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ABSTRACT 

This paper proposes an effective anomaly detection algorithm for forward-looking ground-penetrating radar (FLGPR). 

The challenges in detecting explosive hazards with FLGPR are that there are multiple types of targets buried at different 

depths in a highly-cluttered environment. A wide array of target and clutter signatures exist, which makes classifier 

design difficult. Recent work in this application has focused on fusing the classifier results from multiple frequency sub

band images. Each sub-band classifier is trained on suites of image features, such as histogram of oriented gradients 

(HOG) and local binary patterns (LBP). This prior work fused the sub-band classifiers by, first, choosing the top-ranked 

feature at each frequency sub-band in the training data and then accumulating the sub-band results in a confidence map. 

We extend this idea by employing multiple kernel/earning (MKL) for feature-level fusion. MKL fuses multiple sources 

of information and/or kernels by learning the weights of a convex combination of kernel matrices. With this method, we 

are able to utilize an entire suite of features for anomaly detection, not just the top-ranked feature. Using FLGPR data 

collected at a US Army test site, we show that classifiers trained using MKL show better explosive hazard detection 

capabilities than single-kernel methods. 

Keywords: Forward-looking explosive hazards detection, ground-penetrating radar, false alarm rejection, multiple 

kernel learning, feature-level fusion 

1. INTRODUCTION 

The threat of explosive hazards continues to loom heavily over American troops abroad. lED attacks in Afghanistan 

continue to increase; 388 US soldiers were wounded in September 2010, compared to 179 in September 2009 and 18 in 

September 2008. 1 Hence, remediation of the threat of explosive hazards is an important and pertinent goal. There has 

been much work done on developing systems that detect these hazards, including systems based on GPR, infrared (IR) 

cameras, and acoustic technologies.2
-
4 Both handheld and vehicle-mounted GPR-based systems have been examined in 

recent research and much progress has been made in improving detection capabilities.5
'
6 FLGPR is an especially 

attractive technology because of its ability to detect hazards before they are physically below the detection platform; 

effective standoff distance can range from a few to tens of meters. FLGPR has been applied to the detection of side

attack mines7
, and mines in general.8

•
9 A drawback to FLGPR-based systems is thatthey are not only sensitive to objects 

of interest, but also to other objects, both above and below the ground. This can result in an excessive number of false 

alarms (FA). 

Figure I illustrates our proposed MKL explosive hazard detection algorithm. View (a) shows that the radar data is 

beamfored at the full bandwidth. We then apply a size-contrast filter to the radar image; detecting local maxima in the 

size-contrast filtered image with a prescreener. This operation is described in Section 2. Shown in view (b) is the feature 

extraction, described in detail in Section 3. At each prescreener alarm, we extract a grid of cells (small image regiop.s) 

from the surrounding pixels; e.g., a (3 x 3 = 9 cells) grid of image regions, each 9 pixels x 9 pixels, centered on a 
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MKL Training 

(d) MKL classifier training (one kernel for each feature set) 

Figure 1. FLGPR explosive hazard detection block diagram 

prescreener alarm. For each cell, we extract a set of features: the mean and standard deviation of the pixel values (called 
local statistics), LBP, and HOG. We also store the confidence (size-constrast filter value) at the alarm location. 

View (c) and (d) of Fig. 1 illustrate the proposed classifier training procedures. We first develop a classifier that uses the 
suppott-vector machine (SVM) to delineate false alan11S from true positives, shown in view (c). This classifier first takes 
the features from each cell and contactenates them into a single vector. The vectors are then transformed into a kernel 
matrix K, which is input to the SVM quadratic program. The output is a classification boundary (a hyperplane in the 
high-dimensional kernel space) that can be used to classify incoming signals as false alarms or true positives. 

The MKL approach, shown in view (d), is similar to the SVM approach in that it uses an SVM-based algorithm to train 
the classifier. However, the kernel matrix K is composed of a weighted sum of multiple precomputed kernel matrices. 
The MKL procedure simultaneously trains the SVM classifier and the weights of the kernel matrix summation for 
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Parameter 
Coherent integration range 

Full-band bandwidth 
Down-range image resolution 
Cross-range image resolution 

Cross-range detection limits 

5 - 10 meters down-range 
100 MHz- 1.5 GHz 

Scm 
3cm 

-5 to +5 meters 

optimal classifier performance (according to the max-margin classifier goal). In view (d) of Fig. 1, we illustrate how 

MKL can be used to fuse multiple feature sets. For our experiments, these feature sets will be the features shown in view 

(b), but calculauted for different cell dimensions and cell counts. We will also fuse multiple kernel functions (e.g., 

mixing RBF and polynomial kernels). Finally, we will look at computing a kernel matrix for each type of feature 

(confidence, local statistics, LBP, and HOG) and fusing them using MKL. 

