" of the
target.

Under some circumstances it may be possible to identify a target from such HRR
profiles.

Another imaging approach is to use an antenna that forms a narrow beam and scan the beam
over the region to be imaged (see Figures 1.4 and 1.5). At each beam location and pulse
delay, the system plots the received intensity. This is called real-aperture imaging: the
antenna is a physical (real) aperture. The spot on the ground is referred to as the antenna
footprint.
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Figure 1.6. A SAR system.

Figure 1.7. A SAR image of Washington, D.C. Although the antenna footprint is
typically on the order oftens ofkilometers, the images show much smallerfeatures (courtesy
ofSandia National Laboratories).

systems were developed by a collaboration between universities, such as the University of
Illinois and the University of Michigan, together with companies such as GoodyearAircraft,
General Electric, Philco, and Varian. In the late 1960s, the National Aeronautics and Space
Administration (NASA) began sponsoring unclassified work on SAR. Around this time the
first digital SAR processors were developed (earlier systems having used analog optical
processing). In 1978 the SEASAT-A satellite was sent up, and even though it operated only
for 100 days, the images obtained from it were so useful that it became obvious that more
such satellites were needed. In 1981, the Shuttle Imaging Radar (SIR) series began, and

1.5. A Brief History of Synthetic-Aperture RadarChapter 1. Introduction

Figure 1.4. In a real
aperture imaging system, the
beam is scanned over the surface,
andthe scattered intensity is plot
ted at each location.

Figure 1.5. A photo
graph of a PPI display from the
U.S. Navy. This shows Tokyo Bay
with u.s. occupation forces, Au
gust 28, 1945 (courtesy of the
U.S. National Archives).

...-- - _.... ..;.,, , ... ,
" I"........ ."

........ -'- - - - ,.

, , , ,

Photo # 80-0-344503 Radar view 00 lJSS Cumberland Sound, 28 August 1945
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An example of real-aperture imaging is a system in which a narrow radar beam sweeps
around in a circle. Responses are displayed in polar coordinates on a Plan Position Indicator
(PPI), shown in Figure 1.5.

1.4 Synthetic-Aperture Radar

A more effective way to form images, Synthetic-Aperture Radar (SAR), was developed in the
early 1950s. SAR systems use an antenna mounted on a satellite or airplane, which is referred
to as the platform. As the antenna moves along a flight trajectory, it transmits radio waves
and receives the scattered waves (see Figure 1.6). Then mathematical techniques similar to
those of X-ray tomography are used to form high-resolution images (see Figure 1.7). It is
this form of radar imaging that is the topic of this monograph.

1.5 A Brief History of Synthetic-Aperture Radar

The invention of Synthetic-Aperture Radar (SAR) is generally credited to Carl Wiley, of
the Goodyear Aircraft Corporation, in 1951. The mid-1950s saw the development of the
first operational systems, under sponsorship of the U.S. Department of Defense. These
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(1.8)

(1.9)nx 'H. = 3s,

1t(t,x) = He-iw(t-e.xfc),

and

e (t, x) = Ee-iw(t-e.xfc) ,

Plane Waves. Plane waves are electromagnetic fields of the form

1.7. Radar Frequency Bands

1.7 Radar Frequency Bands

IV2E + k2E = 0, I
where k = to]c. Here w is the angular frequency (radians per second), which is related to
the frequency v in Hertz (cyles per second) as w = 2nv. The corresponding wavelength is
A. = c]v,

then (1.7) becomes

E(w) = f eiwte(t)dt, (1.10)

Boundary Conditions for a Perfect Electrical Conductor. A perfect electrical conduc
tor (PEC) allows the charges to move freely and instantaneously in response to a field;
consequently the fields inside a PEC are zero. It can be shown with the help of the general
ized Stokes theorem (12) that the electric and magnetic fields just outside a PEC must satisfy

I Here it is convenient to use the convention for the Fourier transform with the 2Jr in the forward transform
and not in the exponent.

where edenotes a unit vector. An elementary consequence of Maxwell's equations [62] is
that an electromagnetic plane wave must have E, H, and emutually perpendicular. The
field (1.8) is said to be linearly polarized with polarization i: (Here f;; denotes a unit vector
in the same direction as E.)

where 3s denotes a surface current. In other words, the tangential components of the electric
field must be zero, and the tangential components of the magnetic field are connected to
currents flowing on the surface of the PEC.

The frequencies that are typically used for radar are the so-called radiofrequencies (RF), for
which the wavelengths range from centimeters to meters (see Tables 1.1 and 1.2). Typically
waves scatter mainly from objects whose features are on the same scale as the wavelength.

In practice, radar signals are always of finite duration and therefore technically can
not have Fourier transforms supported only in a finite frequency band [71]. However, in
practice, their energy is very small outside some finite interval of frequencies, which is
called the frequency band of the radar system. The length of this interval is called the
bandwidth of the system. A more precise definition can be found in many sources [37, 21]
but is not needed here.

The Wave Equation in the Angular Frequency Domain. If we use the inverse Fourier
transform'

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.7)
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13 = /101t.and

a13
V x e = --,at

av
Vx1t=3+at '
V.V=p,

V·13 = O.

V=Eoe
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many shuttle missions since then have involved radar imaging of the earth. In the 1990s,
satellites were sent up by many countries (including Canada, Japan, and the European Space
Agency), and SAR systems were sent to other planets and their moons, including Venus,
Mars, and Titan. Since the beginning of the new millennium, more satellites have been
launched, including, for example, the new European Space Agency satellite ENVISAT,
and the TerraSAR-X satellite, which was developed and launched by a (mainly European)
public-private partnership.

1.6 The Equations of Electromagnetic Wave Propagation

Radar waves are electromagnetic waves and are therefore governed by Maxwell's equations.
Maxwell's equations in the time domain are

Here e(t, x) is the electric field, 13(t, x) is the magnetic induction field, Vet, x) is
~he electric displacement field, 1t(t, x) is the magnetic intensity or magnetic field, p (z, x)
IS the charge density, and 3 (t, x) is the current density.

Much of radar wave propagation takes place in dry air, which has electromagnetic
properties similar to that of vacuum or free space. In free space, we have pet, x) = 0 and
3(t, x) = 0, together with the free-space constitutive relations

Taking the curl of (1.1) and using the result in (1.2), together with the constitutive
relations (1.5), results in

a2e

V x V x e = -/1oEO-. (1.6)at2

To the left side of (1.6), we apply the vector identity (9). In free space, (1.3) takes the form
V . e = 0, which imples that (1.6) reduces to

Thus in Cartesian coordinates, each component of the vector e satisfies a scalar wave
equation.

The same argument can be applied to 'H; thus we see that in free space, each component
of the electric and magnetic field satisfies the same scalar wave equation, which has a
constant wave speed of c = (/10EO)-1/2 ~ 3 . 108m/sec.
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Figure 1.9. A generic radar detection system.

radar

Sine Srec

target
electromagnetic pulse

becomes the envelope of the more rapidly varying carrier wave. The frequency Wo is
typically chosen to be in one of the bands in Table 1.1.

The upmodulated signal is then used to excite currents on an antenna that Cause an
electromagnetic wave to be launched toward the target. (This antenna is usually designed
to have some degree of directionality or gain (see Chapter 8), and this directionality can
also be used to estimate target direction or bearing.) The wave is reflected from objects
in the environment (see Chapters 3 and 6) and propagates back to the receiver, where the
electromagnetic field induces currents on the antenna. By Ohm's law (14), these currents
give rise to a time-varying voltage, which is again multiplied by a version of the carrier
signal and filtered to remove (beat down or demodulate) the carrier frequency dependence;
finally the demodulated time-varying voltage Srec(t) is sent to a signal processor (Chapter 4).
Note that while the target scattering physics involves RF's (wo is typically in the range from

Figure 1.8. Atmospheric windows for radar wave propagation. Most radar sys
tems operate in bands in which the attenuation is low. Note that both the horizontal and
vertical scales are logarithmic; the units on the vertical axis are explained in section 1.9.

1.8. Outline of a Typical Radar SystemChapter 1. Introduction

Table 1.1. Radar frequency bands.

Table 1.2. Frequencies and wavelengths.

Frequency v Wavelength A = c]»
1 MHz =10° Hz 300m

10 MHz (HF) 30m
100 MHz (VHF) 3m

1 GHz =109 Hz (L band) 30cm
10 GHz (X band) 3cm

100 GHz (mrn-wave) 3mm

Band designation Approximate frequency range
HF ("high frequency") 3-30 MHz

VHF ("very high frequency") 30-300 MHz
UHF ("ultra high frequency") 300-1000 MHz

Lband 1-2 GHz
S band 2-4 GHz
C band 4-8 GHz
X band 8-12 GHz

Ku band ("under K") 12-18 GHz
K band 18-27 GHz

Ka band ("above K") 27-40GHz
mm-wave 40-300 GHz
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More specifically, most radar systems operate in one of the atmospheric "windows,"
which are frequency bands in which electromagnetic waves are not absorbed appreciably
(see Figure 1.8). In these frequency bands, the free-space constitutive relations (1.5) are
generally valid.

Code letters for the radar frequency bands were originally used during wartime, and
the usage has persisted. These abbreviations are given in Table 1.1. The HF band usually
carries radio signals; VHF carries radio and broadcast television; the UHF band carries
television, navigation radar, and cell phone signals. Some radar systems operate at VHF
and UHF; these are typically systems built for penetrating foliage, soil, and buildings. Most
of the satellite SAR systems operate in the L, S, and C bands. The S band carries wireless
internet. Many military systems operate at X band.

1.8 Outline of a Typical Radar System

A description of a radar system is shown in Figure 1.9, which shows the main elements
of a generic (and greatly simplified) radar measurement system. (More detail is give in
Chapter 2.) An incident time-varying signal Sinc(t) is multiplied by a a carrier wave, which
is a single-frequency waveform with an (angular) frequency woo The process of multiplying
by a carrier wave is referred to as upmodulation. Roughly speaking, the signal Sinc(t)



1.9 Decibels

The unit dBW is an absolute unit referenced to one watt; dBm (or dBmW) is referenced
to one milliwatt.

(2.2)

Radar Systems

2.1 Stepped-Frequency Systems
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Chapter 2

Re [R(w) exp(-iwt)) = Re[(RR(w) + iRI(W)) (cos(wt) - i sin(wt)))
= RR(W) cos(wt) + RI(W) sin(wt). (2.1)

The systems that are easiest to understand are stepped-frequency radars. Most laboratory
systems are of this type, and there are a few fielded stepped-frequency systems as well.
Figure 2.1 shows an example of an indoor test range.

Stepped-frequency systems consist of one or more antennas and a network analyzer,
which is an electronic instrument capable of creating a signal at its output port and measuring
a corresponding received signal at its input port. (See Figure 2.1.) The network analyzer
creates a waveform of the form COS(Wlt) that appears as a voltage on the output port. The
output port is connected to an antenna, which radiates electromagnetic waves that scatter
back and induce time-varying voltages on the antenna connected to the input port of the
network analyzer. If the environment is stationary, these voltages at the input port are of
the form Al COS(Wlt) + BI sin(wlt); the system records Al and BI •

Next, the network analyzer creates a waveform of the form COS(W2t), and records the
corresponding A2 and B2. This process is repeated for a sequence of angular frequencies
WI, W2, •. " WN (see Table 2.1).

The mathematical analysis is aided by the observation that cos(w j t) can be written as
Reexp(-iwjt), where Re denotes the real part; writing R = RR + iRI, we have

There are two main designs for radar systems, namely, stepped-frequency and pulsed.

Consequently, we see that recording the real-valued coefficients A j and Bj is equivalent to
recording the complex reflection coefficient R(wj)'

From knowledge of the Rs, we can synthesize the (approximate) response to any trans
mitted waveform s whose Fourier transform is supported in the frequency range [WI, WN).

To do this, first we use the Fourier transform (1) to determine how to decompose s into
complex exponentials:

Chapter 1. Introduction

Table 1.3. Decibels.

dB Power ratio
OdB 1 = lQlJ
10 dB 10 = io'
20dB 100 = 102

30 dB 1000 = 103
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2n x 1 GHz to Zn x 35 GHz), the signal processor usually sees much lower baseband
frequencies, for which W ;S 0.1 x Wo.

number of dB = 10 log power in
10 power out:

Because of the very wide range of power intensi ties that arise in radar, it is common to use a
logarithmic scale for measuring relative power. The number of Bels (named for Alexander

Graham Bell) that represents the ratio ( power in ) is defined to be loglo ( power in ). however
power out power out '

it is too small for radar applications, so quantities expressed in Bels have too many zeros at
the end. Instead the unit that is commonly used is the decibel (dB), which is defined as

Because power is proportional to the square of voltage, the number of dB representing

the voltage ratio ~ is 10 log10~ = 20 log10 J::h.
out VOIII VOlI l



Here we are using the linearity of the map from incident waves to scattered waves.
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(2.4)

low-noise
amplifier (LNA)

I p(t) = s(t) cos wot

antenna

dUPlexer@.;::,.~'CI]( ():) j
..-_----:~__-, 1?Jt) = a~t;' C~~[Wot +~(t)]

-

Prec(t) = aCt) cos(¢(t) + wat).

s(t) transmitter
f---. (8)---.. (amplifier)

Figure 2.2. A system diagramfor a typical pulsed radar system.

I/Q Demodulation and the Analytic Signal

waveform
generator

2.2.1

cos wi

local
oscillator (LO)

cos wot

correlation I/Q
receiver 1- demodulator

2.2 Pulsed Systems

Real-valued system signals, when Fourier transformed, involve both positive and negative
frequencies; however, the values at the negative frequencies are the complex conjugates of
those at the positive frequencies. Thus the negative frequencies provide no new informa
tion. Consequently, it is conventional to convert the signal to one that has only positive
frequencies; by the Paley-Wiener theorem (see the Preface), the resulting signal is analytic
in the upper half-plane in t. This signal is called the analytic signal.

These voltages are typically extremely small, often smaller than the voltages due to thermal
noise in the radar system itself. They are passed through a low-noise amplifier (LNA), and
then on to the IIQ demodulator.

2.2. Pulsed Systems

Most fielded systems, on the other hand, are pulsed systems.
A block diagram of a typical pulsed radar system can be seen in Figure 2.2. We

begin with the waveform generator at the top left. The waveform (pulse) set) is mixed
with (i.e., multiplied by) a carrier waveform at the angular frequency Wa. The resulting
product, the modulated signal pet) = set) cos(wat) = Re (s(t)e-iwot) is then amplified by
the transmitter. The peak power of the transmitted waveform is typically on the order of
megawatts with average power in kilowatts. Common pulse widths are in the microsecond
range with hundreds of pulses transmitted per second.

The modulated signal p passes through a duplexer, which is a switching device that
prevents the high-power transmitted wave from entering into the very sensitive receiver
side of the system. The waveform p excites currents on the antenna, which radiate elec
tromagnetic waves into the environment. We defer a discussion of wave propagation and
scattering to the next chapter. For now, we note simply that scattered waves return, and
again excite currents on the antenna, which produces voltages of the form

(2.3)

Chapter 2. Radar Systems

Transmit Receive Record

cos(w]t) RR(W]) cos(w]t) + R/(w]) sin(wtt) R(w])
'-...--' \ J,
Re(e-;"l') Re[ R(wl )e-hu1' ]

Re (e-iw2t) Re[R(w2)e-iW2 t] R(W2)

Re(e-iwNt) Re[R(wN)e-iwNt] R(WN)
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Table 2.1. Datafrom a stepped-frequency radar system.

Figure 2.1. An indoor test range with a stepped-frequency radar system and a
horn antenna. The pyramids consist ofradar-absorbing material (courtesy ofNASA Glenn
Research Center).

where all ~ a(w ll ) , and then we use the coefficients all and the measurements R(w ll ) to
determine the corresponding response Srec:
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(2.9)

(2.8)

(2.11)

(2.13)

(2.12)

. (2.10)
lvl < b,
otherwise.

lvl < b,
otherwise.

for lvl < b,

otherwise.

-ret f = ;:-1 [Ivl-et;:f] .

b sin bt b.
h(t) = --- = -SlllC bt.

n bt n

Example: Low-pass filter. For a low-pass filter, we take

so that the one-dimensional Riesz potential T" f associated with f is

I1(1-t')

;:-1 [H(v)(;:f)(v)] (t) =1e-2n:ivt H(v)1e2n:i vt ' f(t')dt'dv

=1[I e-2n:iv(t - t' )H(v)dvJf(t')dt'. (2.7)

Example: High-pass filter. For a high-pass filter, we take

Example: Riesz potential. The one-dimensional Ries: potential [87, 89, 121] is defined
in terms of the transfer function

This filter is used in X-ray tomography [87, 89]. For (¥ = -1, it is often approximated by
the Ram-Lak filter, for which the transfer function is a low-pass version of (2.11):

Applied to f(t), this low-pass kernel will eliminate any Fourier components of F(v) that
fall outside of the "band" (-b, b).

This corresponds to convolution with the impulse-response function

The function h is called the impulse response of the filter.

Here;: denotes the Fourier transform (l). In other words, to apply a filter, we inverse
Fourier transform, multiply by the transfer function H, and then Fourier transform. If we
interchange the order of integration, we see that this is equivalent to convolving with the

Fourier transform h of H:

2.2. Pulsed SystemsChapter 2. Radar Systems

!
®~ H (v) transfer function

F(v)

F(v)H(v)
;:

f(t)

(h * f)(t) ... _
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The process of converting a real-valued signal to a complex-valued one that is analytic
in the upper half-plane can be carried out approximately by a process called I/Q demodu
lation, which is described below. This process provides a good approximation [37] to the
analytic signal when the signal is narrowband, i.e., has a bandwidth much smaller than its
carrier frequency.

Conveniently, this approximation can be implemented in hardware (in a process
known as heterodyne reception); if Prec(t) = a(t) cos(¢(t) + wot) is the (real-valued)
voltage output from the receiving antenna, then the in-phase I and quadrature Q compo
nents of srec(t) are respectively found by mixing, phase-shifting, and low-pass filtering;
more details follow below;

More specifically, IIQ demodulation or heterodyne reception involves splitting the
incoming signal into two identical copies, mixing (multiplying) one copy by an in-phase
(1) version of the carrier, mixing the other copy by a 90° out-of-phase (phase-shifted) or
quadrature (Q) version, and then low-pass filtering both results. Low-pass filtering is simply
convolving with a smooth function in order to get rid of rapdily oscillating components of
a function; this is discussed in section 2.2.2 below.

The in-phase (1) channel results in

I(t) = FLPPrec(t) cos(wot) (2.5)

= hpa(t) cos(¢ (t) + wot) cos(wot) = FLPa(t)~ ( ~os(¢(t).+ 2wot),+cos ¢(t»).

filter out

where we have used the angle-adddition formula for the cosine and where FLP denotes a
low-pass filter.

The out-of-phase or quadrature (Q) channel results in

Q(t) = FLP Prec(t) sin(wot) (2.6)

= FLPa(t) cos(¢ (t) +wot) sin(wot) = FLPa(t) ~ (- sin(¢(t} + 2wot),+ sin ¢(t)).

filter out

2.2.2 Filters

where we have used the angle-addition formula for the sine.

Filters are needed above to eliminate the high-frequency terms in (2.5) and (2.6). Filters
are simply convolutions, or multiplication operators in the Fourier transform domain. The
following diagram shows the procedure for applying a filter.

;:-1
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(3.4)

(3.3)

(3.2)

(3.1)

e:~~1 = 0,
x=R
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escj = _einl .
x=R x=R

where the subscript tan denotes the components of the field tangential to the conducting plate.
Since etot and einboth satisfy (1.7), from (3.2) we discover that the scattered field esc also
satisfies (1.7), and using (3.2) in (3.3), we find that esc satisfies the boundary condition

The total electric field satisfies (1.7) together with the boundary condition on the perfectly
conducting plate:

where E inis perpendicular to the x direction (see (1.8)). This transmitted field satisfies (1.7).
The total electric field consists of both the transmitted wave and the wave scattered

from the plate:

3.1 One-Dimensional Scattering from a Fixed PEe Plate

We consider an antenna at position x = 0, and an infinite metal (perfectly electrically
conducting or PEG) plate at position x = R.

We assume that the waveform generator produces a waveform set), which is then
mixed with the carrier wave to produce l(t) = set) cos(wot). For a one-dimensional
problem, we take the transmitted wave to be

Introduction to Scattering

We now turn our attention to the rightmost part of Figure 2.2, namely, the propagation and
scattering of electromagnetic waves. We begin our study of wave propagation with a simple
one-dimensional model that we can solve exactly. The solution to this simple model exhibits
certain important features that are common to many radar scattering problems.

