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Laser-induced breakdown spectroscopy is a promising approach for explosive residue detection, but sev-
eral limitations to its widespread use remain. One issue is that the emission spectra of the residues are
dependent on the substrate composition because some of the substrate is usually entrained in the laser-
induced plasma and the laser–material interaction can be significantly affected by the substrate type.
Here, we have demonstrated that despite the strong spectral variation in cyclotrimethylenetrinitramine
(RDX) residues applied to various metal substrates, classification of the RDX residue independent of
substrate type is feasible. Several approaches to improving the chemometric models based on partial
least squares discriminant analysis (PLS-DA) have been described: classifying the RDX residue spectra
together in one class independent of substrate, using selected emission intensities and ratios to increase
the true positive rate (TPR) and decrease the false positive rate (FPR), and fusing the results from two
PLS-DAmodels generated using the full broadband spectra and selected intensities and ratios. The com-
bination of these approaches resulted in a TPR of 97.5% and a FPR of 1.0% for RDX classification on
metal substrates.
OCIS codes: 280.0280, 280.1545, 280.3420, 300.6365.

1. Introduction

Interest in explosive residue detection for military
and civilian applications continues to fuel new re-
search in this challenging area. Laser-induced break-
down spectroscopy (LIBS) is a promising approach
for this problem because of its many advantages, in-
cluding the ability to do standoff detection, the cap-
ability for real-time analysis of targets with no
sample preparation, and the strong signal compared
to other laser-based methods such as Raman spectro-
scopy and laser-induced fluorescence [1]. In LIBS, a
pulsed laser is focused on the sample surface and ab-
lates a small amount of material (typically nano-
grams or less) [2]. The atomization and ionization
of the ablated material results in the formation of
a laser-induced plasma that emits radiation charac-
teristic of the ablated material. Depending on the la-
ser energy and pulse duration, the laser-induced
plasma can last hundreds of microseconds; during

this time, chemical reactions occur in the plasma
that can affect the emission spectrum [3–9]. For
residue detection, the substrate material is often
ablated by the laser as well, and the resulting matrix
effects can alter the emission spectrum. A recent re-
view described some of the challenges of quantitative
LIBS because of matrix effects [10], but even for qua-
litative applications such as material identification,
matrix effects must be compensated for as they can
significantly alter the spectroscopic signature of the
material [9,11–16].

Previous studies at the U.S. Army Research
Laboratory (ARL) have primarily focused on the de-
tection of explosive residues on a single type of sub-
strate (aluminum [17] or painted surfaces [18]).
Other researchers, using either an aluminum sub-
strate or sampling bulk explosive, have explored
the effects of laser wavelength [19,20], pulse energy
[6], and atmospheric influence [4,6] for explosive
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detection. More recently, we have investigated the ef-
fect of chemical reactions involving metal particles
and the explosive cyclotrimethylenetrinitramine
(RDX) in the laser-induced plasma on the LIBS sig-
nature [9]. In addition to matrix effects induced by
the interaction of the laser with the metal substrate
(affecting the amount of material ablated, plasma
temperatures, electron densities, etc.), we demon-
strated that differences in the plasma chemistry of
RDX with the ablated metals significantly alters
the LIBS spectra of RDX. While organic substrates
such as painted surfaces present a challenge because
of the presence of key emission features for the iden-
tification of explosives (C, H, N, O) in the spectra of
the substrates themselves, the complex plasma
chemistry that occurs with metallic substrates poses
a unique challenge for the classification of explosive
residues that has not previously been investigated.
For this study, we developed partial least squares
discriminant analysis (PLS-DA) [21] models in order
to determine if the differences observed in the RDX
spectra preclude successful classification of the ex-
plosive on different metal substrates.

2. Experimental Methods

The spectra analyzed in this paper were acquired for
the previous study [9]. Briefly, the experimental
setup consisted of two collinear Nd:YAG lasers (Con-
tinuum Surelite, 1064 nm, 420 mJ per laser) focused
onto the sample surface with a 10 cm lens. A double-
pulse laser system was used to both decrease
atmospheric entrainment in the plasma and increase
the signal-to-noise ratio of the relevant explosive
emission features [22,23]. The plasma emission
was directed into a 400 μm fiber optic using a pierced
mirror setup. An echelle spectrometer (Catalina
Scientific EMU-65, resolution ∼31; 000 λ ∕FWHM)
was paired with an electromagnetic CCD detector
(Andor iXon, gain � 2) to collect the LIBS spectra
(∼200–1000 nm) under an argon flowwith the follow-
ing timing parameters: interpulse delay Δt � 2 μs,
gate width tint � 50 μs, and gate delay tdelay � 1 μs.