The data used in this paper were collected at a US Army test facility. Realistic models of explosive hazards were buried 

along two approximately l kilometer test roads, which we will call Lane l and Lane 2. We have 5 runs of data from 

Lane 1 and 4 runs of data from Lane 2. The results we show in this paper are test results; the detection algorithms were 

trained on Lane 1 and tested on Lane 2 (and vice versa). Hence, the results we show are indicative of real-world 

performance (given the small amount of data that we have). 

Section 2 describes the prescreener algorithm and the features we collect at each prescreener alarm are outlined in 

Section 3. Section 4 outlines the proposed classifier methods. We present test results on the two lanes of data in Section 

5. Section 6 summarizes. 

1.1 ALARIC FLGPR 

The FLGPR images we use in this paper were collected using a system called ALARIC. This system is an FLGPR that is 

composed of a physical array of sixteen receivers and one transmitter. The T/R array is aimed about 8 meters in front of 

the vehicle with approximately a 35 degree grazing angle relative to the ground. In the past decade, FLGPR systems 

have primarily used their physical arrays (aperture) as well as their radar bandwidth for achieving high resolution 

imaging; conventional backprojection or time-domain correlation imaging has been used for this purpose. Those systems 

rarely tried to exploit imaging information that is created by the motion of the platform. The ground-based FLGPR 

community has referred to imaging methods that leverage platform motion as multi-look imaging. Though, in the 

airborne community, this is better known as synthetic aperture radar (SAR) imaging. SAR has been shown to be an 

effective tool for airborne intelligence, surveillance and reconnaissance (ISR) applications. 

The ALARIC system is equipped with an accurate GPS system. As a result, it is capable of processing both physical and 

synthetic aperture imaging, even when the platform moves along a nonlinear or curved path. To create the FLGPR 

images, a nonlinear processing technique called Adaptive Multi- Transceiver Imaging is used. This method exploits a 

measure of similarity among the 32 T/R images which adaptively suppresses artifacts such as sidelobes and aliasing 

ghosts. 

Table 1 contains the parameters of the ALARIC FLGPR that were used to create the images used in this paper. The 

FLGPR images are created for an area -11 to + 11 meters in the cross-range direction-although only the -5 to +5 meter 

cross-range sub-region is used in our detection algorithms-where negative numbers indicate to the left of the vehicle. 

Coherent integration of the radar scans is done in a 5 meter area, starting 5 meters in front of the vehicle. The pixel

resolution of the FLGPR image is 5 em in the down-range and 3 em in the cross-range directions. The center frequency 

is 800 MHz and the bandwidth is 1.4 GHz. The detection region we use is 10 meters wide, centered in the cross-range 

direction. References 10-15 describe our previous efforts in detecting explosive hazards using FLGPR. 

1.2 Area Under ROC (AUR) 

The AUR metric is used to show the relative efficacy of the different detection methods that we employ. This metric is 

simply the normalized area under the resulting receiver-operating characteristic (ROC) curve for a given detector. 

Figure 2 illustrates how we calculate this metric for an example ROC curve. We chose a maximum false alarms per 

meter-squared rate (FAR) of 0.1 at which to limit the AUR calculation. The AUR equation is ' 
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Figure 2. Area Under ROC (AUR) metric calculation. 

1 JO.l 
AUR = 

0
_
1 0 

PDCf)df, 

where p D (f) is the probability of detection at a given FAR off. Notice that the minimum AUR is 0, which indicates that 
p

0
(j) = 0 for FARs f E [0,0.1], and the maximum AUR is 1, which indicates perfect probability of detection with 

zero FAR. 