20 Chapter 2. Radar Systems

The I and Q channels together give the quadrature model [37] for the radar signal

1Stec(t) = a(t)e-it/>(f) ·1

Within the radar literature, this model is so pervasive that the term "quadrature" is often
dropped. The function aCt) is known as the envelope and ¢(t) is the phase modulation.

Conditions under which the quadrature signal model is approximately analytic in the
upper half-plane are discussed in [37]. We consider only conventional radar systems for
which these conditions are satisfied, and consequently we use the terms "analytic signal"
and "quadrature model" interchangeably. .

In Chapter 3 we show explicitly how solutions of the wave equation are converted to
a quadrature signal model; in subsequent chapters, we simply assume an analytic signal.

2.2.3 The Quadrature Model



Inserting this expression for t into g(u) = feu - 2Rlc), we obtain
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(3.8)

observer

)..'- +--

v-----+
moving
source

wave
crests

2v
WD = --woo

C

Figure 3.1. An object
with velocity v toward the

nh"PY1IJPr and transmitting a signal
wavelength A will appear to

transmitting a signal of shorter
waveleneth A'.

eSC(t, x = 0) = -e» f[a(t - Ric) - Ric].

a = (1- vic) (1 - vic + O[(vlc)2l) = 1 - 2vlc + O[(vlc)2]

Prec(t) R:j s[t - 2Rlc] cos (woW - 2vlc)(t - Ric) - Ric]), (3.7)

Prec(t) = f[a(t - Ric) - Ric] = s[a(t - Ric) - Ric] cos[wo(a(t - Ric) - Ric)]'

where we have also used the fact that s is slowly varying to replace the argument aCt 
Ric) - Ric by t - 2RIc. From looking at the coefficient of t in the argument of the cosine
function, we see that the carrier frequency has been shifted (relative to the transmitted carrier
frequency) by an amount

and consequently use the approximation

From the coefficient of t in the argument of the cosine, we see that the scatterer's motion
has resulted in a change in the carrier frequency, from Wo to awo.

For a scatterer moving slowly, so that vic is small, we can expand the denominator
of (3.6) in a geometric series to obtain

Recalling that the transmitted waveform is f(t) = set) cos(wot), we obtain the scattered
signal at the antenna:

3.2. One-Dimensional Scattering from a Moving PEC Plate

This is the (angular) Doppler shift. If the target moves away from the antenna (v > 0), then
Doppler shift is negative; if the target moves toward the antenna (v < 0), then the shift

is positive. (See Figure 3.1.)

Thus we find that the scattered field is esc(t, x) = -Einf[a(t +xlc - Ric) - Ric]. At
the antenna at x = 0, this is

(3.5)

(3.6)

Chapter 3. Introduction to Scattering

1- vic
a-

- l+vlc'

ESCg(t + Ric) = _Einf(t - Ric).
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Prec(t) = f(t -2Rlc) = set - 2Rlc) cos[wo(t - 2Rlc)].

ESCg(t + R(t)/c) = -t» f(t - R(t)/c).

Thus we obtain a solution by taking ESC = _Ein and g(u) feu - 2Rlc), where
we have simply made the substitution u = t + Ric for the argument of g and used
t = u - Ric in the argument of f. Thus we find that the scattered field is esc(t, x) =
-t» f(t - x lc - 2Rlc). Evaluating this field at the antenna position x = 0, we find that
esc(t, x = 0) = _Einf(t - 2Rlc). Consequently the received signal is

g(u) = f (a(u - Ric) - Ric) ,

3.2 One-Dimensional Scattering from a Moving
PEe Plate

u - Rict--_....:....-
- 1+ vic'

I/Q demodulation of the received signal. The in-phase and quadrature components
of the received signal are found as in (2.5) and (2.6), where aCt) = set - 2Rlc) and
4> (t) = - 2woRIc. Consequently the analytic signal is set - 2RIc)e2iwoR/c. The exponential
factor is independent of t and contributes only an overall phase. This phase can be used to
extract the velocity of a moving target, as we will see in Chapter 5.

We expect that the scattered field will consist of a left-travelling wave and will thus be of
the form esc(t, x) = ESCg(t + x f c), To determine esc and g, we use (3.4):

Here we consider the same problem but with a moving plate. We assume that the position
of the plate is x = R(t). The analysis is the same as that for the fixed plate up to the point
of the boundary condition (3.5), which in this case becomes

We again use the substitution u = t + R(t)/c, but this time we cannot solve explicitly for
t unless we know the motion of the plate. We assume for simplicity that it is undergoing
linear motion.? so that R(t) = R + »t, The rate v at which the range changes is called the
range-rate. In this case, we can solve for t in terms of u:

where the Doppler scale factor a is

2Even if the motion is not linear, the linear expression R(t) = R + ut can be considered to be the first
two terms in a Taylor expansion that is valid for small t (i.e., for short pulses), where the origin of time is
chosen to be at a time when the pulse is interacting with the target center.



In summary, the received signal is a time-delayed, Doppler-shifted version of the
transmitted signal.

I/Q demodulation of the received signal. We note that (3.7) can be put into the form
(2.4) with aCt) = set - 2Rlc) and ¢(t) = WD(t - Ric) - 2woRlc. Consequently the
analytic signal is
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Detection of Signals Scattered from Fixed Targets

srec(t) = ps(t - r) + net),

r corresponds to the 2RI c delay we found in the last chapter, where p is the scattering
strength (which for a small target is proportional to IIR4 ) , and where n denotes noise.

The signal scattered from a fixed, point-like target is simply a time-delayed version of the
transmitted waveform:

We have found that for one-dimensional scattering from a fixed plate (section 3.1), the signal
that returns to the radar is a time-delayed version of the transmitted signal. As we will see
in Chapter 6, this is also the case for three-dimensional scattering from a fixed, point-like
target.

In order to obtain a good estimate of the target range, we would like to use a short
pulse. Unfortunately, a short pulse has little energy, and it is therefore difficult to detect
in noise. We will see in Chapter 6 that spherical waves emanating from a small source,
such as an antenna, decay like 1I R. This means that the power decays like 1IR2 • These
waves scatter, and again for a small target, the scattered field behaves like a spherical wave
emanating from the scatterer; the power of this spherical wave undergoes decay of another
factor of 1I R 2 • Consequently the power of the signal received by the antenna has decayed
by a factor of IIR 4 relative to the signal that was transmitted. For distances on the order of
20 or 30 km, which are typically needed for tracking airborne objects, the received power
can be as low as 10-18 Watts and is swamped by the power of the thermal noise in the
receiver. This means that we may not even be able to detect the target, much less form an
image of it.

Fortunately, a brilliant mathematical solution to this problem was invented by D.O.
North [94] in 1943. The solution involves transmitting long coded pulses, together with
appropriate mathematical processing called matchedfiltering or correlation reception. The
resulting technique is called pulse compression. This chapter will briefly explain the methods
employed.

We consider first scattering from an isolated, point-like target that is fixed.

Detection of Signals in Noise

Chapter 4(3.9)

Chapter 3. Introduction to Scattering24
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t'
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Pulse Compression

Phase Coding

s(t'+l)

s(t')

Figure 4.1. Pulse compression. The signal at the top represents the transmitted
waveform. The lower graphs represent the received signal for different shifts, according to
the rightmost expression of (4.4). When a signal shifted by t is multiplied by the waveform
at the top and the product is integrated over t', the resulting number is plotted at position t
on the graph to the right.

4.1. Detection of Signals Scattered from Fixed Targets

system makes the most efficient use of power when it transmits a constant-amplitude
waveform, Consequently, most radar waveforms are designed with variations only in the

Figure 4.1 shows an example of the (auto)correlation process. In this case both signals are
rear-valued. so the complex conjugation appearing in (4.4) has no effect. Note that although
the output signal has a longer time duration than the original signal s, its energy is more
concentrated about the center.

It is a consequence ofthe Cauchy-Schwarz inequality (13) that the highest peak occurs
the signals are not shifted relative to each other. The smaller peaks, called sidelobes,

are undesirable, and an open problem is to design pulses whose autocorrelations have the
and fewest sidelobes.

(4.2)

(4.1)

(4.3)
If h(t)s(-t)dtI

2

N f Ih(t)12dt '

Chapter 4. Detection of Signals in Noise

lJ(t) = (h *srec)(t) = PlJs(t) + IJII(t),

if her - t')s(t' - r)dt,!2

SNR = N f Ih(t)12dt

where

SNR = IlJs(r)1
2

EIIJII(r)12 .

First we compute the denominator of (4.2):

EIIJII(r)1
2 = E II her - t')n(t') dtf = E I her - t')n(t')dt' (I her - t")n(t")dt") *

= II her - t')h*(r - t")~ dt' dt"

N8(t'-t")

= N I Ih(r - t')1
2

dt' = N I Ih(t)1
2dt,

where in the last line we have made the change of variables t = r - t' and where *denotes
complex conjugation. Thus (4.2) becomes

We would like to apply a filter to Srec in order to improve the signal-to-noise ratio
(SNR). We denote the filter's impulse response (convolution kernel) by h and write for the
filter output

26

IJs(t) = I h(t - t')s(t' - r) dt' and IJII(t) = I h(t - t')n(t') dt'.

We would like the signal output IJs(r) at time r to be as large as possible relative to the
noise output IJII(r).

We model the noise as a random process. Thermal noise in the receiver is well
modeled by white noise, which means that E[n(t)n*(t')] = N8(t - t'), where E denotes
expected value and where N is a constant corresponding to the noise power. Since the noise
is random, so is IJII' Thus the SNR we would like to maximize is

where in the numerator we have made the change of variables t = r - t'. To the numerator
of (4.3), we can apply the Cauchy-Schwarz theorem (13) to conclude that the numerator,
and therefore the quotient (4.3), is maximized when h is chosen so that

Ih(t) = s*(-t)·1

This is the matched filter. Thus to obtain the best SNR, we should convolve the received
signal with the time-reversed, complex-conjugated version of the signal we expect to see.

With this choice, the filter (4.1) can be written

lJ(t) = I h(t - t")srec(t") dt" =I s*(t" - t)srec(t") dt" = I s*(t')srec(t' + t) dt', (4.4)

which is a correlation between sand Srec' If s = Srec, (4.4) is called an autocorrelation.
Matched filtering improves SNR at the receiver by concentrating the energy of the

received signal at a single delay time. This process results in pulse compression, a phe
nomenon which is most easily explained by some examples.
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3There are also different conventions. differing by factors of tt , for the definition of the sine function.

where the sine function- is defined as (see Figure 4.4)

bandwidth Ty can be estimated by looking at the range of instantaneous frequencies. The
bandwidth in Hertz is Zit Tv ,

A straightforward calculation shows that the autocorrelation of the normalized chirp
set) = T- 1/ 2U [O,T] ( t) exp(iyt2

) is

!
e- iTTY/2sinc [(T -I1'l)y1'/2],

X(1') =
0,

4.1. Detection of Signals Scattered from Fixed Targets

(4.5)

(4.6)

Chapter 4. Detection of Signals in Noise
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The instantaneous(angular)frequency [79] is defined to be the quantity d¢1 dt. Note
that, unlike the notion of frequency, the instantaneous frequency is not defined in terms of
the Fourier transform.

Chirps

The most commonly used radar waveform is the chirp. A chirp is a constant-amplitude signal
whose instantanous frequency varies linearly with time; chirps are therefore also called
linearly frequency modulated (LFM) waveforms. Linear variation of the instantaneous
frequency implies that d¢1 dt = Wmin+yt,which in turn implies that¢(t) = wmint+yt2/2.
The coefficient y is called the (angular) chirp rate or chirp slope.

A chirp is thus of the form

A chirp with positive chirp slope is called an upchirp; one with a negative chirp slope is a
downchirp. An example of an upchirp is shown in Figure 4.2.

Figure 4.2. A baseband chirp. Here the horizontal axis is time and the vertical
axis is the realpart ofthe signal pet) (4.6) with Wmin = 0.

o

phase of the signal. A constant-amplitude signal of duration T can be written as a multiple
of the characteristic function U[O.T] (t) that is 1 in the interval [0, T] and °otherwise:

The instantaneous (angular) frequency of the chirp (4.6) varies from Wmin to Wmax =
Wmin + Y T, with a center frequency of Wo = (Wmin + wmax)12 = Wmin + Y T12. Thus the
instantaneous frequency of the chirp varies over the interval [wo - Ty 12, Wo + Ty 12].

The power spectrum (i.e., square of the magnitude of the Fourier transform) of a chirp
can be seen in Figure 4.3. We see thatthe spectrum of a chirp is roughly constant over
the frequency band [wo - Ty12, Wo + Ty12], which is the same range over which the
instantanous angular frequency varies as t ranges from °to T. Thus the angular frequency



Figure 4.5. Implementation ofbinary sequences as RF waveforms.
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(4.9)11(t) =f X(t - r')p(r') dx';

Scattered from rvtovrnz

A Distribution of Fixed Targets

Two Point-Like Targets

. Detection of

where X is the autocorrelation

4.3 Detection of Signals Scattered from Moving Targets

srec(t) =f p(r')s(t - r')dr' + net).

(4.8)

We now consider processing of signals scattered from moving targets. In this case, we can
hope to form an image that shows both range and velocity of the targets. An example of
such a range-Doppler image is shown in Figure 4.6.

11(t) = f s*(t' - t)Srec(t') dt' = f s*(t' - t) f p(r')s(t' - r') dx' dt' + noise term

=f f s*(t' - t)s(t' - r') dt' per') dt' + noise term.

X(t) =f s*(t" - t)s(t") dt" =f s*(t')s(t + t') dt',

The left side of (4.8) can be considered a one-dimensional image (see Figure 1.3), and (4.9)
shows how the true distribution p is related to the image 11. The image is the convolution of
p with X, which is called the point-spread.function (PSF). The PSF obtains its name from the
fact that if p consists of a single point 8(t), then the image is 11(t) = JX(t - t')8(t') dt' =
X(t). Thus X quantifies the degree to which a single point appears spread out in the image.

In order to form an image with good resolution, we choose a waveform s for which
X is delta-like. This is the basis of high-range-resolution (HRR) imaging.

In the last line of (4.8), we make the substitution til = t' - c', The result can be written

The signal received from a distribution of noninteracting targets is

Application of a matched filter results in

Application of a matched filter results in a sum of outputs from each individual target.

The signal received from two fixed and noninteracting point-like targets is

Chapter 4. Detection of Signals in Noise
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4.2 High-Range-Resolution Imaging

Chirps are very commonly used in radar imaging. Pulse compression for chirps has
the following intuitive interpretation: When the pulse is transmitted, different parts of the
pulse are coded with different instantaneous frequencies. In the pulse compression process,
the different frequencies are delayed by different amounts of time, so that all the energy
emerges at the same time. In fact, pulse compression for chirps can be carried out by an
analog component called a surface acoustic wave (SAW) device, which delays different
frequencies by different amounts of time.

Another approach to obtaining a constant-amplitude waveform with a good autocorrelation
function is to use a coded digital signal. Digital signals can be converted into radar wave
forms by associating bit symbols with a phase shift. Binary pulse codes, for example, are
sequences consisting only of zeros and ones, say, or pluses and minuses. They can be coded
onto a waveform by associating the plus symbol with a 0° phase shift and the minus symbol
with a 180° shift. This is illustrated in Figure 4.5.

An alphabet of size n leads to a polyphase code, in which each symbol is associated
with a different phase shift. One example of an n-element polyphase code is the n-phase
code that uses phase shifts that are multiples of Zn / n radians or 360°/ n, Thus, for example,
a 3-phase code uses the phase shifts of 0, 2rr/3, and 4rr/3.

If multiple objects (targets) are present in our field of view, we can hope to form an image
that shows their relative positions. The presence of multiple targets, however, can involve
multiple scattering, in which waves bounce back and forth between the targets. Multiple
scattering can be extremely complex and for this reason is typically neglected in radar
imaging. In this discussion we follow the standard approach of ignoring multiple scattering.
We use the term noninteracting targets to refer to objects for which multiple scattering can
be neglected.



33

(4.12)

(4.10)

where we have made the substitution t' 1-+ til = t' - t' in the third line and where

x«. v) = I s*(t" - r)e-2rriv(r-t")s(tl)dt" =I s*(t')s(t' + r)e2rrivt' dt'

is the radar ambiguity function, which we study in the next chapter.
The ambiguity function is the PSF for range-Doppler imaging. The fidelity of the

range-Doppler imaging process, and consequently the accuracy of target range and velocity
estimation, can be found by analysis of the ambiguity function.

1](r, v)

=I s*(t' - r)e-2rr iv(r-t') srec(t') dt'

=I s*(t' - r)e-2rr iv(r-t') II per', v')s(t' - r')e-2rr iv'(t'-r') dt' dv' dt' + noise term

=III s*(t' - r)e-2rr iV(r-t')s(t' - r')e-2rr iV'(t'-r') dt' per', v') d t' dv' + noise term

= III s*(t" + t' - r)e-2rr iv(r-t"-r')s(t")e-2rriv't" dt" per', v') dx' dv' + noise term

= II x(r-r',v-v')e-2rr iv'(r-r')p(r',v')dr'dv'+ noise term,

(4.11)

4.3.3 A Distribution of Moving Targets

4.3.2 Two Moving Point-LikeTargets

The signal from a distribution of noninteracting moving targets can be written

srec(t) = II per', v')s(t - r')e2rr iV'(t-r') dt' dv',

which reduces to the two-target case when P(r', v') = PIO (r' - rl)o (v' - VI) + P20(r: 
r2)0(v' - V2).

The output from the filter bank is

with too = 2JTVD. For the matched filter, the receiver output is

1](r, v) = p I s*( -t + t')e-iw(t-t') set' - r)e-iwv(t'-r) dt' + noise term.

Inorder to estimate r and vD, we find the arguments r and v where 11] Itakes on its maximum .

4.3. Detection of Signals Scattered from Moving Targets

The signal from two noninteracting moving targets can be written

srec(t) = PIS(t - r\)e-iW1(t-rd + P2S(t - r2)e-iW2(t-r2 ) + net).

Applying a filter bank to this signal results in a sum of terms of the form (4.10), one for
each target.
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Figure 4.6. An example ofa range-Doppler image from the CSU-CHILL weather
radar system. The horizontal streak in the middle ofthe image corresponds to objects on the
ground that are not moving and therefore give rise to no Doppler shift. The vertical streak
in the middle is from a wind turbine, whose blades move with a variety ofspeeds relative to
the radar (courtesy of CSU-CHILL; the work was supported by Colorado State University
and by the National Science Foundation).

4.3.1 A SingleMoving Point-LikeTarget

srec(t) = ps(t - r)e-iwv(t-r) + net).

We recall from (3.9) that the signal due to a moving target is a time-delayed, Doppler-shifted
version of the transmitted signal. Thus, up to an overall constant phase, we can write the
signal from a single point-like moving target as

Now we have two unknown parameters to estimate, namely, the delay r and the Doppler
shift (j)D. Instead of applying a single matched filter, we now use a set of matched filters,
one for every possible Doppler shift:

1](r, v) = I hv(t - t')srec(t') dt' = pI hv(t - t')s(t' - r)e-iwv(t'-r) dt' + noise term.

Such a set of filters is called a filter bank.
The same argument as before shows that the best filter is the matched filter, whose

impulse response is



Chapter 5

The Radar Ambiguity Function

In this chapter, we study the radar ambiguity function" X (v, r), which was defined by (4.12).
We note that the ambiguity function, and thus the accuracy with which we can estimate target
range and velocity, is determined by the transmitted waveform s. In this chapter we study
this relationship.

5.1 Basic Properties

Clearly if we multiply s by a scalar a, then the ambiguity function is multiplied by the
scalar a2• To avoid having to deal with this simple scaling, we consider only signals that
are normalized by their total energy: f':' Is(t')12 dt' = 1.

Elementary properties of the ambiguity function [38, 126, 76, 110] follow from the
definition (4.12):

1. Relation to signal energy: It follows from the Cauchy-Schwarz inequality (13)
that

Ix(r, v)1 :s Ix(O,0)1 =i: Sinc(t')Si~c(t') dt' = total energy in the signal = 1.

2. Conservation of ambiguity volnme: The total volume under the ambiguity surface

4In some literature, the ambiguity function is defined as IX(v, r)12 •
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SHere it is convenient to use the convention for the Fourier transform with 27l' in the exponent.

(5.1)
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(5.4)

(5.3)Ix(r, 0)1 = II IS(v,)!2 e-2rciv'r dv'j.