Colleagues at ARL provided Class 1 (<850 μm par-
ticle diameter), military-grade RDX. A small quan-
tity of RDX (∼mg) was applied to various metal
surfaces and spread into a thin layer with a polyte-
trafluoroethylene tool. Although the amount of RDX
adhered to the surfaces was not quantified, in all
cases the substrate was visible through the layer
of RDX. The substrates used for this experiment in-
cluded high-purity metal foils obtained from Sigma–
Aldrich: Al (99.999%), Cu (99.999%), Ni (99.98%), Sn
(99.998%), and Ti (99.998%). Fifty single-shot spec-
tra of RDX residue on each of the pure metal sub-
strates were obtained. Spectra of RDX residue on
various samples from our laboratory (unknown com-
positions representative of contaminated “real-
world” substrates) and standard reference materials
(SRMs) with precisely known minor constituents
purchased from the National Institutes of Standards
and Technology (NIST) were also acquired (20 each).

An identical number of spectra from each of the
blank metals were also recorded. All of the sub-
strates were used as obtained, with no special clean-
ing procedure. Table 1 lists all the substrates
studied.

Although several advanced chemometric techni-
ques have been proven effective for the analysis of
LIBS spectra, we have found that PLS-DAworks par-
ticularly well for explosive residue detection [17].
The single-shot LIBS spectra were used as inputs for
the PLS-DA models developed using the PLS_
Toolbox version 5.8.3 (Eigenvector Research, Inc.)
running under MATLAB version 7.9 (Mathworks).
It should be noted that the PLS-DA models calcu-
lated based on hundreds of broadband LIBS spectra
(40,001 intensity channels each) could not be calcu-
lated with earlier versions of the MATLAB software,
as these calculations are computationally expensive
and require efficient algorithms for the relevant ma-
trix operations. The full broadband spectra were nor-
malized to a maximum spectral intensity equal to
one and mean-centered prior to PLS-DA analysis. In-
put variable data sets consisting of selected emission
intensities and ratios were autoscaled prior to
analysis.

3. Results and Discussion

A. LIBS Spectra

The appearance of spectral features resulting from
the RDX residue (e.g., C, CN, H, N, and O) on the
high-purity substrates (Al, Cu, Ni, Sn, Ti) was easily
observed, despite the presence of hundreds of emis-
sion lines due to the metal substrate and argon bath
gas (Figure 1). As described in the previous study [9],
however, the relative intensities of the emission
features of RDX depend quite strongly on the proper-
ties of the substrate. For example, CN, which is
formed primarily via the reaction of C and N2, has
much weaker emission lines on the Ni substrate

Table 1. List of Pure Metal Substrates and Alloysa

High-Purity
Substrates

Laboratory
Substrates

Metal Alloy
Substrates

NIST
SRM #

Al (99.999%) (100) Ag (40) Al alloy 380 (40) 1256b
Cu (99.999%) (100) Au (40) Al alloy 5182 (40) 1715
Ni (99.98%) (100) In (40) Al alloy 7075 (40) 1259
Sn (99.998%) (100) Mg (40) Ni–Cu alloy (40) C1248
Ti (99.7%) (100) Zn (40) Pb-base alloy (40) C2417

Al2O3 (40) High purity Pb
alloy (40)

C2418

Low alloy steel (40) 1761a
Stainless steel (40) C1296
Naval brass B (40) 1107
Red brass B (40) 1110
High temp. alloy
L-605 (40)

1242

Ti-base alloy (40) 641
Zn-base alloy (40) 625

aThe total number of single-shot spectra acquired, both with and
without RDX, is listed in parentheses.
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[Fig. 1(c)], despite similar RDX concentrations.
Interference from strong Ti lines precludes the obser-
vation of CN on the Ti substrate [Fig. 1(e)]. In gen-
eral, the spectra of the blank high-purity substrates
show little evidence of organic residue contamina-
tion, and the presence of RDX on the substrate is
readily apparent.