1.3 Miss-distance halo size 

Tn this paper, we present results for a 0.5 meter radius miss-distance halo. There are many mechanisms of error in 
FLGPR that do not exist in downward-looking sensors, such as refraction at the air-ground bow1dary and other soil 
boundary layers, longer range imaging (which accentuates geo-location-based errors), and low-grazing angle specular 
ground-bounce. As of yet, a comprehensive understanding of how these sources of enor manifest into miss-distances 
does not exist. Furthennore, we believe that FLGPR can operate as an early-waming sensor, cueing operators to the 
presence of targets ahead. The operators can then slow down and use a downward-looking system to more accurately 
locate the hazard. This allows operators to overall travel at higher speeds, covering more tenain in less time. Next we 
describe the prescreener. 
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(c) Local-maxima detector image 
Figure 3. Prescreener images-Target shown by red circle, alarm locations shown by white circles 
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2. PRESCREENER 
Consider an FLGPR image I(u, v) where u is the cross-range coordinate and vis the down-range coordinate. This image is first size-contrast filtered and then input to a local-maxima finding algorithm to determine candidate alarm locations. Our prescreener first calculates the size-contrast filtered image l5 c(u, v). This image is then used to find local maxima, which we identify as candidate target locations. A size-contrast filter is a simple operation defined by 

lsc(u, v) = minUcenter(u, v) - Ihalo(u, v ), 0}, (I) 
where Icenter(u, v) is the mean pixel value in the center of a surrounding halo of pixels and Ihalo(u, v) is the mean pixel value within the surrounding halo region. The center value Icenter(u, v) is calculated as 

Icenter(u, v) = (2x + 1)1(2 + 1) . L I(u- i, v- J), 
Y z=-x:x (2) 

j=-y:y 

where x andy determine the size of the box in which the pixels are added. The halo value I halo (u, v) is computed by 

lhalo(u, v) = (2xh + 1)(2yh + 1) 1_ (2x + 1)(2y + 1) r~=~:xh !(u- i, v-J)- i~:x l(u- i, v- j)l (3) 
J=-Yh'Yh J--y.y 

It is easy to see that the images Icenter(u, v) and !halo (u, v ), for all u, v in the image, can be computed by convolution. The image Icenter(u, v) is calculated by convolving I(u, v) with a rectangle of size (2x + 1,2y + 1), each pixel having a value of the preceding fraction in (2). Similarly, Ihalo(u, v) is calculated by convolving I(u, v) with a halo with inner dimensions (2x + 1,2y + 1) and outer dimensions (2xh + 1,2yh + 1); each pixel in the halo has a value of 1/[(2xh + 1)(2yh + 1) - (2x + 1)(2y + 1)]. We empirically tested many values of the size-contrast parameters and found that (x, y, xh, Yh) worked the best in general (although, the results for similarly sized and shaped filters were virtually identical). These are the parameter values we use for the results presented in this paper. 
After l 5 c(u, v) is calculated, we pass this image through a local-maxima finding algorithm. Our method first computes a maximum order-filtered image with a 3 meter x I meter rectangular kernel. We denote this order-filtered image as 0 5 c(u, v). Essentially, each pixel in the size-contrast filtered image is replaced by the maximum pixel value within a 3 meter cross-range and I meter down-range rectangle, centered on the pixel. Figure 3 shows an example of an FLGPR image in view (a), its respective size-contrast filtered image in view (b), and its associated order-filtered image in view (c). As this figure shows, the order-filter reduces the effect that noise-induced artifacts have on finding "hot spots" in the image. Alarms are identified by the operation 

A= arg(u,v)Usc(u, v) 2:: min{05c(u, v), 10}}, 
where A is the set of local-maxima locations. The minimum operator prescreens alarm locations that have a very low image value (confidence). We chose a value of IO for this threshold as this only eliminates alarms with the lowest of confidences. This prescreening threshold merely minimizes the computational cost of the subsequent algorithms by reducing the number of alarms to a manageable number. We also annotate the alarm locations A with the value of the size-contrast image pixel at each location, which we denote as l5 c(A). This pixel value is, in effect, the confidence of the alarm-the higher the value, the higher the confidence. Figure 3 illustrates the prescreener process, including the alarm locations for the example images shown. The next step is to calculate a set of feature vectors for each alarm in A. 