In this section we discuss resolution for a few common waveforms.
Resolution is commonly quantified by one of the following criteria (see Figure 5.1):

5.3 Special Cases

3. The half-power width. This is sometimes called "full width at half max." Since half
corresponds to about 3dB, this is also commonly referred to as the 3dB width.

from which we see that we obtain better Doppler resolution from a long-duration signal.
From (5.4) we also see that the Doppler resolution is determined only by the amplitude
modulation of the signal and not by the phase.

2. The distance between the first nulls.

1. The distance from the peak to the first null.

Thus, up to an overall phase factor, the ambiguity function has the same expression
in the time domain and in the frequency domain.

To study Doppler resolution, we consider a target whose range is known. Thus in (4.12) we
can set r = 0:

5.2.2 Doppler Resolution

5.3. Special Cases

The quantity ISI2 is the power spectral density. In order to make (5.3) as close to a delta
function as possible, we would like the power spectral density to be identically one; however,
such a signal would have infinite energy. Nevertheless, because the Fourier transform of
a narrow peak is a broadly supported function in the Fourier domain, it is clear from (5.3)
that we obtain better range resolution when the signal bandwidth is very broad.

This important observation is the motivation for high range resolution systems based
on ultrawideband (UWB) signals for which D.w ~ .25 wo. (Note that the narrowband
approximation is not valid in this case and some of our results-in particular, the definition
of the ambiguity function-need to be reworked when dealing with UWB waveforms.)

5.2 Resolution and Cuts through the Ambiguity Function

5.2.1 Range Resolution

To study range resolution, we consider a fixed (v = 0) target. Thus in (5.2) we set v = 0:

= II Is(t')12Is(t' + r)12
dt' d t

= I Is(t')12 dt'I Is(r')1 2 dt' = 1,

where to obtain the last line we have made the change of variables r f-+ t' = t' + r.
This result gives rise to a radar uncertainty principle: choosing a signal s (t) so that the
ambiguity surface will be narrow in one dimension will cause it to be correspondingly
wide in the other dimension. In particular, a waveform with good range resolution
has poor Doppler resolution, and a waveform with good Doppler resolution has poor
range resolution.

then we can write the ambiguity function as

x(r, v) = I s*(t') I e-2rciv'(t'+r)S(v')dv'e2rcivt' dt'

= I [I s(t')e-2rc i(V-v')t' dt']* S(v')e-2rc iv'r dv'

= I S*(v' - v)S(v')e-2rc iv'r dv'

= I S*(v")S(v + v")e-2rciv'r dv"e-2rciv"r. (5.2)

Chapter 5. The Radar Ambiguity Function

Ix(-r, -v)1 = Ix(r, v)l·

Ix (r, v)1 2 is

Illx(r,V)j2 d r d V = II x(v,r)x*(v,r)drdv

= I I I s*(t')s(t' + r)e2rcivt' dt' I s(tl)S*(t" + r)e-2rcivt" dt" dxdv

= I I I s*(t')s(t' + r)s(t")s*(t" + r) / e2rriv(t'-t") dV, dt' dt" d.t

8(t'-t")

3. Symmetry:

4. Effect of time translation: The magnitude of the ambiguity function remains the
same when the signal is translated in time.

5. Effect of modulation: The magnitude of the ambiguity function for s(t)e-iwt is the
same as it is for set).

6. Effect of chirping: If X(r, v) is the ambiguity function for s, then the ambiguity
function for s(t)e-ircat2 satisfies IXa(r, v)1 = Ix(r, v + en)l.

7. Frequency-domain expression: Ifwe write s in terms of its Fourier transform- S as

set) = I S(v)e-2rcivt dv,
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(5.10)

(a)

(b)

2
Ix(r,v)1

2
Ix(r,v)1

Figure 5.2. Example ambiguity surfaces: (a) is the ambiguity surface (5.8) for a
CW pulse; (b) is the ambiguity surface ofa chirp (4.6).

Resolution for a Chirp

resolution is obtained by setting Ix(r, 0)1 2 = 1/2, solving for r, and multiplying by 2 to
obtain the full width. This results in or3dB = 2T(1 - 1/-12) ~ .586T.

For r = 0, IX(0, v) I = [sincor vT) I. Since the first zero of the sine function occurs
when its argument is it , we find that the Doppler resolution of the CW pulse, by the peak
to-first-null measure, is oVpn = liT, or, by the null-to-null measure, is oVnn = 21T. Since
the Doppler shift is related to down-range relative velocity by VD = -2vvolc, Doppler
resolution of21T corresponds to velocity resolution of oVnn = c/(voT) = 'AolT, where we
have used the fact that 'Ao = cIvo.

We note that a pulse with r = 0 (i.e., the return occurs at the expected time) and a
Doppler shift of liT results in a matched filter output ofO! The speed 'Ao/(2T) for which
this happens is called a blind speed.

A normalized chirp is

5.3. Special Cases

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

Irl::::: T,
otherwise,

Irl::::: T,
otherwise.

It1 < 1/2,

otherwise.
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s(t) = (1/.JT)rect(tlT),

(
1,

rect(t) = 0

0)
(

1 - IrIIT,
x(r, = 0

(
0 - IrllT)sinc [nv(T - Irl)],

x(r,v)= 0
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where the rect function is defined as

A continuous wave (CW) is a single-frequency or sinusoidal wave; a CW pulse is such a
wave that is chopped to form a pulse (and therefore no longer consists of a single frequency).
A CW pulse of duration T has the form

1 1 2'
-Ji cos(2nivot)rect(tIT) = Re -Jie TrIVOfrect(tIT),

Figure 5.1. This shows the three most common ways to quantify resolution: The
3dB width, the distance between the first nulls, and the distance from the peak to the first
null.

where the sine function was defined in (4.7).
The ambiguity surface Ix(v, r)12 is shown in Figure 5.2(a).
For v = 0, the CW pulse ambiguity function is

5.3.1 Resolution for a CW Pulse

A typical duration might be T = 100p,s = 100 X 1O-6s. At baseband, the CW pulse is
simply

where we see that the -Ji factor normalizes the waveform to have unit energy.
A straightforward calculation shows that the ambiguity function for this CW pulse is

[126,76, 110]

If we know the velocity of our target, then the delay resolution, by the peak-to-first-null
measure, is orpn = T, which corresponds to a range resolution of orpm = cT12. By the
null-to-null measure, we have ornn = 2T and range resolution of ornn = cT. The 3dB



which can also be written

To find the ambiguity function of a chirp, we can use (5.8) together with properties of the
ambiguity function. The result is
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(5.14)

(5.13)

(5.12)

1 N-l

Ix(r, 0)1 = N L IXII(r - pTR, O)l(N -Ip[),
p=-(N-l)

where we have used the fact thatlimx--->o[sin bx]1 sin x = b. We see that the range resolution
of the main peak is the same as the range resolution of the individual pulse u, but that we
now have range ambiguities due to the extraneous peaks at r = pTR.

To estimate the Doppler resolution, we consider the r = °cut of (5.13):

1 ~ ISin[JrvTR(N-[PI)]1
Ix(r, v)1 = N L...J IXII(r - pTR, v)1 sin[JrvT

R]
.

p=-(N-l)

Such an ambiguity function has a "bed of nails" appearance (see Figure 5.3), with peaks
at r = pTR, P = -(N - I), -(N - 2), ... , -1,0, 1,2, ... , (N - 1) and v such that
JrvTRN = (m + 1/2)Jr, m = 0, 1,2, ....

To estimate the range resolution, we consider the v = 0 cut of (5.13):

1 N-l Isin[JrvTR(N - Ipl)] I
Ix(O, v)1 = N L IXII(-pTR, v)1 sin[JrvT

R]
.

p=-(N-l)

where XII denotes the ambiguity function for u and where we have used the substitution
t" = t' - nTR • A lengthy calculation (see [76, 110, 126]) involving a clever rearrangement
of the order of summation and the summing of a geometric series results in

where TR is the pulse repetition interval, which might be on the order of Irns, The reciprocal
1I TR is called the pulse repetition frequency (PRF). We assume that the pulse train is
coherent, which means that the entire pulse train is referenced to the same zero of phase, so
that the upmodulated waveform is simply set) cos(2Jr vot).

The ambiguity function for the pulse train is

I N-l N-l

x(r, v) = N L L f u*(r + x' - mTR)u(r' - nTR)e2niVr'dr'
11=0 m=O

1 «-: N-l
= N L L Xl/(r - (n - m)TR, v)e2niVIITR,

11=0 m=O

5.3. Special Cases

5.3.2 Resolution for Coherent Pulse Trains

Here we consider a train of N identical pulses

1 N-l
set) = .jN L u(t - nTR),

11=0

1 N-l . [

( ) _ " (r 'T' ) niv1({(N-I-lpl) sm JrvTR(N - Ipl)]
X r, v - - L...J XII' - P '" R, V e . .

N p=-(N-l) sm[JrvTR]

If the pulses u are sufficiently well separated so their ambiguity functions XII do not over
lap, then when we take the absolute value of (5.12), we obtain

(5.11)
Irl < T,

else.
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Ix(r, v)1 = [~(T -Irl)sinc [(T -lrl)(Jrv + yr/2)]I,
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where we have used the Taylor expansion .JT={l = 1 - al2 + ... and where we have
assumed that T 2 y » 8Jr. The root corresponding to the minus sign is the smaller of the
two, so we conclude that 8rpn = 2Jr/(Ty) and 8rnn = 4Jr/(Ty). In other words, we find
that the (null-to-null) delay resolution is 21B, where B = 2JrTy is the bandwidth in Hertz.
This implies that the range resolution is 8rpn = c] B.

If we compare the delay resolution for the chirp to that for the CW pulse, we find that
the pulse compression ratio is

s-, cw cT
. =-=TB,

8rlln•chirp cI B

The ambiguity surface Ix(v, r)12 for a chirp is shown in Figure 5.2(b).
For r = 0, we have Ix(O, v)1 = Isinc(JrvT)I, which is the same result as for the CW

pulse, as it should be, because the amplitude modulation is the same. Consequently the
Doppler resolution is the same as for the CW pulse.

For v = 0, we find that when r > °the first null occurs when x = (T - r)yr/2.
This can be rewritten as the quadratic equation y r 2 - y r T + 2Jr = 0, from which we find

8rpn.cw 2T
-'--'-- = - = TB
8rpn•chirp 21B .

This is the time-bandwidth product. From the delay resolution, we determine the range
resolution from the relation 8rnn = c8rpn ; thus we find the range resolution ratio to be

8rnn.cwTB = 8rpn•chirp .

In other words, phase modulation improves the range resolution by d factor of the time
bandwidth product. The time-bandwidth product can be very large, typically a factor of
104 for many radar systems.

Although large time-bandwidth products result in tremendous improvement in range
resolution, the ambiguity volume reappears as uncertainty in v. This means that the unknown
velocity of a target can appear as an erroneous delay; the consequence of this is that moving
objects can appear in the wrong position in radar images.



In practice, modern pulsed radar systems do not usually measure the Doppler shift by
means of the Doppler filter bank described above; instead they estimate velocity from the
phase difference between returns from successive pulses.

Because the argument x vTR N varies much faster than n vTR , we can focus our attention on
the numerator. We find that the first null is at min[8vpn , l/(NTR)], which, for large NTR, is
l/(Nh). Thus we see that the Doppler resolution ofthe pulse train is improved relative to
that ofa single pulse. .

The gain in Doppler resolution is achieved at the expense of having ambiguous ve
locities. These ambiguous velocities arise from the fact that the numerator of (5.15) has
peaks at v = (m + t)/(NTR) for m any integer. These peaks are Doppler ambiguities. The
first Doppler ambiguity occurs at v = 1/(2NTR), which implies that the first ambiguous
velocity is [u] = [c/(2vo)][1/(2NTR)] = Ao/(4NTR), where we recall thatAo = c/vo. The
first null v = l/(NTR) is also the first blind velocity.

For identifying airborne targets whose ranges and velocities are approximately known,
the range and Doppler ambiguities may not be problematic. However, for earth mapping,
the range and Doppler ambiguities are constraints on the design of the antenna and the PRF
of the system.

For a pulse train of chirps, typical values might be

43

A PointTarget

We consider a point target rotating counterclockwise in a geometry in which the antenna
is in the plane of rotation. (See Figure 5.4.) We take the origin of coordinates to coincide
with the center of rotation; assume that this center of rotation is a large distance Ro from

5.4. Application: Range-Doppler Imaging

Pulse-to-Pulse Velocity Estimation

Most modern radars use a train of high range-resolution waveforms, each pulse of which
has poor Doppler resolution. Consequently they make the start-stop or stop-and-shoot
approximation, which assumes that the target is stationary during the time the radar pulse
illuminates the target, and moves only between pulses. Because individual pulses are so
short and targets of interest are small and move slowly compared to the speed of light, this
is almost always a good approximation. Under these circumstances, the velocity can be
found by the change in phase of successive returns as follows.

Suppose the target travels as R(t) = Ro + vt; we write Rn = R(nTR)'

1. Suppose we transmit Pn (t) = s(t)e-i">ot.

2. From (3.9) we find that the demodulated analytic signal received is
sn(t) = set - 2Rn/c)e-iwD(f-R,,/c)e2iwoR,,/c.

3. The output of the correlation receiver is YJn (r) = f s*(t' - r)sn (t')dt' =
f s*(t' - r)s(t' - 2Rn/c)e-iwD(t'-R"/c)e2iwoR,,/cdt'.

First we consider a rotating target. Such a target might be positioned on a laboratory
turntable, or it might be an airborne target that, as it flies past the radar, appears not only
to translate but also to rotate relative to the radar. Here we assume that the translational
motion is removed and consider only the rotational motion.

5.4.1 Range-Doppler Imaging of Rotating Targets

5. The phase difference between successive pulses is
2wo[Ro + v(n + l)TR]/c - 2wc[Ro+ vnTR]/c = 2wov/c = -WD·

We saw in the last section that we can estimate range and range-rate from radar returns. In
this section we see how we can use this information to form spatial images, provided we
know something about the relative motion between the antenna and the target.

5.4 Application: Range-Doppler Imaging

We note that if the velocity and pulse repetition interval are such that 2vTR/c is an
integer, the phase will change by an integer multiple of 2Jr,and the phase of YJl and YJ2 will
be identical. Such speeds are blind speeds.

4. At the peak r = 2Rn/c, the output is
YJn(2Rn/c) =! Is(t' - 2Rn/c) 12e-iwDf'dt', e2iwoRn/c.

X(O.WD)(5.15)

2 ns
100 fLS

1 ms
20 s

I (0 v)1 = ~I (0 V)I/sin[JrVTRN] IX, N Xli' . [ 7'] .sm JrVLR

8rpn = l/B
individual pulse duration T
pulse repetition interval TR

coherent processing interval (CPI) NTR
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2
Ix(r,v)1

Figure 5.3. This shows an ambiguity function for a train ofpulses.
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For well-separated pulses, only the p = 0 term contributes:
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p(R, v)

+--x --+

v = x(}

Figure 5.5. An extended target known to be rotating.

R

Extended Targets

5.4. Application: Range-Doppler Imaging

Next we suppose that p(x, y) represents a distribution of scatterers associated with a single
extended target (such as an airplane as in Figure 5.5). Then ot», v) = p(-vc/(2vo8),
(cr/2) - Ro) is the corresponding distribution of delays and Doppler shifts we expect to
see from the target. Consequently from p(r, v), we form a spatial image by

p(x, y) = p(28xvo/c, (Ro + y)c/2).

In cases when p(x, y) represents a maneuvering aircraft, the rotation rate 8 is unknown,
and the result is an image in which the cross-range dimension is scaled by the unknown 8.
However, generally an object can be recognized from such a scaled image.

We recall that p(r, v) is related to the output of the bank of matched filters by (4.11),
and the PSF of the imaging system is given by x(r, v)exp(2nivr). We have already
investigated the resolution determined by the ambiguity function; the results are summarized
in Table 5.1.

We note that ~or individual waveforms, the cross-range resolution is inversely pro
portional to !1e = e T, which is the total angular aperture over which we view the target.
For pulse trains, the cross-range resolution is inversely proportional to !1e = 8NTR , which
is again the total angular aperture for the full coherent processing interval (CPI).

We see that for imaging an airplane, the resolution of the CW pulse is unacceptable.
The single chirp has acceptable range resolution, but the cross-range resolution is still unac
ceptable. It is only the chirp train that has acceptable resolution. However, this resolution
is attained only for long pulse trains, and during a long CPI the target may rotate enough so
that the scatterers are in different positions. For example, during one second, an airborne

t--.---.---,-

Radar Pulse i
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Point Scatterer

R(t) = Ro+ a sinO

1
Figure 5.4. The geometry for locating a point target known to be rotating.
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the antenna. The fact that the range is large means that the incident wave is approximately
a plane wave, which means that all horizontal points are (approximately) at the same range.
If the target is positioned at (x, y) = a(cose, sine), then its range is

R = Ro + y = Ro+ a sin e.

If its angular velocity is 8 = de / dt, then its velocity vector is a8(- sin e, cos e), its
tangential speed is [u] =a8, and the down-range (y) component of the velocity is R =
IvIcos e = a8 cos e. However, since x = a cos e, this down-range velocity can be written
R = x8, where x is the cross-range component of the position. We note that for x > 0, the
down-range velocity is negative, whereas for x < 0, it is positive.

This means that since a radar system can measure range (Ro + y) and range-rate
(R = x8), it can determine the (x, y) location of the point in space! In particular, the radar
measures the time delay r = 2R/c and the Doppler shift

2R 2x8
VD = --vo = --vo,

c c

which means that the coordinates of the point are given by

(x,y)= (-:aD ;8' c; -Ro).



5.4.2 Range-Doppler Synthetic-Aperture Radar

To map the earth, we can mount a radar system on a moving platform such as an airplane or
satellite. For simplicity, we assume that the earth is a flat plane and that the platform moves
in a straight horizontal line. Then we can use radar as follows to locate a point target on
the earth. From the time delay r of a scattered signal, we know that the target must lie at
range R = ct /2. The iso-range surface at range R, which is the set of points at range R

47

Figure 5.6. The intersection of the constant-range sphere with the constant
Doppler cone.

Thus from measuring the range and Doppler shift, we find that the target must lie on the
(assumed flat) earth at the intersection of the constant-range circle and the constant-Doppler
hyperbola. We note that there are two such intersections, one to the left of the platform
velocity vector and one to the right. Thus from a given range and Doppler measurement,
we cannot determine which of these two points is the scatterer location. This is referred to
as the left-right ambiguity. To handle this ambiguity, SAR systems use an antenna beam
pattern that illuminates only one of these intersections. This is why SAR systems are always
side-looking.

For a distribution of scatterers on a flat earth, the output 17(1', v) of the filter bank
provides an image of the earth. Again the ambiguity function is the PSF for this imaging
system.

The image formed in this manner is unfocused, because it does not account for the
change in radar position during the time the measurements are taken. Again, in order to
account for this effect, we need a full three-dimensional scattering model; this is found in
the next chapter. Nevertheless, the basic intuition underlying radar imaging is to locate a
target according to its range and Doppler shift.

5.4. Application: Range-Doppler Imaging

from the platform, is a sphere of radius R, and this sphere intersects the flat earth in a circle.
(See Figure 1.6.) Thus the return at time r must come from a target on this c~rcle. From the
Doppler shift VD (3.8), we know that the range of the target must change as R = CVD/(2vO)

as the platform flies past. The down-range component of the velocity is R= R . v, where
Ris a unit vector from the platform to the target, and v is the platform velocity. (Here we
take the origin of coordinates at the radar platform.) The set of points R for which R . v is
constant is a cone whose axis is the vector v. (See Figures 5.6 and 5.7.) This cone intersects
the earth in a hyperbola, Such a constant-Doppler curve is an iso-Doppler curve.
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Table 5.1. Resolution at X-band.

'A = 3cm, e= 10°[sec = .16 radians/sec
T = 1O-4sec, B = 500MHz

N - 103 TR - 3 . 10-4 sec '* NTR - 3sec- , - - -.
Range resolution Velocity resolution Cross-range resolution

Waveform ornn oVnn ox = ovnn/e
CWpulse

Duration T cT ~ 104 m 'A/T ~ 102 m/sec 'A/(eT) ~ 1200 m
Chirp

Duration T
Bandwidth B cf B ~ .6m 'A/T ~ 102 m/sec 'A/(eT) ~ 1200 m

CW pulse train
NTR = .3sec cT = 104m 'A/(NTR ) ~ .lm/sec 'A/(eNTR ) ~ .6m

Train of N chirps
NTR = .3sec cfB ~ .6m 'A/(NTR ) ~ .1m/sec 'A/(eNTR ) ~ .6m

46

target could easily rotate through .05 radians (10°). If it has a lO-meter radius, then the
extreme points on the target move 10m x .05 radians = .5 meters, which is more than a
resolution cell. Large targets such as ships can move even farther, and the result is a blurred
image. Clearly we need an imaging approach that can accommodate target motion during
the imaging process. For this, we need a fully three-dimensional scattering model, which
we develop in the next chapter.