Spectra of RDX residue on the laboratory sub-
strates (Ag, Au, In, Mg, Zn), on the other hand,
are more difficult to distinguish from the blank sub-
strates (Fig. 2). The exact compositions of the labora-
tory substrates are not known, but they contain
significant emission from C, H, N, and O. Although
some surface contamination was possible, the organ-
ic signals from the blank substrates persisted even
after several successive laser shots into the blank
substrate. As with the high-purity substrates, the re-
lative emission intensities due to the RDX residue
vary from substrate to substrate. These substrates
present a bigger challenge for a model designed to
distinguish RDX residue from blank substrates
due the emission from organic components in the
metals.

Figure 3 shows selected regions from the LIBS
spectra from a series of Al-containing substrates.
The various alloy and alumina (Al2O3) substrates
contain numerous emission lines from minor compo-
nents not present in the high-purity Al sample.
These substrates were chosen to test the ability of
a model trained on the high-purity Al to identify pri-
marily Al-containing samples. Similarly, selected re-
gions of the other metal-alloy substrate spectra are
shown in Fig. 4. Clear differences between similar al-
loys and their high-purity analogues (Fig. 1) can be
observed in the LIBS spectra, presenting a good test
for the robustness of PLS-DA models trained with

spectral data from pure metal substrates with and
without RDX.

B. RDX Full Spectra Model

In recent years there has been significant interest in
LIBS for explosive residue detection at standoff dis-
tances [18,23–26]. We have previously demonstrated
the strong dependence of the RDX residue LIBS spec-
tra on the substrate material properties [9,13,18].
One approach to reducing the effect of the substrate
would be to minimize the amount of substrate mate-
rial entrained in the laser-induced plasma by selec-
tively ablating the RDX. However, reducing the
amount of ablated substrate by decreasing the laser
pulse energy or choosing alternate laser wavelengths
or pulse durations generally results in a significant
decrease in signal-to-noise ratio for the LIBS spectra
(reducing the limit of detection) and often adds to the
complexity and cost for the experimental setup.
Alternatively, we have been exploring the use of che-
mometric analysis methods such as PLS-DA to mini-
mize spectral differences among similar samples of
interest (e.g., RDX residue on different substrates)
and emphasize the spectral differences between
explosive and nonexplosive residues [13,18].

Previously we demonstrated the differences in the
LIBS spectra of RDX resulting from the chemical re-
actions of RDX and metals in the laser-induced plas-
ma [9]; for this work, a PLS-DA model was developed
using the entire broadband LIBS spectra as variable
inputs in order to determine if the RDX residues on
the different metal surfaces could be correctly classi-
fied together. Although using the full broadband
spectra in the model may be counterintuitive for ex-
plosive residue classification (which depends on only
a few specific emission features), we have previously

Fig. 1. (Color online) LIBS spectra of RDX residue on high-purity (a) Al, (b) Cu, (c) Ni, (d) Sn, and (e) Ti substrates. The insets show the
emission lines due to RDX (C, CN, H, N, and O); the CN lines were not visible for the Ti substrate because of overlapping Ti emission lines.
The gray lines in the insets correspond to the relevant blank substrate spectra.
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shown that in many cases the broadband spectra pro-
vide a higher true positive rate (TPR) due to the com-
plexity of the laser–material interaction [13,18]. An
11-class model consisting of one RDX class and 10
classes of pure metals (Al, Cu, Ni, Sn, Ti, Au, Mg,
Zn, In, and Ag) was developed with 300 single-shot
spectra and 20 latent variables. The RDX class con-
tained spectra of RDX residue on all 10 substrates;
the latent variables were thus chosen by the model
to describe the differences between RDX and the
blank metal substrates rather than describing the
spectral differences in the RDX residue on multiple
substrates. The blank metals were assigned indivi-
dual classes in the PLS-DA model to increase the ro-
bustness of the model toward identifying future test

samples (generally, themore classes a PLS-DAmodel
has, the more robust it becomes).

The variable importance in projection (VIP) scores
calculated by the chemometric software show which
variables (e.g., spectral wavelengths) contribute to
each class in the model [27]. The higher the VIP
score, the more the variable contributed to the clas-
sification by the model. A comparison of the VIP
scores for the Au class in a pure metal model (consist-
ing of 10 classes with spectra from the pure metal
substrates only) and the RDX residue model shows
that while the scores for the Au emission lines were
very similar for the two models, in the pure metal
model emission lines due to organic contaminants
(e.g., C and H) contributed more strongly to the

Fig. 2. (Color online) LIBS spectra of RDX residue on (a) Ag, (b) Au, (c) In, (d) Mg, and (e) Zn substrates. The insets show the emission
lines due to RDX and trace organic content from the substrates. The gray lines in the insets correspond to the relevant blank substrate
spectra.