3. FEATURES 
The features that we compute at each candidate location in A are based on image features that have been shown to work well for many image processing and computer vision problems. These features are computed for groups of cells that surround each hit; each cell contains a rectangular subset of pixels. The cell counts that we use are (3 x 3 ), ( 5 x 5), and (7 x 7). For example, the (3 x 3) cell arrangement contains 9 cells, arranged in a (3 x 3) grid. The center cell is always centered on the candidate alarm location. Cell-based features capture not only the characteristics of the candidate alarm region, but also the spatial context in which the alarm is located. Figure 4 shows an example of an FLGPR image with a (5 x 5) cell-grid superimposed at the alarm location. In this case, each cell comprises a (2I x 2I) subset of pixels. In each 
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Table 2. Feature Set Properties 

Cell Sizes 

Feature Set {cdown' Ccross} {npiXdown' npiXcros~} Feature Set Dimension, d 

1 {3, 3} {9, 9} 190 

2 {5, 5} {9, 9} 526 

3 {7, 7} {9, 9} 1030 

4 {3, 3} {15, 15} 190 

5 {5, 5} {15, 15} 526 

6 {7, 7} {15, 15} 1030 

7 {3, 3} {21, 21} 190 

8 {5, 5} {21, 21} 526 

9 {7, 7} {21, 21} 1030 

10 {3, 3} {35, 35} 190 

11 {5, 5} {35, 35} 526 

12 {7, 7} {35, 35} 1030 

13 {3,3} {21,35} 190 

14 {5, 5} {21, 35} 526 

15 {7, 7} {21, 35} 1030 

of these cells, we calculate three features: statistics (mean and standard deviation), LBP, and HOG. We calculate the 
features from the FLGPR image, not the size-contrast filtered image. Table 2 shows the 15 different cell grid and cell 
sizes that we use to calculate the features. This table also shows the resulting dimension of the feature vector for each 
feature set. Now we discuss each feature individually. 

3.1 Local Statistics 

The statistics feature is simply two values: the mean and standard deviation of the FLGPR image pixels in each cell. For 
example, for a (3 x 3) cell grid, we end up with 9 x 2 = 18 local statistics feature values. Local statistics have been shown 
to be effective in some of our previous efforts in FLGPR explosive hazard detection. 10

•
12 In these previous works, we 

calculated additional local statistics, e.g., skewness and kurtosis. However, empirical tests have shown that mean and 
standard deviation are sufficient for capturing the local statistics for cell-based feature classification. 

-564 
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.::£ 
~ -566 
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Ol 
r:: 
0 < -568 

Along Array, m 
Figure 4. Cell-structure feature extraction illustration. Yellow boxes show cell arrangement of feature set 8. 
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Figure 4. LBP (3 x 3) neighborhood 

3.2 Local Binary Patterns 

Monochromatic (or gray-scale) variations in an image can be used to caph1re the texture of the objects in the image. A 
very popular and effective method for capturing texture information is the LBP feature. We use a rotation-invariant 
uniform LBP that was developed by Ojala et a1. 16

'
17 The first step of the rotation-invariant unifmm LBP is to capture a 

binary pattern for each pixel in the cell. Although the neighborhood of the LBP can be defined generally, we use an 8 
pixel neighborhood with a radius of 1, shown in Fig. 4. The mask shown in Fig. 4 is centered on each pixel and the 
following operation is computed 

8 

LBP8,1 =I s(tP- tc)2P, (4) 
p=1 

where 

( ) = {l,x 2: 0 
s x o o· ,X< 

This is where the feature gets its name, because each value ofthe summation in (4) contributes a unique bit to the binary 
representation ofLBP. The LBP operator in (4) is calculated for each pixel in the cell. Then each binary string is rotated 
and unifonned to produce 10 unique labels for each pixel in the cell; this is accomplished by a look-up table. For a 
detailed description of this process, see reference 16. The final step of the LBP feature extraction is the calculation of the 
histogram for each cell 

hLsP(m) = I S{LBP8,1(u,v) = m},m = 1, ... ,10 
H,vEcell 

where S{H} is a Boolean function that takes the value of 1 if the argument His true and 0 else. Since there are 10 unique 
labels, the histogram contains I 0 bins, each bin containing the count of the pixels in the cell with the conesponding 
uniform rotation-invariant LBP pattern. The histogram is then nonnalized by 

- hLsP(m) 
hLsP(m) = "10 1 (.)· 

L...i=l 1LBP L 

The normalized histogram values comprise the LBP feature. The LBP feature is calculated for each cell; hence, feature 
set 1 in Table 2 would contain (3 x 3 x 10) = 90 LBP feature values. 