The Range-Doppler Imaging Projection

Forming an image of any type generally involves a two-dimensional projection of a three
dimensional scene. Optical photography, for example, projects onto a single image point
all points lying along a ray through the focal point of the lens. This is the perspective
projection.

Radar imaging involves a different projection from three dimensions to two dimen
sions. In a range-Doppler image, all scatterers at the same range and relative velocity appear
at the same point in the image. For the case of a far-away target whose axis of rotation
is perpendicular to the radar line of sight, this means that all scatterers on a line parallel
to the axis of rotation will appear at the same point in the image. This is an orthographic
projection.



5.5 Mathematical Issues Related to the Ambiguity
Function

Figure 5.7. The constant-range circles and constant-Doppler hyperbolas. The
grey region shows the antenna beam, which illuminates only one ofthe two intersections of
a given range circle and Doppler hyperbola.

Part II

Radar Imaging
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We have seen that in the simplest case, the scattered radar signal is a time-delayed, Doppler
shifted version of the transmitted signal. The time delay can be thought of as a temporal
translation of the signal, and such translations have a group structure. Similarly, Doppler
shifts also have a group structure. Consequently the ambiguity function arises in group
representation theory, and the properties of the ambiguity function can be thought of as
special cases of certain theorems in group representation theory. For more information
about these connections, see [17, 84, 12].

We have seen that for a given signal, we can extract various properties of the corre
sponding ambiguity function. Even more interesting is the inverse problem, which is to

. construct a signal with a given ambiguity function. This is addressed in [17].
Some open problems related to the radar ambiguity function are listed in Chapter 11.



(6.1)

(6.2)

Chapter 6

Wave Propagation in Two and

Three Dimensions

Throughout the rest of the book, we consider only high-range-resolution pulses and use the
start-stop approximation. Thus we consider only scattering from stationary targets.

6.1 Scalar Wave Propagation

Rather than the full Maxwell equations, we use the simplified scalar model

(
1 aZ

)vZ
- -z--z [(t, x) = 0,

c (x) at
in which we think of c(x) as the local propagation speed of electromagnetic waves. We have
seen that in free space, where c(x) = Co, this equation is a good model for the propagation
of each Cartesian component of the electric field. We will frequently drop the subscript 0
on Co.

Scattering can be thought of as being due to perturbations in the wave speed, which
we write as

1 1-- = - - Vex),
cZ(x) c6

where V is the reflectivity function. Equations (6.1) and (6.2) do not provide an entirely
accurate model for electromagnetic scattering from an object; nevertheless, this is a com
monly used model for radar scattering, with the understanding that Vex) does not exactly
correspond to the perturbation in the electromagnetic wave speed in the material, but rather
represents a measure of the radar reflectivity for the polarization measured by the antenna.
More accurate scattering models can be found in [19], [62] and references therein.

For a moving target, we use a time-varying reflectivity function V (x, t).

6.2 Basic Facts about the Wave Equation

A fundamental solution [132] of the wave equation is a generalized function [54] satisfying

(VZ - cO-zanget, x) = -8(t)8(x). (6.3)
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6.3.1 The Lippmann-Schwinger Integral Equation
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(6.16)

(6.17)

(6.15)

(6.14)

(6.11)

(6.13)

(6.12)

,sSC(t, x) = ff get - r, x - z)V(z)a;,stot(r, z)drdz.

,sSC(t, x) = If 8(t - r -Ix - zl/c) v(z)a2,stot(r, zydrdz,
4nlx -zl r

and (6.12) is

E(w) = f eiwt,s(t)dt.

6.3.3 The Neumann Series

(\72 + c~:)) E
tot = u», x),

(\72 + :;) E
in = u», x).

In the frequency domain, the Lippmann-Schwinger equation (6.11) becomes

ESC(w,x) = - f Gtio, x - z)V(z)w2Etot(w, z)dz,

where Q denotes the operator of convolution with G and V denotes the operator of multi
plication by Vw2 • We would like to solve (6.17) by E tot = (I+QV)-IEin. If we note the
analogy with the geometric series (1 + a)-l = 1 - a + a2 - a3 + ... , we could hope to
solve (6.17) as

E tot = (I + QV)-l E in = E ill _ QVEin + (QV)2Ein ~ (QV)3 E in +... . (6.18)

6.3.2 The lippmann-Schwinger Equation in the Frequency Domain

A natural approach to solving (6.16) follows from rewriting it in operator form as

E tot = E in _ QV E tot ,

6.3. Introduction to Scattering Theory

Since ,stot = ,sin + ,ssc, the scattered field ,ssc appears on both sides of (6.11), which means
that this is not simply a formula for ,ssc, but an equation that must be solved. With (6.4),
(6.11) is

To write the corresponding equations in the frequency domain, we write

Thus (6.8) and (6.9) become

This equation is of the form (6.5), with j = -va;,stot. Consequently, we can use (6.6) to
express ,ssc in terms of j = _va;,stot. This results in the Lippmann-Schwinger integral
equation

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

and

(\72 - c-2(x)a?) ,stot(t, x) = jet, x),

(\72 - co2a?),siIl (t , x) = jet, x),
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In the frequency domain, the equations corresponding to (6.3) and (6.4) are

eiklxl

G(w, x) = 4nlxl'

u(t, x) = - f get - t', x - y)j(t', y)dt'dy.

where we have written k = w/co.

is

6.3 Introduction to Scattering Theory

The solution'' of (6.3) that is useful for us is

_ 8(t - lxi/co) _ f e-iw(t-Ixl/co)
get, x) - 4nlxl - 8n21xl dco, (6.4)

where in the second equality we have used (8). The function get, x) is the field at (t, x)
due to a source at the origin at time 0 and is called the outgoing fundamental solution or
(outgoing) Green'sfunction [61] [103].

The Green's function enables us to solve the constant-speed wave equation with any
source term. In particular, the outgoing solution of

(\72-co2anu(t,x) = j(t,x) (6.5)

6Yerifying that (6.4) satisfies (6.3) away from (t, x) = (0,0) is easy, but in a neighborhood of (0, 0),
the machinery of the theory of distributions or generalized functions is needed. Readers unfamiliar with this
theory can simply accept (6.4) on faith and proceed.
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Equation (6.6) tells us how a source j radiates a field into free space. We refer to this field
as the incident field, because it is incident on the scatterers. In scattering problems, we are
interested in how these scatterers cause perturbations in the incident field. One approach
to doing this is to simply solve (6.1) directly, using, for example, numerical time-domain
techniques. However, for many purposes, it is convenient to reformulate the scattering
problem in terms of an integral equation.

where the source term j is a model for the source, namely, the current density on the antenna.
In (6.8), we use (6.2), and then subtract (6.9) from (6.8). This results in the equation for the
scattered field:

As in Chapter 3, we write ,stot = ,sin + ,ssc, where ,sin satisfies a wave equation in free
space. Consequently we compare the full wave propagation problem (6.8) to (6.9) defining
the incident field:
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6.5 The Incident Field

Figure 6.2. An inverse synthetic aperture radar (ISAR-see chapter 7) image ofa
Boeing 727 [135Jshowing artifacts due to multiple scattering.

The Born approximation is very useful, because it makes the imaging problem linear.
However, it is not necessarily a good approximation, and some images show artifacts due
to the neglect of the multiple-scattering terms of (6.18). For example, the vertical streaks
near the aircraft tail in Figure 6.2 are due to energy that enters the engine ducts, undergoes
multiple scattering, and emerges at a later time. Because the scattered wave returns to the
radar later than expected from the single-scattering model, it is interpreted as having come
from a structure farther from the radar.

The incident field Ein is obtained by solving (6.9). We will consider the incident field in
more detail in Chapter 8. For now, we use a simplified point-like antenna model, for which
j (t, x) = p(t)8(x - xo), where p is the waveform transmitted by the antenna. In the
frequency domain, the corresponding source for (6.14) is J(w, x) = P(w)8(x -xo), where
we write P for the inverse Fourier transform of p:

Another example of artifacts due to the Born approximation is evident in Figure 6.3.
In the rightmost image on the bottom row, we see three gun barrels. The brightest one is
from direct scattering; the second is from the round-trip paths involving the radar and one
bounce from the ground; the third is from a path that bounces from the ground to the gun
barrel and back to the ground before returning to the radar.

(6.20)

(6.21)
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Figure 6.1. A diagram corresponding to the last term on the right side of (6.19).

The expansion (6.18) is called the Neumann series, and it can be shown to converge [108,
113] when the operator QV is small in some sense, which is a weak-scattering assumption.

More explicitly, (6.18) is

Etot(x) = Ein(x) + / G(x-xl)V(xl)w2Ein(xl)dx' (6.19)

+ / G(x-X I)V(x ' )W2 / G(xl-y)V(y)w2Ein(y)dx'dy+ ....

6.4 The Born Approximation

Ifwe think of Gas a propagator, so that G(x -x') propagates the field from x' to x, then we
see that the second term on the right side of (6.19) can be interpreted as the incident wave
E in scattering from the scatterer at x' with strength V (X')W

2 and then being propagated
from x' to the measurement location x. Similarly, the last term on the right side of (6.19)
can be interpreted as the incident wave scattering at y with strength V (y )w2, propagating
from y to x', scattering at x' with strength V (X')W2, and propagating to the measurement
location x. This is illustrated in Figure 6.1.

For radar imaging, we measure ESC at the antenna, and we would like to determine V.
However, both V and ESC in the neighborhood of the target V are unknown, and in (6.11)
these unknowns are multiplied together. This nonlinearity makes it difficult to solve for V.
Consequently, almost all work on radar imaging involves making the Born approximation,
which is also known as the weak-scattering or single-scattering approximation. The Born
approximation is to drop all the terms of (6.19) involving more than one factor of V. This
corresponds to replacing Etot on the right side of (6.11) by Ein, which is known. This results
in a formula for ESC in terms of V:

In the frequency domain, the Born approximation is



Using (6.23) in (6.21), we find that the Born-approximated scattered field back at the trans
mitter location xO is

57

Here we do not look for a Doppler shift because we are considering only high-range
resolution pulses. We see that the effect of matched filtering is simply to replace pew) by
2JTIP(w)12.

6.7 The Effect of Matched Filtering

6.7. The Effect of Matched Filtering

The output of the correlation receiver is

We note the IIR2 geometrical decay (where R = Ixo - zl), which leads to the II R4 power
decay mentioned in the chapter on matched filtering.

(6.25)

(6.23)

(6.24)

Resolutlon • 4 InchesResolution = 1 Fool

Il/JLYNX SAR
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M·47 Tanks On Kirtland AFB
Comparison of Resolutions At Actual and 4)(Enlarged Views

E i ll (w, x) = - f G(w, x - y)P(w)8(y - xO)dy

eiklx-xol
= -pew) .

4JTlx - xOI

Resolution ~ 1 Meter
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Using (6.7), we find that the incident field in the frequency domain is

6.6 Model for the Scattered Field

Figure 6.3. Images from the Lynx SAR system at different resolutions. Here the
radar illuminates the scene from the top of the figure. Note the three gun barrels in the
bottom right image; this is a multiple scattering artifact (courtesy ofSandia National Lab
oratories).

f
e2iklxo-zl

E~(w, xo) = pew) w
2

(4JT)2IxO_ Zl2 V(z)dz.

We Fourier transform (6.24) to write the time-domain field as

If
e-iw(t-2IxO-zl/c)

E1C
(t , xo) = 2JT(4JTlxO_ Zl)2e P(w)V(z)dwdz

_f pet - 21xO - zl/c)
- (4JTlxO _ zl)2 V(z)dz.
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Chapter 7

Inverse Synthetic-Aperture

Radar

In this chapter we consider the case of an isolated airborne target. This enables us to ignore
issues related to the antenna beam.

7.1 The Far-Field Approximation

Most radar imaging involves targets that are far from the antenna. In these cases, the
following far-field approximation of the Green's function is very useful.

We begin with thefar-field expansion, which is valid for l.e] » IYI:

2£ . Y ly\2
Ix - YI = J(x - y) . (x - y) = .Jlxl2- 2x . Y + lyI2= Ixl 1 - --+-2

Ixl Ixl

(
£. Y (IYt

2))
A (ly\2)=Ixt 1-~+O Ixl2 =lxl-x,y+O ~ ,

where we have used the Taylor expansion v'f+(l = 1+al2 + O(a 2) and where we have
written £ = xlix I. Note that this far-field expansion involves an implicit choice of an origin
of coordinates.

x..

Figure 7.1. The far-field expansion (7.1).

Using (7.1) in the exponential appearing in the Green's function, we have

eiklx-yl = eiklxle-ikX'YeO(klyI2/lxl) = eiklxle-ikX.y (1 + 0(kll~12) ) , (7.2)

where in the last factor of (7.2) we have used the expansion ea = 1 + O(a).
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We see that the remainder terms are small if
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(7.7)

(7.8)

(

COSe - sin eo)
o(e) = sine cos e 0 ,

o 0 1
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7.3.1 ISAR Systems

7.3.3 Radar Data from Rotating Targets

Using V(x) = q (O(ell)x) in (7.6), we obtain a model for the data for the nth pulse as

Moving the antenna to view a fixed target from a different orientation is equivalent to using
a fixed antenna to view a rotating target. Radar imaging that uses a fixed antenna and a
rotating target is called Inverse Synthetic-Aperture Radar (ISAR). This imaging scheme is
typically used for imaging airplanes, spacecraft, and ships. In these cases, the target is
relatively small and usually isolated.

Typical ISAR systems transmit a train of HRR pulses. For isolated targets, measure
ments from the nth pulse normally contain no reflections from earlier pulses, and conse
quently range ambiguities cause no problems. A typical pulse duration is about 10-4 sec,
and a typical airborne target rotation rate is Q = 10°[sec ~ 1/6 R/sec, so that for a target
whose radius is about 100m, the distance traveled by points on the target during the pulse is
about 10-3 m. This is much smaller than the range resolution of radar systems, and therefore
the target can be considered stationary while the electromagnetic pulse interacts with it. On
the other hand, to obtain different views of the target from different pulses, we do want to
consider the motion of the target from pulse to pulse. Thus we use a model in which we
imagine that the target moves only between pulses. This is the start-stop or stop-and-shoot
approximation.

Typical ISAR systems remove the translational motion via tracking and range align
ment, leaving only rotational motion. The range alignment process is discussed further in
section 7.3.8 below.

In (7.8), we make the change of variables Y = O(ell)z and use the fact that the inverse of
an orthogonal matrix is its transpose, which means that XO • 0-1(ell)y = O(ell)xo . Y (this
might seem more familiar when the inner product is written in the notation (', .». We thus

7.3.2 Modeling Rotating Targets

We denote by q the target scattering density function in its own rest frame. Then the
scattering density function seen by the radar is V(x) = q(O(ell)x), where 0 is an orthogonal
matrix and where ell denotes the time at the start of the nth pulse.

For example, if the radar is in the plane perpendicular to the axis of rotation ("turntable
geometry"), then the orthogonal matrix 0 can be written

(7.3)

(7.6)
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1 r===== = _1 (1 + 0 (l!l)) .
Ixl 1 _ 2i·y + 0 (Jrr) Ixl [x]

Ixl Ixl2

e2iklxOI f
DB(w) ~ (4n)2IxOI2k2IP(W)12, e-

2ikio;ZV(z)dz.

F[V](2kiO)

1

Ix - YI

Similarly we expand Ix - YI-I to obtain

If we inverse Fourier transform? (7.5), in the frequency domain we obtain
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G(x - y) = eiklx-yl = eiklxl e-iki. y (1 + 0(l!l)) (1 + 0(k IYI2)) . . (7.4)
4nlx - YI 4nlxl Ixl Ixl

7.2 The Far-Field Expansion in the Scalar Wave Born
Approximation

1. IYI « Ixl and

2. klYI 2 « [x],

Here we assume that the source is a point-like antenna with the time dependence p(t), so
that in the frequency domain, the incident wave E ill has the form (6.23). For this source,
the corresponding Born-approximated scattered field is given by (6.24). The next step is
matched filtering, which results in (6.26). In (6.26), we choose the origin of coordinates to
be in or near the target and use the far-field expansion (7.4) (with z playing the role of y) in
(6.26):

I7B(t) ~ 1 f e-iwCt-2IxOI/c+2iO'Z/C)eIP(w) 12V (z)dwdz (7.5)
(4n)2lxoI 2 .

7Here we use convention (3).

Using this and the expansion (1 + a)-I = 1 + O(a) ,we obtain the Iarge-]x Iexpansion of
the Green's function

7.3 Inverse Synthetic-Aperture Imaging

We see that DB of (7.6) is proportional to the Fourier transform of V, evaluated at the
spatial frequency 2k£0. Thus if we move our antenna to obtain different views £0, we
obtain different Fourier components of the target reflectivity function V. The moving
antenna is said to sweep out a synthetic aperture, and radar imaging based on this scheme
is called Synthetic-Aperture Radar (SAR). We will consider this in more detail in Chapter 9.



7.3.4 The Data Collection Manifold

Figure 7.2. The region 0, for turntable geometry.
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(7.10)

ky(GHz)kx(GHz)

D(k, e) = / e-ikee'Yq(y)dy

= / e-ikCY!COSIi+Y2Sinli)/ q(Yl' Y2, Y3)dY3,dYldY2'

qcy!.)'2)
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We see that the data depend only on the quantity q(Yl, Y2) = Jq(Yl, Y2, Y3)dY3, which is
a projection of the target onto the plane orthogonal to the axis of rotation. In other words,
in the turntable geometry, the radar imaging projection is the projection onto the horizontal
plane. We write y = (YI, Y2), so that y = (y, Y3), and we note that in this geometry,
eli' y = (Peli) 'y, where P : ]R3 -+ ]R2 denotes the projection onto the first two components
of a three-dimensional vector.

Examples ofISAR images are shown in Figures 7.5 and 7.6.

7.3.6 ISAR Resolution

Figure 7.3. This shows regions in Fourier space corresponding to the backhoe
scattering data sets released by the Air Force Research Laboratory (courtesy ofAir Force
Research Laboratory Sensors Directorate).

To determine the resolution of an ISAR image, we analyze the relationship between the
image and the target.

We consider the turntable geometry, for which we use (7.7). We take xO = (1,0,0)
and write eli = O(e)xo and k = 2k. Then (7.9) is proportional to

(7.9)
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obtain (7.8) in the form

e2iklxol /
DR(w, ell) = (4JT)2IxOI2k2IP(W)12, e-2iWCIi,,)Xo'Yq(y)dY?

exF[q](2kOCIi,,)xO
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Figures 7.2 and 7.3 show examples of regions in Fourier space corresponding to 2kO(ell )x o.

The region determined in this manner is called the data collection manifold.

7.3.5 The Polar Format Algorithm (PFA)

Thus we see that the frequency-domain data are proportional to the inverse Fourier transform
of q, evaluated at an angle determined by the target rotation angle.

w
W /2\1.-:------------------------- - - - - - - - -t-

_...._...._..-.._... -._.. ep

..-.t.

Figure 7.3 corresponds to a data set that was publicly released by the Air Force
Research Laboratory (AFRL) for use by researchers testing imaging algorithms. This data
set" was produced by the code XPATCH simulating radarreturns from a backhoe (excavating
equipment) floating in free space. The dark slice at the bottom of Figure 7.3 shows data from
the turntable geometry. The dark bands within the slice show data that might be available
if the transmit spectrum is restricted. The dark curve to the left of the center is an example
of a curve over which an airborne platform might collect data. The research community is
challenged to produce the best possible images from these data sets.

For narrow-aperture, turntable-geometry data, such as shown in Figure 7.2, the Polar Format
Algorithm (PFA) is commonly used. The PFA consists of the following steps, applied to
frequency-domain data.

1. Interpolate from a polar grid to a rectangular grid (see Figure 7.4).

2. Use the two-dimensional fast (inverse) Fourier transform to form an image of q.

Alternatively, algorithms for computing the Fourier transform directly from a nonuniform
grid can be used [59, 77,106].

8available from https://www.sdms.afrl.af.mil/main.php.
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Figure 7.5. An ISAR image ofa Boeing 727 [I35].
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Down-range resolution in the small-angle case

Figure 7.6. On the left is an ISAR image ofa ship; on the right is an optical image
ofthe same ship (courtesy ofNaval Research Laboratory).

For many radar applications, the target is viewed from only a small range of aspects eg; in
this case, we can use the small-angle approximations cos ¢ ~ 1 and sin ¢ ~ ¢.