Fig. 3. (Color online) Selected spectral regions for the blank Al substrates: (a) Al (99.999%), (b) Al alloy 5182 (94.58%), (c) Al alloy 7075
(89.76%), (d) Al alloy 380 (82.99%), and (e) Al2O3.

1 February 2013 / Vol. 52, No. 4 / APPLIED OPTICS B13



classification of the blank metal substrate (Fig. 5).
Because the RDX classification in the residue model
depends strongly on the organic emission lines, the
deemphasis of the weak organic signals from the
blank substrates in the RDX residue model mini-
mizes the incorrect classification of the blank sub-
strates with the RDX residue (i.e., false positives).

The performance of the RDX residue model was
tested using an additional 400 single-shot spectra
from the 10 substrates with and without RDX; these
spectra were not included in the training set used to
develop the model. Table 2 shows the classification
results obtained for the validation test set using a

threshold for classification of 35% predicted prob-
ability (this threshold gave the best model perfor-
mance based on cross-validation of the training
set data). The model correctly classified 95.0% of the
RDX test samples (true positives), with 5.5% false
positives. The In substrate was the most proble-
matic, resulting in only 80% true positives for RDX
classification and 80% false positives (four out of five
spectra). An examination of the spectra revealed
that while the addition of RDX residue to most of
the substrates resulted in a noticeable decrease in
substrate emission lines, the spectra for the In sub-
strate with and without RDX are nearly identical
[Fig. 2(c)]. In this case, the plasma chemistry is less
important than other matrix effects, such as the
interaction of the laser with the metal [28]. A simi-
lar effect was observed with the Mg substrate
[Fig. 2(d)], which resulted in 40% false positives.
The reason for the 14% false positives on the Ni sub-
strate is likely spectral interference in the N region
[Fig. 1(c)].

In addition to correctly classifying with RDX in the
model, 26.0% of the test spectra with RDX residue
were also classified with the correct class correspond-
ing to the metal substrate. For example, 100% of the
RDX residue spectra on Mg classified with RDX, and
100% of those spectra also classified with Mg. Of the
blank substrate test spectra, 99.5% were correctly
classified with the corresponding metallic model
class, with only 0.1% misclassification.

By using the full LIBS spectra as inputs to the
PLS-DA model, classification of the RDX depends
not only on emission features due to the RDX but also
on substrate emission lines. Figure 6 shows the VIP

Fig. 4. (Color online) Selected spectral regions for the blank alloy substrates: (a) brass alloy 1107 (solid black) and brass alloy 1110 (dotted
red); (b) Ni (solid blue), Cu (thick green), and Ni-Cu alloy C1248 (dotted red); (c) high-purity lead C2418 (solid black) and lead alloy C2417
(dotted red); (d) stainless steel C1296 (solid black) and low-alloy steel 1761A (dotted red); (e) Ti (solid black) and Ti alloy 641 (dotted red);
and (f) Zn (solid black) and Zn alloy 625 (dotted red).

Fig. 5. (Color online) Comparison of VIP scores for the Au class in
the pure metal model and the RDX residue model. The VIP scores
for the Au emission lines are approximately the same for both
models, while the emission lines such as C and H due to contami-
nants in the blank substrate are less important in the RDX residue
model.
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scores for the RDX class in the PLS-DA model—they
include numerous metal emission features. For
example, the emission feature contributing most
strongly to the RDX class is a relatively weak Ti I
line at 521.970 nm. This feature has a signal-to-noise
ratio of ∼10 in the spectra of the blank substrate and
only ∼2 in the spectra of RDX residue on Ti; thus the
presence or absence of the substrate line is used by
the model as an indication of whether a residue is
present. Although using the full LIBS spectra in
the model typically results in better classification
performance, the disadvantage for residue classifica-
tion is that the classification of residues on other sub-
strates outside the model can be significantly poorer
[13]. In order to assess the ability of this model to
classify RDX on other substrates, a second validation
set consisting of 160 spectra acquired on aluminum
alloys and 280 spectra acquired on other metal alloys
was tested against the model.