3.3 Histogram of Oriented Gradients 

Another texture descriptor for images is HOG. 18 It is well known as it is a component of the popular SIFT feature. 19 The 
HOG feature is similar to LBP in that it is based on a histogram (hence, the name). However, HOG calculates a 
distribution of local gradients, as opposed to a distribution of bina1y patterns. Figure 5 illustrates the HOG procedure for 
a (4 x 4) cell. For a given cell of pixels, the 8-direction local gradients are first calculated at each pixel. These 8 gradients 
for all pixels in the cell are then combined into an 8-bin histogram where each bin is the summed magnih1de of the 
associated gradients. This histogram is the HOG feature. It is calculated for each cell; e.g., the first feature set in Table 
2 would contain (3 x 3 x 8) = 72 HOG feature values. Now we move on to discussing our classifier training procedure. 
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Figure 5. Illustration of a (4 x 4) cell-structured HOG descriptor. 

4. :MULTIPLE KERNEL LEARNING (MKL) CLASSIFIER 
A classifier takes input data and returns the class labels for each feature vector in those data. Typically, classifiers are 
trained on a set of training data that have known labels. For our problem here, we have two class labels: explosive hazard 
andfalse alarm. From now on, we will denote explosive hazards by the label '+1' and false alarms by the label '-1'. 
There are many classifiers out there, including neural networks, k nearest-neighbor, and Bayes classifiers. A good 
reference is the book by Duda, Hart, and Stork. 23 

Linear classifiers delineate class '-1' from class '+I' by finding the "best'' separating hyper-plane in the feature space. 
The notion of "best" depends on the problem and the classification algorithm, but for our problem we wish to maximize 
the margin between the separating hyperplane and the nearest training data points. Linear classifiers are often effective, 
are easy to train, and are computationally efficient for real-time systems. However, they are unable to accurately classify 
data in which the classes are not separable by a hyper-plane. Hence, the "kernel trick" can be used to convert linear 
classifiers to nonlinear classifiers (nonlinear in the original data space). 

Consider some nonlinear mapping¢: x -7 ¢(x) E ~dK, where dK is the dimensionality of the transformed feature vector 
x. With most kernel algorithms, we do not explicitly transform x, we simply represent the dot product ¢(x1 ) · ¢(x2 ) = 
K(x1,x2 ). The kernel function /C can take many forms, with the polynomial K(x,y) = (xTy + 1)P and radial-basis 
function (RBF) K(x, y) = exp ( yjlx- ylj

2
) being two of the most well-known. Given a set of n features X, we can thus 

construct an (n x n) kernel matrix K = [Kij = K(xi,xj)]. This kernel matrix K represents all pair-wise dot products of 
then feature vectors in the transformed dK"dimensional space-called the Reproducing Kernel Hilbert Space (RKHS). 

Given a kernel matrix K, we can construct a classifier that finds the best class-separating hyper-plane in the RKHS. One 
such classifier that is widely used and very effective is the support vector machine. 

4.1 Support Vector l\Iachine (SVM) 

The SVM algorithm is generally defined as the optimization problem 

1 
min-llwll 2 

w,b 2 

subject to 

Yi(w·xi- b) 2:: l,i = 1, ... ,n, 

where Yi E { -1, + 1} are the class labels and (w · xi - b) is the equation of the hyper-plane separating the positive class 
from the negative class. This f01m of the SVM, however, does not support overlapping classes, viz., etTors in the training 
data. Hence, the soft-margin SVM was introduced as 

subject to 
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Yi ( w · xi - b) 2:: 1 - (i, (i > 0, i = 1, ... , n, 

where C determines how many errors are allowed in the training.24 Notice that this is the linear soft-margin SVM. The 
kernel soft-margin SVM is easily defined in the dual form the SVM, where the optimization problem is solved using 
Lagrange multipliers. The single-kernel SVM (SK-SVM) is defined as 

m;x[1Ta- ~(a o yYK(a o y)} 
subject to 

0 :S; ai :S; C, i = 1, ... , n, 

aTy = 0, 

where 1 is then-length vectors of 1 s. 25 Note that SK-SVM reduces to the linear SVM for the kernel K(x, y) = x T y. 
We use LIBSVM to efficiently solve the SK-SVM problem.26 The output of LIBSVM is a classifier model that contains 
the vector a and the bias b. New feature vectors can be classified by computing 

label0 ,w ~ 'gn [~ a,y, x (x,, X 00w) - b]. 
where sgn is the sign operator. 