(7.14)

(7.11)

(7.13)

(7.12)
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x = r(cos 1fi, sin 1fi) and (Peg) = (cos ¢, sin ¢),

o - measured data

• - interpolated data

rectangular /
interpolating grid

lex) = f eix.ii(Peo)D(k, 8)kdkd8 ex Leix.ii(Peo)f e-iy'/(Peo)(j(y)dykdkd8

=f ,L ei(x-y).ii(PeO)kdkd8, (j(y)dy.

K(x-y)

It can be calculated by writing

where XQ(keg) denotes the function that is 1 if keg E Q and °otherwise.
To form the image, we take the two-dimensional inverse Fourier transform of (7.11):

so that x • (Peg) = r cos(¢ - 1fi). The "down-range" direction corresponds to 1fi = 0, and
"cross-range" corresponds to 1fi = JT/2.

Below we use the peak-to-null definition of resolution.

The function K is the point-spread function (PSF); it is also called the imaging kernel,
impulse response, or sometimes ambiguity function. The PSF can be written

For resolution analysis, we consider the data corresponding to the set Q = {keg
0)1 < 0) < 0)2 and 181 < <pl, as shown in Figure 7.2. Then we can write (7.10) as

Figure 7.4. This shows the process of interpolatingfrom a polar grid to a rectan-
gular grid. .
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7.3.7 ISAR in the Time Domain

(7.20)

(7.19)

We Fourier transform (7.9) into the time domain, obtaining

Figure 7.7. From left to right: The data collection manifold, the real part of K,
cross sections (horizontal is rapidly oscillating; vertical is slowly oscillating) through the
real part of K for the two cases. Down-range is horizontal (reprinted with permission of
the Institute ofPhysicsfrom [88J).

7.3. Inverse Synthetic-Aperture Imaging

If we evaluate 17B at a shifted time, we obtain the simpler expression

Example. Figure 7.7 shows a numerical calculation of K for ¢ = 12°, and two different
frequency bands: [kl, k2] = [200, 300](i.e., b = 100 and ko = 250) and [kl, k2] = [0,300]
(i.e, b = 300 and ko = 150). The second case is not relevant for most radar systems, which
do not transmit frequencies near zero, but is relevant for other imaging systems, such as
X-ray tomography. These results are plotted in Figure 7.7.

(7.15)

(7.16)

(7.17)

(7.18)
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K(O, r) ~ 2bko<l>sinc(kor<l».

- 'k 1K (r, 0) R:;j bko<l> e' orsinc-br ,
2

1ii2 /<1> -
K(r,O) R:;j _ k eikr d¢dk

k, -<I>

1
ii2

- 2<1> d 1ii2 -= 2<1> _ keikr dk = -.- -- _ eikr dk
k, I dr kl

2<1> d [ iiiorb. br]=-- e -smc-
i dr 2 2'

Since ko» b, we have
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In the down-range direction (1ft = 0), under the small-angle approximation, we obtain
for (7.13)

where b = k2 - k1 = 4JrB [c, where B is the bandwidth in Hertz and ko = (k1 + k2)(2 =
2Jr(VI + V2) = 2Jrvo, where Vo is the center frequency in Hertz.

Since ko » b, the leading order term of (7.15) is obtained by differentiating the
exponential:

yielding peak-to-null down-range resolution 2Jr(b = c(2B), which is the same as the
resolution we obtained for the chirp in section 5.3.1. Here it is the sine function that
governs the resolution.

Cross-range resolution in the small-angle case

In the cross-range direction (1ft = Jr(2), we have cos(¢ -1ft) = sin e, which, under the
small-angle approximation, is approximately ¢. With this approximation, the computation
of (7.13) is

Thus we have peak-to-null cross-range resolution x (ko<l» = c(4vo<l» = A.o(4<1». Since
our angular aperture is 2<1>, this is consistent with our earlier observation in section 5.4.1 that
cross-range resolution is A.o divided by twice the angular aperture. We note that it is precisely
the oscillatory factor exp(ikor) which is responsible for good cross-range resolution.
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(7.27)

(7.28)

(7.25)

(7.26)

(Rf, h)s.iL = ff tu». P;)h*(s, ii)dsdP;

(f, Rth)x =f f(x)[Rth]*(x)dx.

Using (7.22) in (7.27) and interchanging the order of integration shows that the adjoint
Rtoperates on h(s, It) via

(Rth)(x) = L'-l h(x . P;, P;)dp;.

where

and

f = 1 RtII-/l (R[f]) ,
2(2n)/l-1

where II-/l is the filter (2.12) operating on the s variable and the operator Rt is the
formal'? adjoint of R. The adjoint is defined by the relation

Here Rt integrates over the part of h corresponding to all planes (n = 3) or lines
(n = 2) throughx. When it operates on Radon data, Rt has the physical interpretation
ofbackprojection. To understand this, we consider the case where h represents Radon
data from a point-like target. First, we note that, for a fixed direction fl, the quantity
h (x . P;,P;), as a function of x, is constant along each plane (or line if n = 2) x . fl =
constant. Thus, at each fl, the function h(x . P;,P;) can be thought of as an image
in which the data h for direction it is backprojected (smeared) onto all points x that
could have produced the data for that direction. The integral in (7.28) then sums
the contributions from all the possible directions. (See Figure 7.8.) The inversion
formula (7.25) is thus afiltered backprojection formula.

• Inversion by Filtered Backprojection: For the n-dimensional Radon transform, one
of the many inversion formulas [87, 89] is

7.3.8 RangeAlignment

We have seen that ISAR imaging relies on target/radar relative motion. From elementary
physics we know that rigid body motion!' can always be separated into a rotation about
the body's center of mass and a translation of that center of mass. Backprojection shows
us how the rotation part of the relative radar/target motion can be used to reconstruct a
two-dimensional image of the target in ISAR and spotlight SAR. But, usually while the
target is rotating and we are collecting our data, it will also be translating-and we haven't
accounted for that in our imaging algorithm.

WHere the term "formal" means that we do not worry about convergence of the integrals; we consider only
functions that decay sufficiently rapidly so that the integrals converge.

11We have implicitly assumed throughout that the target moves as a rigid body-an assumption that ignores
the flexing of aircraft lift and control surfaces, or the motion of vehicle treads.
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(7.21)

(7.24)

(7.23)
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If'.r:v-->o-(RiL[f])(u) = 2n e-1So-(RiL[f])(s)ds

= 2~ f e-iso- f (2~ f e-iW(S-iL,X)dW) f(x)dxds

If' -= - 8(w - u)e-'W/L'Xf(x)dxdw
2n

1 f .- 1= 2n e-W/L'xf(x)dx = (2n)/l-I.r/l[f](uP;),

where we have again used (8) in the second and third lines.

9Here we use convention (6).

where F on the left side denotes a one-dimensional Fourier transform in the s variable
and where F on the right side denotes an n-dimensional Fourier transform." The result
(7.23) follows from the calculation

Because the Radon transform arises in X-ray tomography, it has been thoroughly studied
[87,89]. We write RiL[q](s) = R[q](s, /L).

Some of the main properties of the Radon transform are as follows.

• The Projection-Slice Theorem:

.rs->o-(RiL[f])(u) = (2n)I-/l.r,,[f](uP;),

R[q](s, /L) = f 8(s - p;. y)q(y)dy (7.22)

is the Radon transform. Here P;denotes a unit vector. In other words, the Radon transform
of q is defined as the integral of q over the plane s = fl . y.

ISAR systems typically use a high-range-resolution waveform, so that f3 ~ 8. Thus
ISAR imaging from time-domain data becomes a problemof inverting the Radon transform.

We temporarily write r = -20(e/l)xo . y/c and write the co integral on the right side of
(7.20) as

where

f3(t - s) = f e-iw(t-s)w2IP(w)12dw.

With (7.21), we can write YJB as
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12Note that the wavelength in question is that of the signal output by the correlation receiver (see Figure
2.2) and not the wavelength of the transmitted waveform. In HRR systems, however, this wavelength can
still be quite small.
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7.3. Inverse Synthetic-Aperture Imaging

maximum is taken to indicate the size of the shift botll . This idea is illustrated in Figure 7.9,
which displays a collection of properly aligned range profiles.

Figure 7.9. Range alignment preprocessing in synthetic aperture imaging. The
effects of target translation must be removed before backprojection can be applied.

Single pulse ambiguity

Chapter 7. Inverse Synthetic-Aperture Radar

:1

Multiple pulse "imaging"-
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Typically the radar data are preprocessed to subtract the effects of target translation
before the imaging step is performed. Under the start-stop approximation we can consider
our range profile data IJB(t, ell) to be approximately a shifted version of the range profile at
the previous pulse. Thus IJ B(t, ell+1) ~ IJ B(t + botll , ell), where botll is a range offset that is
determined by target motion between pulses. -

The collected range profiles can be shifted to a common origin if we can determine
botll for each ell' One method to accomplish this is to assume that one of the peaks in each of
the range profiles (for example, the strongest peak) is always due to the same target feature
and so provides a convenient origin. This correction method is known as "range alignment"
and must be very accurate in order to correct the offset error to within a fraction of a
wavelength.F Typically, IJB(t+ botll , ell) is correlated with IJB(t, ell+l ) , and the correlation

Figure 7.8. This illustrates the process ofbackprojection. The small blips suggest
the time delays that would result from an interrogating radar pulse incident from the indi
cated direction. Note that scatterers that lie at the same range from one view do not lie at
the same range from other views.



Chapter 8

Antennas

For imaging objects on the earth, we need to understand how an antenna radiates and how
it can form a beam.

8.1 Examples

There are many different types and shapes of antennas; see Figures 8.1-8.18 .

. Figure 8.1. A dipole antenna. The radiating element is at the left; the structures
on the right couple the antenna to the transmitter. A dipole antenna is one of the simplest
to analyze (courtesy ofSchwarzbeck Mess-Elektronik).

Antennas tend to radiate efficiently at frequencies for which the wavelength is on the
same order as the dimensions of the antenna. Many antennas are designed with complicated
shapes in an attempt to make them radiate in roughly the same way over a broad band of
frequencies.
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8.2 Scalar and Vector Potentials
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Figure 8.5. A spiral antenna (courtesy ofNorth American Astronomical Observatory).

Figure 8.4. A conical spiral antenna (courtesy ofAir Force Research Laboratory
Sensors Directorate).

8.2. Scalar and Vector PotentialsChapter 8. Antennas

Fractal antennas, for example, are of great interest because the range of length scales
tends to give rise to a broadband antenna. In addition, designing antennas as space-filling
curves may allow antennas to be small in overall size yet behave electrically as if they are
large.

To understand the radiation from an antenna, it is helpful to use a somewhat different
formulation of Maxwell's equations. This is the formulation in terms of vector and scalar
potentials.

Figure 8.3. A loop antenna (courtesy ofAir Force Research Laboratory Sensors
Directorate).

Figure 8.2. A biconical antenna (courtesy of Air Force Research Laboratory
Sensors Directorate).
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(8.5)

(8.7)

(8.6)

E - iwA = -'1<1>.

B ='1 x A.

V x E - iwV x A = O.

13Here the minus sign is merely a convention.

Since a vector field whose divergence is zero can be written as the curl of another
vector field, we see that the no-mag netic-monopole law (8.4) implies that the magnetic
induction field can be written as the curl of another field A called the vector potential:

Figure 8.9. An L-band reflector antenna (courtesy ofAir Force Research Labora
tory Sensors Directorate).

This equation says that the curl of the quantity E - iwA is zero. But a vector field whose
curl is zero can be written as the gradient of a potential. Thus there is some scalar field <1>
called the scalar potential for which'"

With this notation we can write Faraday's law (8.1) as

Figure 8.8. Prototype antennas designed, developed, and measured at the
NASA Glenn Research Center. From left: Helix antenna, corrugated horn antenna, and
waveguide-excited short backfire antenna (courtesy ofNASA Glenn Research Center).

8.2. Scalar and Vector Potentials

(8.1)

(8.2)

(8.3)

(8.4)

Chapter 8. Antennas

v x Etco, x) = iwB(w, x),

V x Htto, x) = J(w, x) - iwD(w, x),

V· Dtio, x) = pew, x),

V· Bto»,x) = o.

In the frequency domain, Maxwell's equations are
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Figure 8.7. A horn antenna (courtesy ofAir Force Research Laboratory Sensors
Directorate).

Figure 8.6. A dual-polarized log-periodic antenna (courtesy ofAir Force Research
Laboratory Sensors Directorate).
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(8.8)

(8.9)

(8.10)
A-+ A+V1jf,
eI> -+ eI> + iw1jf

v X (l-lo1V X A) = J - iWEo (iwA - VeI»,

EOV, (iwA - VeI» = p.

However, there is a complication. Adding the gradient of any scalar vector field 1jf to
the vector potential A leaves the physical magnetic induction field B unchanged (because
the curl of a gradient is always zero). If, in addition, iw1jf is also added to the scalar potential
eI>, then the electric field E is left unchanged, as can be seen easily from (8.7). Thus the
transformation

• The Coulomb gauge, in which we use the added condition V . A = O.

leaves the physical fields unchanged. Such a transformation is called a gauge transforma
tion.

There are two gauges that are frequently used for solving problems in free space:

Figure 8.12. Microstrip antennas with the shape of successive steps in the con
struction ofa Koch curve (courtesy ofLEMA-EPFL Switzerland).

This equation can be solved for E, and the resulting expression can be used in (8.2) and (8.3)
to obtain one vector equation and one scalar equation for the vector and scalar potentials.
This is a system of four scalar equations in four unknowns, which seems significantly simpler
than the original Maxwell's equations. For the case of a source in free space, where we use
(1.5), these four scalar equations are

8.2. Scalar and Vector PotentialsChapter 8. Antennas

dielectricmetal
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Figure 8.11. A diagram ofa microstrip antenna.

Figure 8.10. A Cassegrain reflector antenna. A Cassegrain antenna involves a
feed (the rectangular horn in the center) aimed at a secondary convex reflector (at the left
in the image) and a concave main reflector. This antenna is part of the ARPA Long-Range
Tracking and Instrumentation Radar (ALTAIR) located in the Kwajalein atoll on the island
ofRoi-Namur (courtesy of U.S. Department ofDefense).
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(8.12)

(8.13)

8.2. Scalar and Vector Potentials

Figure 8.15. The PAVE PAWS antenna, part ofthe Ballistic Missile Early Warning
System in Alaska (courtesy of U.S. Department ofDefense).

In (8.8) we use (9) and collect the gradient terms on the right side. This gives us

Figure 8.16. A microstrip antenna that fits into an aerodynamic structure. Such
antennas are called conformal antennas (courtesy ofBall Aerospace).

where k 2 = w2!-toEo. But the term in parentheses on the right side is precisely the ex
pression (8.11) defining the Lorenz gauge, and is zero. Thus, for a source in free space,
Ampere's law reduces to three uncoupled scalar wave equations with source terms:

(8.11)

Chapter 8. Antennas

v .A - iWEo!-to<P = O.

• The Lorenz!" gauge, in which we use the added condition

Figure 8.13. Microstrip antennas in the form ofa Sierpinski gasket (courtesy of
LEMA-EPFL Switzerland).

Figure 8.14. An array antenna (courtesy ofAir Force Research Laboratory, Sen
sors Directorate).
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For radiation from an antenna, we use the Lorenz gauge.

14Danish physicist Ludvig Valentin Lorenz formulated this condition in 1867. The Dutch physicist Hendrik
Antoon Lorentz also discovered the same condition at a later date [10].



where L denotes the maximum magnitude of a point y on the antenna. The third condition

is needed only in the vector case.

where we have used the "BAC-CAB" vector identity (10), together with k2 =
OJ2 / c6 = fLoEoOJ2. We see that one effect of going to the far field is that the lon
gitudinal component of E is removed, so that E is perpendicular to x, which as we
saw in (1.8), must be true for a plane wave propagating in direction X.

Thus the end result is

Chapter 8. Antennas 85

(8.26)

(8.24)

(8.25)

j
L/2 -uursn ikLx·e/2

F(k,X) = e-ikx'('\'e)Ieds = Ie_e .,..-----,.e _
-L/2 ikx· e
~2i sin(kLx. e/2) ~ ~ ~

= -Ie 'k~ ~ = -LIe sinc(kLx . eI2).
I x· e

2A
beamwidth = L'

2n 2n Ae ~ - = = - = ---------------
kL (2n /A)L L number of wavelengths that fit on antenna'

where we have used k = 2n / A. The full beamwidth is twice (8.25):

Because the first zero of the sine function occurs when the argument is equal to n, half
the width of the main lobe of the radiation vector is obtained from kLx . e/2 = tt . It is
conventional to write x·e = sin e, where eis measured from the normal. For a narrow beam,
we can use the approximation sin e ~ e, and obtain an expression for half the beamwidth
as

Jequiv(OJ, x) == Ii x H(OJ, x),

where Ii is normal to the (nonexistent) aperture surface and directed toward the radiated
field. Then we can make use of all the previously developed machinery for radiation from
a current density. This approach is called the "field equivalence principle."

8.4 Examples

8.4.1 A Short LinearAntenna

8.4.2 Radiation from an Aperture

8.4. Examples

In the case of radiation from an aperture such as a horn or an opening in a waveguide, there
is no current flowing on the aperture. Rather, in the aperture there is an electromagnetic
field, which has propagated from the waveguide attached to the horn to the horn opening.
A common practice of antenna design engineers is to replace the distribution of fields over
the aperture with an "equivalent current distribution" derived from the frequency-domain
version of (1.9), namely,

Thus we see that a shorter wavelength compared to the size of the antenna gives rise to a
narrower beam.

Once F is known, it is used in (8.22) to obtain the electric field in the far-field.

The polarization E of the resulting electric field depends on the viewing direction x as
E= x x (x x e) ex e- (e .x)x.

For an antenna consisting of a wire that is short relative to the wavelength, the current
density is approximately constant along the antenna. If we consider the antenna to be a line
in space, say, the set of points x (s) = se with - L /2 :::: s :::: L /2, and denote the current
density by the constant vector tt. then the radiation vector is

(8.23)

(8.20)

(8.19)

eiklxl
Erad = iOJfLO--XX (xx F).

4nlxl
and

~ a ~l a ~ 1 av = r- +0-- +4>---,ar rae r sin e' a¢

[
eiklXI J (eikIXI)

V. - F(k, X) = F(k,X)' V -
klxl klxl

eiklxl [ ( 1 )J= ikx· F(k, X) klxl 1+ 0 klxl

eiklxl
Hrad = i--(kxx F)

4nlxl

[ (
eiklXI )J [ eiklxl [ ( 1 )JJ

V V· klxl F(k, X) = V ikx· F(k, X) klxl 1+ 0 klxl

eiklxl [ ( 1 )J
=ikx(ikx.F(k'X))klxI 1+ O klxl .(8.21)

eiklxl eiklxl
Erad (OJ , x) = iOJfLO~ [F - x(x· F)], = iOJfLO~ [x x (x x F)] , (8.22)

We note that obtaining expression (8.22) required three far-field conditions:

We see that we simply replace V in (8.5) and (8.18) by ikxto obtain the leading-order

terms in the far field.

and

where r = Ixl and r = X. We note that the angular derivatives involve an extra
factor of l/r = l/Ixl and therefore can be neglected in the leading-order large-jr]
expression; the same holds for the curl operator and divergence operator. In particular,

we have

1. Ixl» L,

2. Ixl» kL2, and

3. Ixl» 1/k,

6. We obtain the leading-order large-]r I term from (8.18) and (8.17):

5. We express the gradient operator in spherical coordinates:
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8.4.3 A Linear Array of Short Linear Antennas

We follow the same procedure as above to determine the beamwidth, and obtain the same
result, with L replaced by a in the ez direction and by b in the ez direction. Again this is
used in (8.22) to obtain the electric field.
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(8.29)
N-l . __ 1 - eikdNx.el. eikdNx.el./Z [Sin(kdx.. ~e NI2) ]

A(k X) - '" -lkx·el.dn _ _ ..L
,x - L..Je - 1 _ eikdx·ii - eikdx.el./z sin(kdx .e..L/2 .

11=0 '-y-', ,

phase factor mag~itude

8.5. Antenna Properties

where F1 denotes the element factor, which is the single-element radiation vector (in this
case - 2aI sinc(kax .e)), and where A is the array factor

8.5.1 Beamwidth

N N
A(k, X) = L eikjdcos<!>oe-ikjdX:el. = L Ije-ikjd\x.el.-COs<!>o).

j=O }=o

In this case, the maximum of the array factor now occurs when x . e..L - cos cPo = O.
Consequently, the beam pattern will be rotated, even though the antenna itself remains fixed.
When the array pattern is shifted in this manner, the array is said to be an electronically
steered array (ESA). It is also referred to as a phased array.