The results of testing the second validation set
against the RDX class in the model are shown in
Table 3. The spectra with a predicted probability
above the 35% threshold were classified as RDX (or
the corresponding model class). The overall TPR for
the alloy test set was 87.9% with 37.5% false posi-
tives. Despite the differences between the Al alloys
and the pure Al in the model, 91.3% of the test spec-
tra of RDX residue on the Al alloys were correctly
classified with the RDX in the model. For most
explosive-detection applications, classification of
the blank substrates is only important when they in-
correctly classify with the RDX. The blank Al2O3
substrate resulted in 100% false positives, partially
because of the strong O emission lines (because O is
one of the key indicators for the presence of RDX).
The blank Al2O3 also has a strong C emission line

[Fig. 3(e)], as does the Al 380 substrate [Fig. 3(d)],
which has a 45% false positive rate (FPR) for RDX
residue classification.

Similarly, the other metal alloy substrates with
RDX residue mostly classified correctly (86.5%).
However, 100% of the blank Zn 625 alloy spectra clas-
sified with the RDX. As with the In substrate, the Zn
625 substrate has strong C, H, N, and O emission fea-
tures, and the spectra with and without the RDX are
nearly indistinguishable. For the same reason, both
brass alloys also classified significantly with RDX
residue (100% and 90% for 1107 and 1110, respec-
tively). Incorporating the spectra from the Al2O3
and Zn 625 substrates (along with the other valida-
tion set data) into the model training set should im-
prove the performance of the model for RDX residue
classification.

C. RDX Intensity/Ratio Model

In addition to constructing a substrate-independent
PLS-DA model, a second method for improving the
classification of explosive residues, based on the
use of intensities and ratios, has been extensively
studied by our group [1,17,29]. In this approach, only
the spectral features present in the LIBS spectra of
the explosive residue are input into the chemometric
model, along with their corresponding intensity ra-
tios. Table 4 lists emission features observed in the
spectra of RDX; there weremanymore emission lines
observed in the broadband spectra, however only the
strongest emission lines free from interfering metal
lines (from the five high-purity metal substrates)
were selected for inclusion in the model. For exam-
ple, the (0–0) transition of CN at 388.34 nm is signif-
icantly blended with the Ti I line at 388.29 nm and
was therefore not included.

Table 2. PLS-DA Results for the Classification of RDX Residue on 10 Metal Substrates Using the Full Spectraa

Validation set RDX Ag Al Au Cu In Mg Ni Sn Ti Zn
AlRDX (35) 100% 0% 14% 0% 0% 0% 0% 0% 0% 0% 0%
CuRDX (35) 100% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0%
NiRDX (35) 83% 0% 0% 0% 0% 0% 0% 94% 0% 0% 0%
SnRDX (35) 91% 0% 0% 3% 0% 0% 11% 0% 0% 0% 0%
TiRDX (35) 100% 0% 0% 0% 0% 0% 0% 11% 0% 3% 0%
AuRDX (5) 100% 0% 0% 60% 0% 0% 0% 0% 0% 0% 0%
MgRDX (5) 100% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
ZnRDX (5) 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20%
AgRDX (5) 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
InRDX (5) 80% 0% 0% 0% 0% 60% 0% 0% 0% 0% 0%
Ag (5) 0% 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Al (35) 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
Au (5) 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
Cu (35) 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
In (5) 80% 0% 0% 0% 0% 80% 0% 0% 0% 0% 0%
Mg (5) 40% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Ni (35) 14% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
Sn (35) 0% 3% 0% 0% 0% 0% 0% 0% 100% 0% 0%
Ti (35) 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
Zn (5) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

RESPONSE

T
R

U
T

H

aNumber of test spectra listed in parentheses.

1 February 2013 / Vol. 52, No. 4 / APPLIED OPTICS B15



The emission intensities for the impurities (K, Na,
Ca) were higher for RDX residue on the high-purity
substrates (Al, Cu, Ni, Sn, Ti) than for the blank sub-
strates but were higher for the blank laboratory-
grade substrates (Ag, Au, In, Mg, Zn) than for the
RDX residue. The Mg substrate has particularly

strong C, H, N, andO emission compared to themetal
emission lines [Fig. 2(d)]. The presence of the
argon-bath gas minimizes the amount of O and N
from the air in the plasma and provides a convenient
way to normalize the emission spectra to decrease the
effect of shot-to-shot variations and differing laser–
material interactions. The background-corrected
peak intensity of the emission lines in Table 4 were
normalized to the peak intensity of the Ar line at
763.511 nm.

Compared to nonenergetic materials, most ener-
getic materials contain higher concentrations of O
and N than C and H; thus, explosive residues can
be distinguished from nonenergetic materials based
on the elemental ratios of those species. For this data
set, a simple set of ratios was constructed based
on each single-shot spectrum (C/H, C/N, C/O, C/CN,
H/N, H/O, H/CN, N/O, N/CN, O/CN), although more
complex ratios can be used to improve the classifica-
tion for more practical models with multiple residues
[29]. The emission lines shown in bold in Table 4
were used to calculate the ratios. The plasma excita-
tion temperature was calculated based on the Ar
lines at 750.387 and 751.465 nm with the Boltzmann
two-line method [9] and used as a variable input as
well, giving a total of 35 variables per spectrum.

An 11-class PLS-DA model (with the same classes
as the full spectra model in Section 3.B) was

Fig. 6. VIP scores from the RDX class in the PLS-DAmodel for classification of RDX residues on 10metal substrates. Emission lines from
both the RDX and the substrates contribute to the classification of the RDX residue.

Table 3. PLS-DA Results for the Second
Validation Test Set Consisting of Substrates

Not Included in the Full Spectra Modela

RESPONSE
Alloy test set RDX

Al2O3 (20) 100%
Al2O3+RDX (20) 100%
Al 380 (20) 45%
Al 380+RDX (20) 90%
Al 7075 (20) 0%
Al 7075+RDX (20) 100%
Al 5182 (20) 0%
Al 5182+RDX (20) 75%
Lead C2417 (20) 5%
Lead C2417+RDX (20) 55%
Lead C2418 (20) 65%
Lead C2418+RDX (20) 80%
Ni-Cu alloy (20) 5%
Ni-Cu alloy+RDX (20) 85%
Steel 1761a (20) 0%
Steel 1761a+RDX (20) 60%
Steel C1296 (20) 15%
Steel C1296+RDX (20) 95%
Ti 641 (20) 0%
Ti 641+RDX (20) 100%
Zn 625 (20) 100%
Zn 625+RDX (20) 100%
Alloy L-605 (20) 0%
Alloy L-605+RDX (20) 90%
Brass 1107 (20) 100%
Brass 1107+RDX (20) 100%
Brass 1110 (20) 90%
Brass 1110+RDX (20) 100%

T
R

U
T

H

aNumber of test spectra listed in
parentheses.

Table 4. Selected Emission Features Based on Intensity and Lack of
Spectral Interferences

Species Selected Emission Features (Wavelengths from [30])

C 247.856, 906.143, 909.483, 940.573, 962.080
H 656.285
N 744.229, 821.634, 824.239
O 715.670, 777.194, 777.417, 844.636, 882.043, 926.601
CN 387.14
K 766.490, 769.896
Na 588.995, 589.592, 819.482
Ca 315.887, 393.366, 422.673
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constructed with the same spectra used to train the
full spectra model; however, this time only the 35
variables described above were used as the inputs
for the model. Twenty latent variables were selected
to capture the variance in the training set. Figure 7
compares the VIP scores used to classify the RDX
residue and one of the blank substrates (Al). The
emission intensities of the C, H, N, and O are more
influential for describing the RDX class, as expected,
while the impurity intensities (Ca, Na, K) contribute
fairly equally to both classes. The excitation tem-
peratures more strongly influence the blank sub-
strate classification because the substrates covered
in RDX residue have similar temperatures [9]. The
ratios are more important for the classification of

the blank substrate in this model; the ratios would
be essential for discriminating multiple similar or-
ganic residues in a more complex model [29].

As before, the model was tested with a validation
set consisting of spectra not used to train the model
(Table 5). The use of specific emission intensities and
ratios significantly improved the overall TPR (96.5%)
and FPR (1.0%) for explosive classification; however,
the correct classification of the blank substrates was
significantly lower (91.0%). This result is entirely ex-
pected as no metal emission lines were used in the
model. In general, for explosive residue detection,
the only important question is whether the analyzed
material is explosive or nonexplosive. The false posi-
tives for the blank Mg substrate are a result of the
relatively strong C, H, N, and O emission present
in some of the spectra.