8.5 Antenna Properties

We note that the magnitude of the array factor is periodic with period defined by kdx·e = 2Jr.
This means that when kd is sufficiently big, the array has extra main lobes, called grating
lobes.

Consequently, so long as the array is made up of copies of the same elements, the
analysis of phased arrays reduces to the following:

1. Calculation of the radiation vector for a single element.

2. Calculation of the array factor A.

8.4.4 Array Steering

In our analysis above we have assumed that the current density on the antenna is known.
This current density depends on the antenna geometry and on how the antenna is fed, and
calculating this current density is the most difficult part of antenna design. In general, the
current density must be computed numerically.

Antennas can have a variety of properties that are important in practice. We summarize
some of them below [125].

In the above example, the current on each antenna element was assumed to be the same. We
could, of course, drive them with complex-valued voltages (i.e., with amplitude and phase):
If we replace I in (8.28) by I exp(ikjd cos cPo), then the array factor becomes

We have seen above that the beamwidth is no narrower than twice the ratio of wavelength
to antenna size. This holds even in the case when the current density is not constant over
the antenna. Tapering the current density to zero near the edges of the antenna reduces the
(undesirable) sidelobes, at the expense of broadening the main beam slightly [99].

(8.28)

(8.27)

Chapter 8. Antennas

F(k, X) = fa f" e-ikx'(Stet+S2ez) I dsids-,
-a -"

= I (2b sinc(kbx· ii)) (2a sinc(kax. e;.)).

N-l

F(k, X) = I L f e-ikx'\eS+IIM1J ds
11=0

N-l

=-2aI sinc(kax· e) L e-ikx.i!.Ldll = F1(k, X) A(k, X),
11=0

Figure 8.19. The radiation pattern IE Ifor a short linear antenna.

The standard approximation in this calculation is that the aperture field is the same as
the one that would exist if the opening in the waveguide did not exist. This means that once
the fields in the waveguide or horn are determined, the radiated field can be calculated in a
straightforward manner.

In the case in which the field H is constant over an aperture [-a, a] x [-b, b] in
the plane formed by ii and e;., the equivalent current density is also a constant, which we
denote by I, and we have

We consider the case of N short antennas each pointing in direction e, each of length 2a,
each carrying the constant current I = rz. and positioned a distance d apart in the e..L
direction. Then the radiation vector is
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8.5.5 Phase Center

Antenna gaindescribes how well the antenna transforms input power into radiation intensity
in a certain direction:
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(8.34)

(8.35)

(8.36)

f
eiklx-yl

A(k,x)= 4JTIX_YI J(w,y-xO)dy.

Ix - YI = Ix - xOI _;=-;0. (xo - y) + ....

8.6. Antennas in Imaging

8.6 Antennas in Imaging

We now write

The analysis above assumes the antenna is located at the origin. If, instead, the antenna
is located at xo, we write the current density on the antenna as J (ei, x - xo). The vector
potential is then

8.6.1 Field from Antenna not at the Origin

The analysis of section 8.3 now applies with x replaced by x - XO and with Y replaced by
Y - xO. This results in the far-field expression for the vector potential

A typical SAR antenna transmits a single polarization on each pulse, and the measured
voltages correspond to receiving a single polarization. In the case when the antenna is
highly directional, there are only two possible polarizations, namely, those perpendicular
to the beam direction. These two polarizations are denoted H for "horizontal" and V for
"vertical" (with respect to the horizon). Thus a typical narrow-beam radar system has four
possible polarization "channels," namely, HH, HV, VH, and VV, where the first letter
in the sequence denotes the transmit polarization and the second letter denotes the receive
polarization. (In most cases, the V Hand HV channels are the same.)

We do not have a mathematical model for polarimetric scattering that is tractable for
imaging. Consequently, images are made from each polarization channel separately, and
for each channel we use a scalar model for the electromagnetic signal.

In particular, we use a scalar model for radiation from an antenna. Table 8.1 shows
the correspondence between the true vector model on the left and our scalar model on the
right. In the right column we use a subscript l as a reminder that the scalar model should be

In real-aperture imaging, we use a big antenna or high frequencies to obtain a narrow
beamwidth; consequently the antenna footprint on the ground is fairly small. We scan this
footprint over the ground (perhaps using an ESA). For each spot position on a map, we
assign a color corresponding to the amplitude of the received energy.

In synthetic-aperture imaging, we use a smaller antenna with a wide beam that moves
along a flight path. We illuminate the same region from different antenna locations and use
mathematics to form a high-resolution image.

8.6.2 The Scalar Antenna Model

Ix - YI = Ix - XO + XO - yl,

and the far-field assumptions take the form Ix- xOI » [xo - YI and Ix- xOI » k[xo_ Y1 2,

which give rise to the approximation

(8.33)

(8.32)

(8.31)

(8.30)

Chapter 8. Antennas

fS2 U(i)dS
input power

4JTU(i)
Gain(i) = --:-.----'-

input power

r 2

u(i) = -e·Re [E(re) x H*(re)].
2

8.5.4 Radiation Efficiency

In our derivation of the radiation fields, we took the origin at a point near the antenna and
carried out a far-field expansion relative to this point. If, when we do this, we obtain a
radiation vector F with constant phase (in the neighborhood of a direction of interest), then
we say that the origin is the antenna phase center. In other words, if we rotate the antenna
about its phase center, then the phase of F does not change.

An antenna's phase center can be determined in practice by finding a far-field surface
of constant phase, approximating the surface as necessary by a sphere, and determining the
sphere's center.

Thus we have Gain(i) = erD(i).
Many antennas have radiation efficiency approaching 100%; however, as the antenna

size decreases (relative to the wavelength), the radiation efficiency usually becomes very
low.

8.5.3 Gain

8.5.2 Directivity
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The fact that (8.31) is positive and independent of r follows from (8.23).

The radiation efficiency e, of an antenna is the ratio of the total radiated power to the input
power:

Most SAR antennas radiate the bulk of their energy in a narrow beam. The antenna charac
teristic that describes how well the antenna concentrates energy in certain directions is the
antenna directivity. The directivity D(i) in direction eis defined as

(i) _ radiation intensity in direction e _ u(i)
D e - average radiation intensity - 4~ fS2 U(i)dS '

where S2 denotes the unit sphere (i.e., the spherical shell of radius 1) and where the radiation
. intensity U in direction eis given by [62]



8.6.3 Antenna Reception

where in the second line we have used the far-field expansion (8.35) with ly-xOI » \xO-zl.
Thus we see that the effect of antenna reception is to include a second factor corresponding
to the antenna beam pattern. Typically, when the same antenna is used for transmission and
reception, the antenna beam patterns for transmission and reception are the same.

thought of as corresponding roughly to a single Cartesian component of the corresponding
vector quantity. In the rest of the book we drop the subscript I; note that E or E thus denotes
a single Cartestian component of e or E and not the magnitude of e or E. In general the
scalar model is adequate for narrow beams and polarizations roughly perpendicular to the
beam direction.

(9.1)

(9.4)

f eiklx-xol (----)
Ein(w, x) = G(w, x - y)J(w, y)dy R::! ° F k, x - x O ,

4Jrlx -x I

Synthetic-Aperture Radar

Chapter 9

(V2 + e) E in = J,

where k = wlc, and where J is proportional to the effective current density on the antenna.
As listed in Table 8.1, we obtain

With better models for the field radiated from an antenna, we now return to (6.21), where
for E in we use the scalar model

where we have used the far-field approximation and we have used XO as the antenna center.
Here F is the scalar analogue of the radiation vector, listed on the bottom line of Table 8.1.
The function F includes the transmitted waveform.

Consequently the Born-approximated scattered field is

ES;(w, x) = f G(w, x - y)eV(y)Ein(w, y) dy

f
eiklx-yl eikly-xOI ----

= 4JrIX_Ylk2v(y)4Jr\Y_XO\F(k,y-xO) dy. (9.2)

If we assume that the receiving antenna is at the same location as the transmitting antenna,
and that the reception pattern is denoted by Free, then from the same computation used to
obtain (8.38), we find that the scalar Born model for the received signal is

SB(W) = f e2iklxO-yIA(w, xO, y)V(y) dy, (9.3)

where A incorporates the geometrical spreading factors, transmitted waveform, and antenna
beam patterns:
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A k XO _ k
2F

(k, ;=-;0) Free (k,;=;O)
(, ,y) - (4Jrlxo _ y\)2

We can also include the effect of matched filtering into A.

(8.38)

(8.37)
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Table 8.1. Comparison of the vector and scalar antenna models.

Vector model Scalar model

V 2A - /Lo E08;A = -/Lo.:! V2E/ - /Lo E08; E/ = /L0 8tJi
V2A + k2A = - /Lo J V2E/ + k2E/ = -iw/LoJ/

A(w, x) = f 4e;~;~;I/LoJ(w, y)dy E/(w, x) = f 4e;~;~;1 (iw/LoM(w, y)dy

E = ito [A +k-2V(V . A)]

E(x) R::! iW/Lo:::~1 [F - x(x· F)]
• eiklxl

E[(x) R::! lW/L04rrlxIF/

F(k, X) = f e-ikx.yu». y)dy F/(k, X) = f e-ikx.yJ/(w, y)dy
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When an electromagnetic wave impinges on an antenna, it induces currents on the antenna
that can be measured; these measurements are the received signal [116].

The reception process is easiest to imagine if one thinks of an array antenna, centered
around xO, in which the effect from each element is to multiply each frequency by a weighting
function W that depends on position z on the antenna:

Sree(w) ex: 1 Ese(w, z)W(w, z) dz.
ZEantenna at XO

We then insert expression (6.16) for the scattered field to obtain

1 f
eiklz-yl

Sree = 4 I Ik2V(y)E tot(y)
dyW(w, z) dz

antenna x z - y

f eikly-xOI i-:"ex: k2V(y)E(y) e-ik(y-xO).(z-xO)W(w; z) dz dy,
4JrIY-xO\, ,

FrccO<.r[W]



9.1 Spotlight SAR

We approximate A within the footprint as a product of a function of (w, s) and a function
of y. The function of (w, s) can be taken outside the integral; the function of y can be
divided out after inverse Fourier transforming.

As in the ISAR case, the time-domain formulation of spotlight SAR leads to a problem
of inverting the Radon transform.

939.2. Stripmap SAR

9.2 Stripmap SAR

Figure 9.1. In spotlight SAR the radar is trained on a particular location as the
radar platform moves. In this figure the equirange circles (dotted lines) are formed from
the intersection of the radiated spherical wavefront and the surface ofa (fiat) earth.

Stripmap SAR sweeps the radar beam along with the platform without staring at a particular
location on the ground (Figure 9.2).The equirange curves are still circles, but the data no
longer depend only on the direction from the antenna to the scene. Moreover, because the
radar doesn't stare at the same location, there is no natural origin of coordinates for which
the far-field expansion is valid.

To form a stripmap SAR image, we want to invert (9.5) without the help of the far-field
approximation. Our strategy is to use a filtered adjoint of the forward map F. Use of the
adjoint is natural for a number ofreasons. First, in the far-field (ISAR) case, inversion is done
by means of the inverse Fourier transform, and the inverse Fourier transform is precisely

Figure 9.2. Stripmap SAR acquires data without staring. The radar typically
has fixed orientation with respect to the platform, and the data are acquired as the beam
footprint sweeps over the ground.

(9.7)
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Spotlight SAR is illustrated in Figure 9.1. Here the moving radar system stares at a specific
location (usually on the ground) so that at each point in the flight path the same target is
illuminated from a different direction. When the ground is assumed to be a horizontal plane,
the iso-range curves are large circles whose centers are directly below the antenna at y (s).
If the radar antenna beamwidth is narrow and the antenna footprint is sufficiently far away,
then the circular arcs within the footprint can be approximated as lines. Consequently, the
imaging method is mathematically the same as that used in ISAR.

In particular, we put the origin of coordinates in the footprint, use the far-field expan
sion, and obtain for the matched-filtered frequency-domain data

in», s) = e2ikly(s)l f e2ik)l(sl'YV(y)A(w, s, y) dy.

Synthetic-aperture imaging involves a moving platform, and usually the antenna is
pointed toward the earth. We denote by y the antenna path. For a pulsed system, we
assume that pulses are transmitted at times til and that the antenna position at time til is
y(tll ) . Because the time scale on which the antenna moves is much slower than the time
scale on which the electromagnetic waves propagate, we separate the time scales into a slow
time s, which corresponds to the n of til' and afast time t, Using a continuum model for the
slow time makes some of the analysis simpler but also leaves out some important effects
that we will consider in section 9.4 below.

Using the continuum model for slow time, in (9.3) we replace the antenna position XO

by y(s):

D(w, s) = F[V](w, s) := f e2ikly(sl-YIA(w, s, y)V(y)dy, (9.5)

where with a slight abuse of notation we have replaced the XO in the argument of A by s.
This notation also allows for the possibility that the waveform and antenna beam pattern
could be different at different points along the flight path. The time-domain version of (9.5)
is

d(t, s) = f e-iw[t-2Iy(sl-Yl/c]A(w, s, y)V(y) dy. (9.6)

The goal of SAR is to determine V from the data d.
As in the case of ISAR, assuming that y and A are known, the data depend on two

variables, so we expect to form a two-dimensional image. For typical radar frequencies,
since most of the scattering takes place in a thin layer at the surface, we assume that the
ground reflectivity function V is supported on a known surface. For simplicity we take this
surface to be a flat plane, so that V(x) = V(X)8(X3), where x = (Xl, X2).

SAR imaging comes in two basic varieties: spotlight SAR and stripmap SAR.
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(9.14)K(z, x) = f ei2k(lRs.zHRs,xDQA(...)dwds.

9.2. Stripmap SAR

where we have written Rs,z = ZT - yes). The PSF K is

I (z) = f / ei2k(IRs.zHRs.xl) QA(. . .) dwds V (x)dx,

Figure 9.3. This shows successive steps in the backprojection procedure for a
straight flight path and an isotropic antenna. The first image is the true scene; the second
is the magnitude ofthe data. The successive images show the image when the antenna is at
the location indicated by the small triangle.

K(z.x)

Note the similarity between (9.13) and (7.28): (7.28) backprojects over lines or planes,
whereas (9.13) backprojects over circles. The inversion (9.12) first applies the filter Q and
then backprojects.

9.2.1 The Stripmap SAR Point-Spread Function

We substitute (9.5) into (9.11) to obtain

(9.9)

(9.8)

(9.13)

(9.10)
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I (z) = B[d](z); = f eiw(t - 2Iy(s)-z1'1/c) Q(w, s, z) dtodit, s) ds dt. (9.12)

If we were to choose the filter Q to be identically 1, then, because of (8), the time-domain
inversion would have the form

I(z) = f 8(t - 2IY(s) - zTllc)d(t, s)dsdt

= f d(2IY(s) -zTllc,s)ds,

or, more specifically,

f few, s) (Pg)* (w, s)dwds = f (pt f)(x)g*(x)dx.

Using (9.5) in (9.9) and interchanging the order of integration, we find that

ptf(x) = f e-2ikly(s)-xIA(w, s,x)f(w, s)dwds.

The Imaging Operator

Thus we look for an imaging operator of the form

I(z) = B[D](z):= f e-2ikIY(S)-zTIQ(w,s,z)D(w,s)dwds, (9.11)

(z, 0) and where Q is a filter to be determined below. The time-domainwhere ZT
version is

which can be interpreted as follows: At each antenna position s, we backproject the data to
all the locations z that are at the correct travel time 21 Y (s) - ZTIIc from the antenna location
yes). Then we sum all the contributions coherently (i.e., including the phase). Figure 9.3
shows the partial sums over s as the antenna (white triangle) moves along a straight flight
path from bottom to top.

An alternative interpretation is that to form the image at the reconstruction point z,
we coherently sum all the contributions from the data at all points (t, s) for which t =
2IY(s) - zTllc.

the adjoint of the forward Fourier transform. Second, in the time-domain formulation of
ISAR, inversion is done by inverting the Radon transform, and this inverse is again a filtered
version of the adjoint of the forward transform (see (7.25)). Third, the adjoint is natural
because it maps functions of frequency and slow time to functions of position. Thus it
is natural to attempt to construct the inverse from a modified version of the adjoint. In
particular, our modification takes the form of a filter, which we choose so that the resulting
imaging method has a desirable PSF.

The Formal Adjoint of F

The adjoint pt is an operator such that

(j, Pg}w,s = (Ft f, g}x,

94



Figure 9.4. This shows the real part ofexp(i ,Bx2
) . Clearly mostofthe contribution

to Jexp(i,Bx2 ) dx comes from the region near the origin.

We assume that (i) a is a smooth function of compact support and (ii) 4> has only
nondegenerate critical points (i.e., wherever V4> = 0, we also have that the Hessian D24>,
which is the matrix of second derivatives of 4>, is nonsingular). Then as ,B -+ 00,
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(9.19)fez) - f(x) = l' d: f(x + f.L(z - x)) du. = (z - x) ·1' Vflxw(z-xl du,

with f(x) = 2klRs,xl to write

2k(IRs,zl-IRs,xl) = (z - x) . sex, z, s, w),

where

9.2. Stripmap SAR

We apply the stationary phase theorem to (9.14) in the wand s variables. To introduce a large
parameter, we make the change of variables k = Bk' (i.e., co = ,Bw'). This converts (9.14) to

K(z,x) = f e2i ,Bk' ( IRs,zt-l Rd l QA (...)d;' ds, (9.17)

where the phase is 4> = 2k'(IRs,zl - IRs,xl). We find that the main contribution for large fJ
comes from the critical points, which are found as values of sand w that satisfy

a4>
0= aw' ex IRs,zl-IRs,xl, (9.18)

a4> ~. ~.
0= - ex Rs z . yes) - Rs x . Yes).as' ,

The first equation of (9.18) says that the distance (range) from yes) to ZT must be the same
as to XT; the second equation says that the down-range velocity (which gives rise to the
Doppler shift) must be the same for ZT and XT. The set of points ZT for which solutions of
(9.18) are possible is shown in Figure 9.5. We note that this is exactly the same diagram
we used in our discussion of the ambiguity function! Thus the start-stop approximation,
together with a full three-dimensional treatment of wave propagation, gives rise to the same
intuitive notion of locating a scatterer from its range and Doppler shift.

If K is to look like (9.15), we should have critical points only when z = x. We
see from Figure 5.6 that when V is supported on a flat plane, there are two points z that
satisfy (9.18)-one to the left of the flight path and one to the right. This is why SAR
systems always use side-looking antennas, so that A is zero for one of these points and
consequently only one of these points contributes to the image.

In a neighborhood of the critical point z = x, we force the phase of the PSF to look like the
phase of (9.15) (namely, (z - x) . g) by doing a Taylor expansion followed by a change of
variables. Specifically, we use the formula

S =11

Vflxw(z-xl d u,

Near z = x, we have Sex, z, s, w) ~ 2kP[Rs,z], where the operator P projects a vector
onto its first two components.

The Critical Pointz = x

Here sgn denotes the signature, which is defined as the number of positive eigenvalues
minus the number of negative eigenvalues.

The SAR Critical Points

(9.16)

(9.15)

Chapter 9. Synthetic-Aperture Radar

We would like the PSF K to look like a delta function

o(z - x) ex f ei(z-xHdg,

0.5

-0.4 0 0.4

The Stationary Phase Theorem

The stationary phase theorem [16, 61, 42, 130, 133] gives us an approximate formula for
the large-f behavior of oscillatory integrals of the form Jexp[i,B 4> (x )]a(x)d"x. The idea
is that as ,B becomes large, the oscillations of the exponential become more and more rapid
(see Figure 9.4). Such an integral experiences a great deal of cancellation, so that the result
is very small. Thus the main contribution to the integral comes from the parts of the phase
with the fewest oscillations, namely, the part where the phase has a maximum or minimum.

because this would imply that the image I would be identical to the reflectivity function V.
To determine how close K is to (9.15), we analyze K by the method of stationary

phase.
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which converts (9.14) into
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(9.22)

(9.23)

(9.24)

K(z, x) rv [ ei(z-xHd2~.
Jdata manifold

j b . 2 sin br
e,prdp = --- = 2bsinc(br).

-b r

1 (z) =f e-ik2IR,.zl Q(z, s, r») oi», s)dsdw,

where Q is given by (9.21) and ~ = 2kPR,.z.

Summary for SingleCritical Point at z = x

• We form the image by

9.2. Stripmap SAR

9.2.2 Resolution

We see in section 9.3.4 below that the form of the PSF K has the following
implications:

1. The visible edges in the scene, which correspond to jump singularities in the reflec
tivity function, appear in the correct location, with the correct orientation.

• If the antenna illuminates only the critical point z = x, then, to leading order, the
PSFis

2. Resolution is determined by the data collection manifold, which in tum is determined
by the bandwidth, antenna pattern, and flight path.

Examples of SAR images are shown in Figures 1.7,6.3,9.6,9.10,9.11,9.12,9.13,
10.2, and 11.1.

and we can analyze the two factors separately.
For this discussion, we use the convention that the interval [-b, b] in Fourier space

corresponds to resolution 2nlb. Thus we use the full width of the main lobe of the sine
function obtained by

SAR resolution is determined by the data collection manifold, which is the region in ~

space where we have data. We can determine this region by recalling that ~ ~ 2kPRs,z. In
general, the PSF is the function (9.22), and this determines the properties of the image. In
some cases, however, we can say more.

For a straight flight path and flat earth, the data collection manifold consists of a
sector of an annulus, as shown in Figure 7.2. For the narrow angular apertures relevant for
satellite-borne systems and other systems with a narrow antenna beam, the annular sector is
close to being a rectangle. In that case, if coordinates are chosen appropriately, (9.22) can
be (approximately) factored:

(9.21)

(9.20)

Figure 9.5. The critical set (9.18).
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x(w,s,z) I~I x(w,s,z)A*(w,s,z) I~I
Q(w,s,z) = = 2'

A(w, s, z) IA(w, s, z) I

We then make the (Stolt) change of variables [123]

(s, w) --+ ~ = Sex, z, s, w),

We see from the rightmost term of (9.21) that we can think of the filter as automatically
including the correlation reception.

15Notethat we cannot apply the stationary phase theorem to Jexp[i (z - x) . 5ld5' because the Hessian of
the phase is zero at the critical point. Instead we consider Jexp[i (z - x) . 5ld5 f (x)dx = JJexp[i (z - x) .
5ld5 Jexpux q)F(q)dqdx and apply the stationary phase theorem in the pair of variables x and 5·

K(z, x) = f ei(z-x H Q(~, z)A(w(~), s(~), x) 1a(~,~w) I d~.

Comparing (9.20) with (9.15), clearly we should take Q = X/(A la(s, w)/aw, where X
is a smooth cutoff function that prevents division by zero. (Another approach for choosing
Q, involving statistical considerations, is given in [152].) The quantity la(s, w)/a~1 is
sometimes called the Beylkin determinant [15].

Note that there are indeed large regions where the amplitude A is zero, including
frequencies out of the frequency band of the radar and angles that are out of the antenna
beam. Thus the ~ integral in (9.20) extends over only a certain set, which we call the data

collection manifold.
We note also that Q can depend only on z, and not on x, whereas A can depend only

on x and not on z. Thus it seems unclear how we can define Q ex IIA. However, the
leading-order contribution to the integral (9.20) is at z = X.

15 Consequently we simply
evaluate A and la(s, w)/a~ I at x = z to obtain
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Figure 9.6. Example SAR image from Global Hawk imaging radar (courtesy of
u.s. Department ofDefense).
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(9.26)

x

z

I
I
I
I
I
I
I
I
I
18 X 2

h

Figure 9.8. This shows the angle 1ft.
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Figure 9.7. Diagram for analysis ofalong-track resolution.

1
2kmaxzl/R . e2ikmax(zt-xl)sinJ/r _e-2ikmin(Zt-xt)sinJ/r

el(Zl-Xl)~t d~l = -----.--------
2kminZt/R l(ZI - Xl)

exe2iko(ZI-xil sin J/r sine «Zl - xd.6.k sin 1ft) ,

9.2. Stripmap SAR

the intuition that researchers had built from their understanding of antenna beam patterns.
Consequently the SAR resolution results were not initially believed. However, these results
were verified by field tests, and they are now understood to be due to the fact that a wider
antenna footprint results in a larger synthetic aperture.

Range Resolution

The range direction, in the coordinate system shown in Figure 9.7, is the Xl direction. The
integral f ei(Zt-Xil~1 d~l has upper and lower limits that are given by the maximum and min
imum values of2k(zT - y(s)hlR, namely, 2kmaxzI!R and2kminz I!R, where R is the slant

range JzT + H2. We write sin 1ft = zI!R, where 1ft is the angle shown in Figure 9.8. Then

Chapter 9. Synthetic-Aperture Radar

Along-Track Resolution

To analyze the resolution in the along-track direction, we consider a rectangular antenna of
length L moving along a straight flight path y (s) = (0, s, h) (see Figure 9.7). To determine
the resolution in the along-track or azimuthal direction, we consider two points on the earth
whose coordinates differ only in the second coordinate, so that z - x = (0, Z2 - X2). The
phase of (9.20) is then (z - x) . ~ = (0, Z2 - X2, 0) . ~ = (Z2 - X2)~2, which shows that
we need to consider only the second coordinate of the vector ~ ~ 2kPils,z. This second
coordinate is ~2 ~ 2e2-~(Sh = ~ 2(X2 - s) , where R = IXT - y(s)l·

However, whether ~2 ~ ~ 2(X2 - s) is in the data collection manifold depends on the
bandwidth of the radar system and the antenna beam pattern. In particular, the interval of s
values over which X2 is in the antenna beam pattern is 2 max IX2 - s I, precisely the width of
the footprint, which, from (8.26), is R(lAIL). This is the effective length of the synthetic
aperture. Multiplying this by the k] R in the expression for ~2, we obtain

k 2AR 41l'
max Ihl ~ Ii L = T' (9.25)

where we have used k = 21l'IA. From (9.25) and (9.24), we conclude that the resolution in
the along-track direction is 4;/L = ~.

The fact that the along-track resolution is LI2 is surprising: it is (a) independent of
range, (b) independent of A, and (c) better for small antennas! All these facts are contrary to
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1039.3. Understanding SAR Images

Figure 9.10. An image of the Washington Monument. The radar antenna flew
along the top, as can be seen from the radar shadow of the monument. The top of the
monument appears as a bright spot much closer to the radar (courtesy ofSandia National
Laboratories).

Figure 9.11. The U.S. capitol building in Washington, D.C. Notice the shadows
under the trees at the bottom and the layover effect in the image of the dome (courtesy of
Sandia National Laboratories).

..
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Figure 9.9. Radar layover and shadow. When an image is formed with the as
sumption that objects lie on a horizontal plane, objects above the plane appear"laid over"
in the direction of the antenna position. The radar shadow of the object appears on the
other side.

9.3.1 The Radar Projection

9.3 Understanding SAR Images

where ko = (kmax + kmin) / 2 and b..k = kmax - kmin • This gives us a peak-to-null resolution
of tt / (b..ksin 1/r) and a null-to-null resolution of 2n:/ (b..ksin 1/r). We obtain better resolution
for large bandwidth and 1/r close to n /2. Note that 1/r close to n /2 corresponds to a larger
range! Thus range resolution is better at larger distances, because the projection of the range
vector is longer.

9.3.2 Shadows and Layover

Because radar images involve a projection that is different from the one involved in optical
images, and because we are more accustomed to optical images, radar images often appear
to be distorted.

Scatterers on the circle formed by the intersection of the constant-range sphere and the
iso-Doppler cone will appear at the same point in the image. (This intersection is a vertical
circle for the case in which the flight path is horizontal, as shown in Figure 9.5.)

We can often determine the radar trajectory from an image by looking at the shadows in the
image. Typically radar images are displayed so that the flight path is across the top of the
image. In this orientation, the illuminated portion of an object appears above its shadow,
and this is how we are used to seeing optical images. See Figures 9.9, 9.10, and 9.11.



9.3.3 Color in SAR Imagery

1059.3. Understanding SAR Images

Figu.re?13. Images from three different polarizations combined to form a false
color ~omposlte Image. The top left figure is a W image (i.e., transmit a vertically polarized
electric field and mea~ure the scattered vertically polarized electric field); it is assigned the
col~r red. The top right figure is HV; it is assigned green; the bottom left is HH; it is
assigned blue. The resulting false-color composite image is at the bottom right (courtesy
ofNASAlIPL-Caltech).

. Figure 9.14. A false-color image obtained by assigning red to the Liband HH
Image, green to the L-band HV image, and blue to the C-band W image (courtesy of
NASAlIPL-Caltech).
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Figure 9.12. Images at three different frequency bands combined to form a false
color composite image. The top left figure is an L-band image; it is assigned the color
red. The top right figure is C-band; it is assigned green; the bottom left is X-band; it is
assigned blue. The resulting false-color composite image is at the bottom right (courtesy
ofNASAlIPL-Caltech).

There is no natural color to SAR imagery. However, false-color SAR images can be pro
duced by combining three channels, typically either three different frequency bands or three
polarization channels (H H, VV, and HV = V H). One channel is assigned to red, one
to green, and one to blue, and the three images are added together. Examples are shown in
Figures 9.12, 9.13, and 9.14.

Shadows in images often contain more useful information than the illuminated part.
An open problem is how to exploit radar shadows to obtain three-dimensional object infor
mation [44].

A common distortion is the phenomenon of layover, which is the mispositioning of
the top of a tall object due to the fact that the top is closer to the radar than the base. See
Figures 9.9, 9.10, and 9.11.



2. Fourier transform, and

3. look at decay in direction ~.
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(9.27)

(9.28)

(9.29)

A

~ V, , , , , , ,

a~j fez) = - IIei(x-zH(igj) d~ f(x)dx,

V
2f(z) =-II ei(x-Z)'~1~12d~ f(x)dx.

Figure 9.15. This shows the line where the delta function 8(x • v) is supported.

9.3. Understanding SAR Images

identically zero, which deca~s rapidly. On.the other hand, if we localize around a point in
the support of the delta function, then we discover that the Fourier transform of the result is

FV(~) oc I8(~ -vp)dp = {I ~ oc v'.° otherwise.

Clea;ly the Fourie~ tran.sformdoes n.otdecay rapidly in direction v. Thus for points satisfying
x • v = 0, the direction of the singularity is V. This means that the wavefront set is
WF(8(x . v» = {(x, v) : x • v = O}.

Pseudodifferential Operators

We recall that the SAR image I is related to the ground reflectivity function V by

I (z) = I K (z, x) V (x)dx,

where K is t?e ~SF (9.22). The right side of (9.22) is the kernel of a pseudodifferential
operator, which IS an operator whose kernel can be written in the form

K (z, x) = I ei(x-zHa(x, z, ~) d~,

where the amplitude (filter) a satisfies certain estimates [42, 61, 132].

E~ampl~: Differential operators. Taking the amplitude a to be a polynomial gives us a
differential operator:
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9.3.4 Singularities and Edges

1. localize around x O,

Singularities (such as jump discontinuities along a surface or curve) have both a location
and a direction. In the case of a jump discontinuity along a surface, the direction is the
normal to the surface. This notion is formalized in the following definition.

Characterizing Singularities

Definition 9.1. The point (xo,~) is not in the wavefront set of f (denoted W F(f») iffor
some smooth cutofffunction ¢ with ¢(xo) t= 0 the Fourier transform

Example: Asmall "point" scatterer Vex) = Sex). To determine the wavefront set of8,
we localize around various points. If we localize around any x t= 0, then ¢ V is identically
zero, and the function that is identically zero certainly decays rapidly at infinity. Thus for
x t=O,(x,~) i WF(8).

If, on the other hand, we localize around x = 0, then ¢ V = 8, and by (8) the Fourier
transform of the delta function is a constant. A constant does not decay in any direction.
Consequently, all directions are in the wavefront set at the origin. Thus W F(8) = {(O,~) :
all ~ t= O}.

decays rapidly in a neighborhood ofthe direction ~.

In other words, to determine whether (xo, ~) is in the wavefront set we carry out the
following procedure:

Example: A wall. Another important example is the case of an edge (see Figure 9.15),
for which we can use the simple model Vex) = 8(x . v) ocJeix.iJpdp, where we have used
(8). Clearly if we localize around any point for which x • vt= 0, the resulting function is

To understand why singularities appear in the image with the correct location and correct
orientation, we need a little microlocal analysis.

For objects in space, their shape is determined by the boundaries between different
materials (like air and metal). At these boundaries, we expect the reflectivity function V to
have a jump discontinuity, which is a type of singularity.

In images, we are interested in edges, which again is a type of discontinuity or singu
larity. In particular, we want edges in the image to correspond to boundaries of the object
in space.
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The Pseudolocal Property

¢ = p[(z - x) . ~ + x . v],

1099.4. The Effects of Discrete Slow Time

A shortcoming of the continuum model above (in which we use a continuous slow time
scale) is that the issues of range ambiguities and Doppler ambiguities are not evident.

To model the transmission of a sequence of pulses, we write the source i (t, y) in the
form

9.4 The Effects of Discrete SlowTime

i (t, y) = L ill(t - til' y) = L I e-iw(t-t,,)JIl (z», y)dw, (9.32)
n n

where the sum is over n such that til < t . The transmitted (incident) field (6.9) is then. I e-iw(t-t,,-lx-Y[/c)
£m(t,x'Y)~L FIl(w,X::Y)dw (9.33)

II 41l'lx - YI '

where we have used (9.1).

Implications for SAR

The fact that the PSF can be written in the form (9.22) tells us that the SAR imaging process
has the following properties:

• From the pseudolocal property of pseudodifferential operators, we see that the back
projection o~erator (9.12) results in an image in which the singularities are in the
correct location. We note that it is the phase of (9.12) that accomplishes this.

• The imaging operation does not change the orientation of singularities.

• Ho.wever, singularities can disappear if they are not visible from the SAR flight path.
This corresponds to the ~act that some locations and orientations belong to the set
of points (x, v) where X IS zero. In terms of the stationary phase calculation above
some critica~points might li~ outside the data collection manifold, in which case the;
do not contnbute to the leading-order behavior of the integral.

• We see from (9.31) that a singularity (x, v) is visible in the image if v is in the
data collection manifold at x. Since the data collection manifold consists of vectors
~ ex P Rs,x, this implies that a singularity is visible if P s.; ex v, i.e., if the target
wavefront set at x contains a direction that points along the radar line of sight at some
point along the flight path.

• The filter Q, which can be computationally expensive to implement, does not affect
the location of sing~larities, but it affects their order and magnitude. In particular,
the filter Q determines whether an edge will appear smoothed and it affects the
magnitude of the change in the image across the edge. '

- The dependence ?f Q on z (the main computational expense) affects mainly the
strength or magnitude of the singularities.

- The.depen~enceof Q on to affects the order of the singularities in the image. In
particular, If Q doe.snot grow. sufficiently rapidly with w, edges in the image will
be smoothed. The Issue here ISthe same as that encountered in X-ray computed
tomography [87].

(9.31)

(9.30)
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0= Vg¢ ex (z - x),

IK (z, x)8 (x . v)dx ex IIK (z, x)e
ix,Pv

dpdx

= III ei(z-xHx(z,x,~)eiX'PV d~dxdp.

V(x) = 8(x· v) exIeix-VPdp.

and for large p = I~ I, the leading-order contribution comes from the critical points

In this case, the pseudodifferential operator K operates on V as

We consider the example

I K (z, x)8 (x . v)dx exI eiz·PVX(z, z, pv)dp + smoother terms.

The terms with more rapid decay in p, when Fourier transformed, are smoother. Thus we

can write

We now change variables ~ --+ p~ and apply the large-p stationary phase theorem to the x

and ~ integrals. The phase is

The first of these critical conditions tells us that the point x appears in the correct location
z = x in the image, and the second critical condition tells us that the singularity at x has

the correct orientation ~ = V. (Note that the Hessian is nonsingular at the critical point.)
Consequently the SAR image of V (x) = 8(x . v) has the form

I K(z, x)8(x· v)dx exI eiZ'PV(X(z, z, pv) + O(p-l)) dp.

Every pseduodifferential operator K has the pseudo local property, which means that
W F(Ku) S;; W F(u). We demonstrate that this is the case for (9.22) by means of an

example.

Example: Filters. Most of the filters introduced in section 2.2.2 are examples of pseudo
differential operators in which the amplitude a of (9.27) depends only on~. For a filter to
qualify as a pseudodifferential operator, its transfer function H must satisfy the necessary

estimates [42,61, 132].

The order of a pseudodifferential operator is characterized [42, 61, 132] by the large-s
behavior of the filter a; for example, (9.28) is of order 1 and (9.29) is of order 2. Smoothing

operators have negative orders.
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The signal received by the antenna located at position Y" is, under the start-stop

approximation,
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(9.40)

o

o

oo

o

2
0= aw¢ = tm - tIl + -(IYm - xl - IY" - zl),

c

and are thus obtained as solutions to

9.5. Other Imaging Algorithms

Figure 9.16. The black dots show SAR ambiguities. The range ambiguities occur
at multiples ofc/ PRF, where PRF is the pulse repetitionfrequency. The Doppler ambiguities
occur at multiples ofthe PRF.

9.5 Other Imaging Algorithms

Equation (9.40) shows the presence of range ambiguities: x need not be on the same travel
time sphere about Ym as Z is. The sums over nand m in (9.38) are discrete Fourier series
and are thus periodic and can exhibit aliasing effects; this gives rise to Doppler ambiguities.

Figure 9.16 shows an example of range, Doppler, and left-right ambiguities in SAR
imaging. As the PRF is increased, the system has fewer Doppler ambiguities but more range
ambiguities. It is the job of the system designer to find a PRF and antenna beam pattern so
that the antenna footprint does not contain ambiguities.

The image formation algorithm we have discussed here is filtered backprojection. This
algorithm has many advantages, one of which is great flexibility. This algorithm can be used
for any antenna beam pattern, for any flight path, and for any waveform; a straightfoward
extension [91] can be used in the case when the topography is not flat.

Nevertheless, there are various other algorithms that can be used in special cases, for
example, if the flight path is straight, if the antenna beam is narrow, or if a chirp waveform
is used. Discussions of these algorithms can be found in the many excellerit radar imaging
books such as [39, 53, 27,63, U8] that are written for an engineering audience. It is hoped
that mathematical readers, having reached this point in the present monograph, are now
armed with sufficient background that they will not tum away from discussions that begin,
say, with the phase of (9.6) as a starting point.(9.39)

(9.38)

(9.37)

(9.36)

(9.35)

Chapter 9. Synthetic-Aperture Radar

d(t) = f e-iwtLeiW[tn+2Rn(Z)/C]A,,(w, z)V(z)dwdz,

"

Analysis of the Image

Substituting (9.35) into (9.37), we obtain the PSF

K (x, z) = L f eiW(tm-tn+2[Rm (x)-R" (Z)]/C) Qm(z»,x)A" (w, z)dw.

m,"

where Qm is generally taken to be Qm = A~.

9.4.2 Image Formation

We form the image I as a filtered adjoint applied to the data:

I (x) =f f eiwt L e-iw[tm+2Rm(X)/C] a; (w, x)dwd(t)dt,

m

where Frec denotes the antenna reception pattern.
Thus we see that the scattered field involves a sum over n.

Ambiguities

Assuming that Qm and A" are smooth [42, 61, 132], we can analyze (9.38) by .t~e met~od
of stationary phase. The leading-order contributions to (9.38) come from the critical points

of the phase

with R,,(z) = ZT - Yn and R" = IR"I and

w2Frec(w, R,l (z))F" (w, R,l (z))
A,,(w, z) = (4;r)2[R" (z)]2 ,

9.4.1 The Received Signal

The field scattered from the reflectivity distribution V (z) due to the transmitted sequence
(9.33) is obtained by using (9.33) in (6.20):

f
e-iw(l-tn-(Ix-zrl+lzr-yl)/c) -- 2

£SC(t X y) ~ - ~ V(Z)F,l(W, ZT - y) w dosdz.
B ' , L...J (4;r)2I x - ZTllzT - YI

" (9.34)
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Chapter 10

10.2 Moving Target Indicator (MTI) Images

Motion Compensation10.1

Related Techniques

One of the challenges for airborne systems is atmospheric turbulence, which produces unpre
dictable variations in the platform location. These variations cause unpredictable changes
in the distance between the antenna and the scatterer, which in turn result in unpredictable
variations in the phase of the received signal. However, we have seen that this phase is
crucial for forming SAR images. Consequently, formation of SAR images from airborne
platforms requires motion compensation, which is accurate estimation of the antenna po
sition. Currently the antenna position is estimated by (a) using Global Positioning System
(GPS) signals to estimate the platform location, then (b) using inertial measurements to
correct the GPS estimate, and finally (c) using mathematical algorithms called autofocus
algorithms [63] to estimate the antenna location directly from the radar data. (see Fig
ure 10.1.) Autofocus algorithms optimize the antenna position so that a quantity such as
image contrast is maximized.

Many of the very challenging problems connected with radar imaging have already been
solved, at least in the case when narrow antenna beams can be used. In this chapter, we
look briefly at some of the techniques that have been developed.