The results from testing the second validation set
of metal alloys against the intensity/ratio PLS-DA
model are shown in Table 6. Once again, using the
specific intensities and ratios increased the TPR
(88.9%) and decreased the FPR (30.7%). As with the
first validation set, the classification of the metal-
alloy test spectra with the blank metal substrate
classes is essentially meaningless as only the vari-
ables related to the RDX residue are considered by
the model.

D. RDX Fusion Model

Although the TPRs for the models described in
Sections 3.B and 3.C were quite high (95.0% and
96.5%, respectively) given the disparities in the RDX
residue spectra on the different substrates, the rela-
tively high FPRs (especially for the unknown sub-
strates) would be unacceptable in an explosive
detection application. A third approach to improving

Fig. 7. (Color online) VIP scores for the RDX and Al classes using
a model based on selected emission intensities, calculated excita-
tion temperature, and selected intensity ratios. For clarity, not all
of the variable names are displayed on the x axis.

Table 5. PLS-DA Results for the Classification of RDX Residue on 10 Metal Substrates Using the
Intensities/Ratio Modela

Validation set RDX Ag Al Au Cu In Mg Ni Sn Ti Zn
Al+RDX (35) 100% 3% 0% 3% 0% 9% 3% 0% 0% 0% 6%
Cu+RDX (35) 100% 0% 0% 0% 0% 0% 11% 0% 0% 0% 0%
Ni+RDX (35) 100% 14% 11% 20% 0% 0% 0% 0% 0% 0% 0%
Sn+RDX (35) 94% 0% 0% 0% 0% 3% 14% 6% 0% 0% 0%
Ti+RDX (35) 89% 3% 0% 0% 9% 0% 11% 11% 0% 3% 0%
Au+RDX (5) 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Mg+RDX (5) 100% 0% 0% 0% 0% 0% 60% 0% 0% 0% 0%
Zn+RDX (5) 100% 0% 0% 0% 0% 20% 40% 0% 0% 0% 20%
Ag+RDX (5) 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
In+RDX (5) 80% 0% 0% 0% 0% 60% 20% 0% 0% 0% 0%
Ag (5) 0% 100% 0% 0% 20% 0% 0% 0% 0% 0% 0%
Al (35) 0% 23% 100% 17% 23% 3% 0% 0% 3% 0% 0%
Au (5) 0% 0% 20% 100% 0% 0% 0% 0% 0% 0% 0%
Cu (35) 0% 66% 3% 0% 54% 0% 0% 86% 0% 0% 0%
In (5) 0% 20% 0% 0% 0% 100% 0% 0% 0% 0% 0%
Mg (5) 40% 0% 0% 20% 0% 0% 100% 20% 0% 0% 0%
Ni (35) 0% 11% 0% 0% 14% 0% 0% 94% 0% 0% 0%
Sn (35) 0% 14% 11% 0% 20% 0% 9% 0% 100% 0% 3%
Ti (35) 0% 0% 3% 0% 0% 0% 0% 0% 0% 100% 0%
Zn (5) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100%

RESPONSE

T
R

U
T

H

aNumber of test spectra listed in parentheses.
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the classification of explosive residues based on fus-
ing the two types of models (full spectra and selected
intensities/ratios) has been demonstrated by our
group for several varied data sets [13,18,29,31].
Briefly, the probability that each test spectrum be-
longs to a particular class in the full spectra model
is multiplied by the probability that the spectrum be-
longs to the same class in the intensity/ratio model.
A new, lower threshold (e.g., 0.35 × 0.35 � 0.12) is
chosen to determine class membership. In this way,
only samples that register as positive for explosives
in both models fall above the new threshold for clas-
sification. Receiver operating characteristic (ROC)
curves were generated for each of the models by vary-
ing the threshold (Fig. 8). A perfect explosives detec-
tor would have an ROC curve with a data point at
100% correct classification (or TPR) and 0% misclas-
sification (or FPR).

Figure 8 compares the results from testing of the
two models described in Sections 3.B and 3.C;
the ROC curves for the classification of the RDX re-
sidue in the validation set and in the alloy test set are
shown for each model. In both cases, the fusion
approach improves the ROC curve performance,
although the improvement is much more significant
for the alloy test set. The improvement in TPR and

FPR achieved depends on the threshold selection
(i.e., position on the ROC curve) and on the applica-
tion requirements. With a threshold of 0.12, the TPR
for the validation test set is 97.5% and the FPR is
1.0% for the fusion model (and the FPR for the alloy
test set is decreased to 20.0%). If minimizing the
number of false positives is most important, a higher
threshold for classification can be selected at the ex-
pense of the TPR (e.g., a threshold of 0.56 gives a TPR
of 86.0% and an FPR of 0.5% for the validation test
set and an FPR of 12.5% for the alloy test set).

4. Conclusions

By down-selecting the full spectral data to those fea-
tures pertaining to the RDX residue, we were able to
improve the TPR (from 95.0% to 96.5%) and signifi-
cantly reduce the FPR (from 5.5% to 1.0%). This out-
come is in contrast to our earlier results, which
showed an improvement in both TPR and FPR using
full broadband spectra instead of intensities/ratios
for residue classification on substrates included in
the model [13,18]. The biggest difference in the cur-
rent study is the dramatic effect of the metallic sub-
strates on the plasma chemistry of the ablated RDX
residue and the subsequent effects on the LIBS spec-
tra of the explosive residues. The fact that whether
the full broadband spectra or selected intensities/
ratios provide the best residue classification depends
on the substrate composition suggests that although
the information in the two models may be highly cor-
related, individually neither type of model ade-
quately captures all of the information available
from the spectral signatures.

The FPRs for a second test set consisting of metal
alloys, which cause distinct differences in the plasma
chemistry of the ablated RDX residue not accounted
for in the model, were unacceptably high for both
types of models (>30%). The fusion model, which
combines the probabilities obtained in the full
spectra model and the intensity/ratio model, results
in a modest improvement in the TPR (depending on

Table 6. PLS-DA Results for the Second
Validation Test Set Consisting of Substrates
Not Included in the Intensity/Ratio Modela

RESPONSE
Alloy test set RDX

Al2O3 (20) 85%

Al2O3+RDX (20) 100%
Al 380 (20) 20%
Al 380+RDX (20) 90%
Al 7075 (20) 0%
Al 7075+RDX (20) 80%
Al 5182 (20) 0%
Al 5182+RDX (20) 70%
Lead C2417 (20) 50%
Lead C2417+RDX (20) 95%
Lead C2418 (20) 25%
Lead C2418+RDX (20) 70%
Ni-Cu alloy (20) 10%
Ni-Cu alloy+RDX (20) 95%
Steel 1761a (20) 5%
Steel 1761a+RDX (20) 85%
Steel C1296 (20) 45%
Steel C1296+RDX (20) 75%
Ti 641 (20) 0%
Ti 641+RDX (20) 100%
Zn 625 (20) 0%
Zn 625+RDX (20) 90%
Alloy L-605 (20) 85%
Alloy L-605+RDX (20) 100%
Brass 1107 (20) 10%
Brass 1107+RDX (20) 100%
Brass 1110 (20) 95%
Brass 1110+RDX (20) 95%

T
R

U
T

H

aNumber of test spectra listed in
parentheses.

Fig. 8. (Color online) ROC curves for the classification of the RDX
residue (from the validation and alloy sets) using PLS-DA models
based on full spectra, selected intensities/ratios, and fused prob-
abilities. The points on the fusion ROC curves labeled A corre-
spond to a threshold of 0.12, while the points labeled B
correspond to a threshold of 0.56.
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the chosen threshold) and a significant reduction in
the FPR, especially for the substrates not included
in the model training sets (down to 20.0% with a
threshold of 0.12 and 12.5% with a threshold of
0.56). This result is consistent with previous explo-
sive residue studies [13,18].

Despite the distinct differences in the LIBS spec-
tra of RDX residue on metallic substrates, we have
shown that the RDX residues can be classified inde-
pendent of substrate with a high degree of success.
Although we do not claim that the limited models
presented here would enable explosive residue detec-
tion in a realistic environment, together with our
previous studies these results provide valuable in-
sight into the best approaches for the development
of explosive detection systems based on LIBS. Future
improvements to the models presented here could
consist of incorporating the validation set data
(including the metal alloys) into the training set
for the models, increasing the number of organic
emission intensities selected, and creating more com-
plex ratios. In addition, models containing a more
varied set of substrates (e.g., organic and metallic)
should be developed as clear differences in the che-
mometric results based on substrate type have been
demonstrated.
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