In forming SAR images, we assumed that the scene is not moving. Motion in the scene
gives rise to mispositioning or streaking (see Figure 10.2). This effect is analyzed in [52].

However, it is of great interest to use radar to identify moving objects; systems that can
do this are called moving target indicator (MTI) systems or ground moving target indicator
(GMTI) systems. Such systems are often real-aperture imaging systems. (See Figure I0.3.)

Typically, to obtain information about moving objects, a radar system filters out returns
from objects that are not moving. This can be done, for example, by having two antennas
on the radar platform, located so that as the platform moves along its trajectory, the second
antenna arrives at the same position where the first antenna was located a moment earlier.
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(10.1)

2 2 Z (Jr)Rz = R r + b - 2bR r cos {3 + '2 - 8

= R? + bZ + 2bRI sin(8 - {3).

10.3. Interferometric SAR

Figure 10.2. A Ku-band image showing streaking due to objects moving in the
scene (courtesy ofSandia National Laboratories and SPIE).

To explain how SAR interferometry can be used to find ground topography, first we
discuss the technique of stereometry [53], which is the same principle our brains use to
assess distance from the visual information obtained by our two eyes.

10.3.1 Stereometry

Suppose the first flight track is flown at height H, and the second is flown at a distance band
angle of elevation {3 from the first. (See Figure 10.6.) If the same object can be identified
in both images, then its distances (ranges) R, and Ra from the first and second flight track,
respectively, can be determined.

From Ri, Rz, b, and {3, we can determine the angle of elevation 8 from the law of
cosines:

From knowledge of 8, the object's elevation h can be determined from h = H - R, cos 8.
The difficulty with this method is twofold. First, it requires that common objects be

identified in both images; this often requires human intervention. Second, the process is

Chapter 10. RelatedTechniques

Uncompensated
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Interferometric SAR (IFSAR or InSAR) uses either two antennas on a single platform to
obtain topographic information (see Figure lOA) or two flight passes at different times to
assess changes that have taken place during the intervening time [53]. The latter a~proach

is typically used with satellite systems to measure, for example, the flow of a glacier (see
Figure 10.5), the earth's movement due to an earthquake (see Figure 10.5), or the swelling
of a volcano.

Figure 10.1. The effect ofmotion compensation in a Ku-band image (courtesy of
Sandia National Laboratories).

Thus the system collects data from the same antenna position at two slightly different times.
Data from the two different times is subtracted, so that what remains are radar returns only
from objects that changed during this time. This method is known as the displaced phase
center antenna (DPCA) method.

Another approach to moving targets is space-time adaptive processing (STAP) [69],
which uses an array of antennas positioned along the azimuthal direction (i.e., along the
direction of the flight path). Each antenna produces a range-Doppler plot; these plots are
stacked together to create a data cube whose coordinates are range, Doppler, and antenna
number. Data from different antennas can be combined with different phases so that the
effective beam from the array of antennas is steered to different directions (see sectio~ 8.~A).
The radar return from the stationary ground ("ground clutter") appears along a certam ndge
in range-Doppler-direction space, and moving targets appear off this ridge.
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very sensitive to errors in the determination of the range difference /lR = R2 - RI. To see
this, we use the chain rule

Figure 10.4. A three-dimensional rendering from interferometric SAR data (cour
tesy ofSandia National Laboratories).

the.range re~olut~on /lR, however, is about 10 m, which means that the uncertainty in the
estimated he~ght IS about ~ krn,which is clearly unacceptable. It is for this reason that ground
topography IS found by interferometry, which provides a much more accurate method to
estimate /lR.

10.3.2 Interferometry

Inter~erometric SAR (IFSAR) [53] uses narrowband waveforms; thus we take the current
density on the antenna to be of the form j(t, y) = p(t)J(y) with p(t) = p(t)e-iUJot •

(10.2)

(10.3)
dh -(RI+/lR)sinB -R2

-d(-/l-R-) = bcos(B - fJ) f':::! -b-'

~=dh~'=RsinB~
d(/lR) se d(/lR) I d(/lR)

and calculate the derivative dBjd(/lR) implicitly from (10.1) with R2 = RI + /lR:

dB R j + /lR
---=-
d(/lR) bRI cos(B - fJ) .

Using this in (10.2) gives

For satellite-borne SAR systems, the ratio R2jb is velY large; for the ERS-l SAR, for
example, R I and R2 are both on the order of 800 km, and the baseline b is about 100 m
[53]. Thus in estimating the ground height, range errors are magnified by a factor of 8000;

Figure 10.3. An example ofground moving target indications from thejoint surveil
lance attack radar system, superimposed on a terrain image (courtesy of u.s. Department
ofDefense).
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Figure 10.7. This shows the geometry for IFSAR.

Z
T

!Rs.x! =!x - yes)! = IXT +he3 - yes)! = IXT - yes)! +!ll3' (XT-=r-cS»,+'"

d(x)

More specifically, the height information is extracted as follows. Two separate, known
flight tracks are each used to produce a complex-valued image, in which the pixel at location
z = (Zl, Z2) represents the quantity e-2ikod(z) V (z). In the jth image, this pixel occurs at
range rj = !Yj -ZT!, where y is the center of the synthetic aperture for ZT. From Figure 10.7,
we see that the true range is Rj = rj - d, R:j !Yj - ZT!. The two images are coregistered
to make rl = rz- The complex conjugate of one image is then multiplied by the other,
resulting in a complex image whose phase at z is 2evo(dl (z) - d2(z»/c; from this, the range
difference d, - d2 is found (after solving a phase unwrapping problem). Then (10.1) can
be used with R2 = R, + (dl - d2).

The determination of !!..R = d l - d2 can be done with great accuracy-for example,
to millimeter accuracy in the case of the ERS-l satellite [53]. The estimate (10.3) then
results in an uncertainty in h of the order of meters.

to write (lOA) as

Pree(t, s) = f p(t - 21 Rs,xT !/c)e-iwo(t-2IR"XT lie) A(s, x) [e-2iklld(X) V (X)] dx, (10.5)

where d (x) = hl3· (XT-=r-cS)) and ko = evolc. Equation (10.5) is essentially the signal that

would have been obtained from a flat earth with reflectivity function [e-2ikod(X) V (x) J. Thus

we see that height information can be thought of as being encoded in the complex phase of
the reflectivity function. This information can be extracted by comparing the phases of the
two coregistered complex images.

10.3. Interferometric SAR

To obtain topography information, we assume that the scattering takes place on a surface
X3 = h(xl' X2); thus we write Vex) = V(X)O(X3 - hex»), where x = (Xl, X2). We write
XT :::;: (x, 0).

In (lOA) we write x = XT + he3, where e3 is a unit vector in the vertical direction,
and then use the far-field expansion (7.1) in the form

(lOA)
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Figure 10.6. This shows the geometry for stereometry.
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Pree(t, s) = ff e-iw(t-2IR"xl/e) P(ev)A(s, x)devV(x)dx

= f p(t - 2IRs,x!/c)e-iwo(t-2IR"xl/e) A(s, x)V(x)dx.

The received signal can therefore be written

Figure 10.5. Examples ofSAR interferometry used to detect changes. On the left
is an interferogram showing changes between April 24, 1992 and August 7,1992 in a 90-by
110 km area around the Landers (California) fault line. Each color cycle represents a rise in
elevation of28 mm; the black line depicts thefault as mapped in thefield. On the right is an
interferogramfor a glacier in the Himalayas (both images courtesy ofNASAlJPL-Caltech).

118



121

4. How many digits of measurement precision are needed for N-phase Barker codes?

11.1.1 Problems in Coding

Problems in Waveform Design

1. A Barker code [47] is a binary pulse code whose autocorrelation function has side
lobes whose maximum magnitude is 1. The only known Barker codes are given in
Table 11.1. (The autocorrelation of the Barker code of length 5, for example, is the
sequence {I, 0, 1,0,5,0, 1,0, I}.) An open problem is to prove that no other Barker
codes exist. Binary Barker codes of lengths between 14 and 1022 have been ruled
out [78]. There are no Barker codes of odd length greater than 13 [139].

2. Do polyphase Barker codes [22] of length greater than 77 exist? (A length 77 code
was found in [95].) Here the term "polyphase Barker code" refers to a polyphase
sequence whose autocorrelation sequence has sidelobes of magnitude no greater than
one.

3. Prove the conjecture that for every N, there exists a N-phase Barker code of length
N [48].

In the decades since the invention of SAR, there has been much progress, but many open
problems still remain. And most of these open problems are mathematical in nature.

Chapter 11

11.1

Open Problems

There are many interesting problems related to the design of radar waveforms for various
purposes.

The coding theory problems typically deal with finding digital waveforms with desirable
correlation properties. Many of these problems involve parts of mathematics that have not
traditionally been regarded as "applied."

The following seven problems were suggested by Greg Coxson of Technology Service
Corporation.



11.1.2 Problems in Ambiguity Theory

2. How can we combine communications theory and radar ambiguity theory? In partic
ular, can we design signals that produce high-bit-rate communications and also have
desirable ambiguity properties?

1. Ambiguity volume is not conserved for wideband waveforms, which suggests that
it may be possible to design waveforms that can measure both range and velocity
to arbitrary accuracy. Characterize such waveforms, and determine how to produce
them. (For the wideband ambiguity function, see [128,37,5].)

123

5. How can we form SAR images of moving targets [103]? Moving targets cause
Doppler shifts as well as presenting different aspects to the radar [29], and therefore
cause artifacts in SAR images. Can we simultaneously track [107] moving objects
and form three-dimensional images of them?

3. For a given frequency band, find the smallest antenna with agiven beamwidth. Current
antenna research considers not only different shapes but also [58] arrangements of
different materials.

4. How can we best exploit the emerging technology of digital waveform generation for
use in imaging? It is now possible to build array antennas in which each element is
connected to a different signal generator, so that each element can be fed a different
waveform. What can be done with such an agile antenna? What waveforms should
be used for which purposes? How should the different waveforms be scheduled to
adapt to a changing scene? These questions apply both in the case when antenna
elements are close to each other and when they are far apart.

2. We need to develop scattering models that include as much of the scattering physics as
possible, but that are still simple enough for use in the inverse problem. An example
of a tractable model that includes relevant physics is [105].

3. Better methods for finding the relative motion between target and sensor are also
needed [21, 124]. In particular, when there are multiple scatterers within a resolu
tion cell, constructive and destructive interference may cause the range alignment
procedure to break down [20].

4. When the target motion is complex (pitching, rolling, yawing), it may be possible
to form a three-dimensionalimage; fast, accurate methods for doing this are needed
[124].

11.3. Problems Related to Synthetic-Aperture Imaging

11.2 Problems Related to Antennas

There are some interesting theoretical questions associated with antennas.

1. How can we best design antennas [2, 3,4] for various purposes? This is an example
of an inverse source problem [65, 85, 80, 81]. In formulating the problem, we need
to consider not only the radiation pattern, but also whether a given antenna design
can be manufactured and fed.

2. How can we design antennas whose properties remain the same over a wide frequency
band?

11.3 Problems Related to Synthetic-Aperture Imaging

1. How can we form images without using the Born approximation? The Born approx
imation leaves out many physical effects, including not only multiple scattering and
creeping waves, but also shadowing and obscuration. But without the Born approx
imation (or the Kirchhoff approximation, which is similar), the imaging problem is
nonlinear. How can we form images in the presence of multiple scattering? (See
[21, 30, 92, 56, 145].) Can multiple scattering be exploited to improve resolution?
(See [73].)

Chapter 11. Open Problems

Table 11.1. Barker codes.

Number of bits Code
2 ++,+-
3 ++-
4 ++-+,+++-
5 +++-+
7 +++--+-
11 +++---+--+-
13 +++++--++-+-+

2. Given a desired power spectrum, find a constant-amplitude causal waveform that
best approximates the desired one (see [102]). (Here "power spectrum" means the
squared magnitude of the Fourier transform.) The constraint of constant amplitude is
important for amplifier efficiency.

3. Find optimal waveforms for propagation through complex media, including attenu
ating media, dispersive media [99, 83], and the ionosphere (see [136]).

5. Classify autocorrelation-sidelobe-preserving groups for polyphase codes.

6. Develop (approximately) orthogonal code sets, particularly for the case of multiple
transmitters and receivers located at different positions.

7. Find optimal radar waveforms when certain frequency intervals (within the radar's
frequency band) cannot be used. This problem is becoming increasingly important
as the electromagnetic spectrum becomes more crowded.

11.1.3 Design of Waveform for Particular Purposes

1. How can we find waveforms that are best for identifying certain targets (see [67, 55])?
What polarization is best for this [57]? The best waveforms would not only enhance
scattering from targets of interest, but would also tend to reject clutter and noise (see
[43, 114, 152, 141, 153]).

122



13. Can we exploit antenna agility for SAR?

14. Waves at typical radar frequencies are scattered by foliage. Lower-frequency waves
penetrate the forest canopy better but result in lower-resolution images. How can
we extract the most information from foliage-penetrating SAR (FOPEN)? Moreover,
antennas that efficiently radiate low frequencies must be large; for airborne systems of
a reasonable size, the antennas typically have poor directivity, which implies that the
resulting imaging systems have left-right ambiguities. In addition, multiple scattering
may be important in forested areas, whereas the known methods for forming images
neglect multiple scattering. Probably the forest should be modeled as a random
medium [134,137,65,117].

We would like to be able to obtain the bare earth topography and identify objects
beneath foliage. We would also like to assess the forest itself [7, 33]: the forestry
industry would like information about tree health and trunk volume, and climate
modelers would like to know the forest biomass [46, 131].

15. How can we extract the most information from over-the-horizon (OTH) radar, in
which electromagnetic energy is bounced off the ionosphere? The ionosphere is a
complicated and rapidly changing medium that strongly affects low-frequency ra
dio waves. It is also dispersive, meaning that different frequencies propagate with
different speeds.

6. ISAR imaging and the associated issues need to be more fully developed for the case
of a small number of transmitters and receivers [29,45, 147, 148, 142, 155], which
could be positioned far from each other. In this multistatic situation, methods need to
be developed for establishing the relative phase relationships of the various signals.
Methods need to be developed for handing sparse data [34].

7. Improved autofocus algorithms [63, 74] are needed.

8. We would like to develop fast imaging [23, 45, 151] and target-classification algo
rithms. Such algorithms should run in real time.

9. Theoretical bounds are needed for the target classification / identification problem [66].

10. How can we incorporate prior knowledge about the scene to improve resolution? We
would like to go beyond the aperture/bandwidth-defined resolution. One approach
that has been suggested is to apply compressive sensing ideas [8, 32, 86] to SAR.

11. How can we fully exploit the polarization information [36, 104, 18, 140] in the
scattered field? This problem is closely connected to the issue of multiple scattering:
we do not have a linear model that predicts any change in the polarization of the
backscattered electric field. Consequently our linear imaging methods cannot provide
information about how scatterers change the polarization of the interrogating field. A
paper that may be useful here is [134].

12. How can we exploit the information in the radar shadow? In many cases it is easier
to identify an object from its shadow than from its direct-scattering image. (See Fig
ure 11.1.) A backprojection method for reconstructing an object's three-dimensional
shape from its shadows obtained at different viewing angles is proposed in [44]. What
determines the resolution of this reconstruction?
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16. How can we best use ground-penetrating radar (GPR or GPEN) [9, 26, 104] to obtain
information about the ground and structures within it? Soil is a more complicated
medium than air, which implies that the corresponding imaging problem is more
difficult. In addition, the earth may be in the near field of the antenna, which means
that the antenna properties change depending on what is in the soil.

GPR is of interest in many areas. Global climate modelers would like to assess ice
thickness and depth profiles. Civil engineers use GPR to assess the condition of roads
and bridges and to identify buried utilities. Archaeologists use GPR to find sites of
archaeological interest. GPR systems are being developed to identify land mines [9],
unexploded ordinance (UXO), and underground bunkers.

17. How can we do radar imaging through walls [1] and rubble [6]? This can be important
for finding victims in disaster areas. We would like to use radar to obtain the building
layout and determine where people are located. In many cases, details of the construc
tion of the wall may not be known. How does furniture such as metal desks and file
cabinets affect the scattering? Can we detect breathing and heartbeat by exploiting
the Doppler shift [31] in the radar signals, even if we cannot form an image?

18. How can we best do radar imaging of urban areas? It is difficult to form SAR images of
urban areas, because in cities the waves undergo complicated multipath scattering. Ar
eas behind buildings lie in the radar shadows, and images of tall buildings can overlay
other features of interest. (See Figure 9.9.) In addition, urban areas tend to be sources
of electromagnetic radiation that can interfere with the radiation used for imaging.

Figure 11.1. A -t-inch resolution Ka-band image from Sandia National Laborato
ries [127]. Note the shadows of the historical airplane, helicopter, and trees (courtesy of
Sandia National Laboratories and SPIE).

11.3. Problems Related to Synthetic-Aperture ImagingChapter 11. Open Problems124
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One approach that is being explored is to use a persistent or staring radar system
[50] that would fly in circles [118] around a city of interest. Thus the radar would
eventually illuminate most of the areas that would be shadowed when viewed from a
single direction. Moreover, the layover effects can potentially be exploited to obtain
three-dimensional information. However.this approach also introduces the difficulty
that that same object will look different when viewed from different directions. How
can the data from a staring radar system be used to obtain the maximum amount of
information about the (potentially changing) scene?

19. How can we use radar for medical imaging? This area is sometimes called microwave
tomography [112, 19]. It should be possible to use microwaves to. form images of
the interior of the human body. For this, the far-field approximation is probably
inappropriate. We may want to use multiple antennas.

20. Can we use radar to identify individuals by their gestures or gait? Time-frequency
analysis of radar signals gives rise to micro-Doppler time-frequency images [31], in
which the motion of arms and legs can be identified.

21. It is now possible to build radar systems with multiple transmitters and receivers
located at different positions. These are often called multiple-input, multiple-output
(MIMO) radar systems. What can be done with such a system? Particularly if a small
number of transmitters and receivers are available, where should they be positioned
[138,29, 150]? How often should they be active? How can images best be formed
when sparse, random networks of antennas are used? Is it possible to exploit radiation
from radio and TV stations to form images [60, 154, 155]?

22. If sensors are flown on unoccupied aerial vehicles (UAVs) , where should they fly?
The notion of swarms of UAVs [25] gives rise not only to challenging problems in
control theory but also to challenging imaging problems.

23. In many specific applications, we need to learn how to extract useful information from
radar images and radar data. From radar images of a scene, can we identify not only
the vehicles but also the vehicle type [32] and even individual vehicles? In images of
the arctic regions, can we determine ice thickness [100]? How can we combine infor
mation from different frequency bands, and how can we combine radar images with
those from different sensors such as optical or acoustic ones? For medical microwave
tomography, can we determine tissue health from knowledge of its electromagnetic
parameters? (See also number 19 above.) Some of these problems will require an
understanding of scattering physics, whereas others are more akin to computer vision.

24. Many of these problems motivate a variety of more theoretical open problems, such
as the question of whether backscattered data uniquely determines a penetrable object
or a nonconvex surface [120, 143]. How can we extend the theory of Fourier integral
operators to dispersive media and to nonlinear operators? How can we develop a
theory of the information content [70, 98] of an imaging system? .

Radar imaging is a mathematically rich field that is ready for more mathematical
attention!
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Ohm's law, xxiv

Index

over-the-horizon (OTH) radar, 124

Paley-Wiener theorem, xxii
perfect electrical conductor (PEe), 11, 21
persistent radar, 126
phase, 20, 28
phased array, 87
plan position indicator (PPI), 8
plane wave, 11
platform, 46

radar, 8
point-spread function (PSF), 31, 33,47,

64,95
polar format algorithm (PFA), 62
polarization, 104
projection, 102

orthographic, 46
perspective, 46

projection-slice theorem, 68
pseudodifferential operator, 107
pseudolocal property, 108
pulse compression, 26
pulse repetition frequency (PRF), 41
pulse train, 41, 45
pulsed system, 17

quadrature, 18, 20

radar system
pulsed, 17
stepped-frequency, 15

radar uncertainty principle, 36
radiation vector, 83
radio frequency (RF), 11
Radon transform, 68
Ram-Lak filter, 19
range, 3

alignment, 61, 69
resolution, 37, 38, 40, 41, 45, 65,

101
range ambiguity, 41, 111
range-Doppler image, 33,43
range-rate, 22
real-aperture imaging, 6, 113
rect function, 38
reflectivity function, 51
resolution, 37, 45, 99

along-track, 100

139

azimuth, 100
chirp, 40
continuous-wave (CW) pulse, 39
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scattering, 21, 53
shadow

radar, 102
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wave equation, 10, 11,51
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