The drawback of SK-SVM is that it only accepts a single set of features as input. Hence, one must concatenate multiple 
features together into one (often, large) vector. Second, one must judiciously choose the kernel function; a poor choice 
could result in bad classifier performance. A recent innovation that addresses these problems is MKL. 
4.2 MKL Group Lasso 

MKL extends the SVM framework by assuming that the kernel K is composed of a weighted combination of pre
computed kernel matrices 

where there are m kernels and CJk is the weight of the kth kernel. Hence, the MKL classifier is defined as 

'!'Jrm:+ a- ~(a •y)' (~ a,K,) (a • y)l (5) 

subject to (typically) 

0 :S; ai :S; C, i = 1, ... , n, 

aTy = 0, 

where 1:1 is the domain of CJ. Note that this is the same problem as SK-SVM ifthe kernel weights are assumed constant.27 

This property has been used by many researchers to propose alternating optimization (AO) procedures for solving the 
min-max optimization problem. That is, solve the inner maximization for a constant kernel K, and then update the 
weights CJ to solve the outer minimization, and repeat until convergence. 

The domain of CJ is very important and many MKL implementations only work for a single domain. For example, 
1:1 = {CJ E IRl.~: IICJIIz < 1, CJk > 0} is the L2-norm MKL.28

'
29 We use a generalized MKL instantiation that allows for an 

Lp-norm domain 1:1 = { CJ E IRl.~: II CJ II P < 1, CJ k > 0}. 30 We use an optimization procedure proposed by Xu et a!. called 
MKL group lasso (MKL-GL).30 This method is efficient as it uses a closed form solution for solving the outer 
minimization in (5). The new kernel weights CJ

1 are calculated by 
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2 

fk1+p 
a' k = 1 , k = 1, ... , m; 

( r~=lr/:p )p (6) 

fk = af(a o y)TKk(a o y). (7) 

The MKL-GL algorithm has the following steps:30 

1. Initialize a 0 = 1/m 

2. Repeat 

a. Solve SK-SVM forK= L~=1 akKk 

b. Updates weights by (6) and (7) 

3. Until convergence 

As you can see, this algorithm is simple to implement and is efficient because step 2b has a closed form solution. 

MKL can be thought of as a classifier fusion algorithm. It can find the optimal kernel among a set of candidates by 
tuning the weights on each kernel. It can also be used to fuse multiple feature vectors describing the same object (or, in 
this case, location on the ground). Many combinations can be imagined. For our experiments, we will first show results 
of fusing multiple types of kernels on the same feature vector (mixtures of RBFs and polynomials). Then we will 
demonstrate how MKL can be used to fuse the results from multiple feature vectors. Last, we will examine how MKL 
performs in fusing the different types of features (as opposed to concatenating the types of features from one feature set 
into a single vector). 

5. RESULTS 
We tested our detection algorithms-prescreener and classifiers (SK-SVM and MKL)-on two test lanes. We have 9 
totals runs on these two lanes: 5 runs on Lane 1, and 4 runs on Lane 2. The training data for each test lane were the runs 
for the other lane; e.g., the training data for Lane 1 are the 4 runs combined of Lane 2. We stress that no information 
from the test lane was use in the training. Thus, the test results here are indicative of the expected performance on a new, 
unobserved lane. For comparison, the AUR of the prescreener algorithm is 0.48 for Lane 1 and 0.44 for Lane 2. 

5.1 SK-SVM 

Table 3 shows the results of the SK-SVM classifier for the 15 features sets (see Table 2 for identification of each feature 
set). We used the RBF kernel with width y = 1/d, where dis the dimensionality of the feature set. The SVM parameter 
C = 1. Note that we did a grid-search of various values ofy and C and found that, within reason, these parameters had no 
effect on the results. The table shows the AUR for the training (resubstitution) and test results for both lanes. We also 
rank the feature sets for each lane-the lower valued the rank, the better the feature (the higher the AUR). We also 
compute a total rank by adding the respective ranks from each lane. Bold indicates the best feature set for both lanes and 
overall. The total rank shows that feature set 12 is the best performing overall: with a rank of 1 for Lane 1 and a rank of 
3 for Lane 2. Close followers are feature sets 14 and 10. Looking back at Table 2, we see that all these feature sets share 
the common trait that they have large cells (35 pixels in at least one dimension). The worst performing feature sets were 
those that had smaller (9 x 9) pixel cells. Furthermore, the feature sets that have (5 x 5) and (7 x 7) cell arrangements 
perform better than the (3 x 3) cell arrangements over all. Now we compare against the MKL approach. 

Proc. of SPIE Vol. 8357 835710-10 



Table 3 AUR of Feature Sets (SK-SVM Classifier C = I RBF y = 1/d) , 
Feature Set 

Lane 1 2 3 4 5 6 7 8 9 10 II I2 13 I4 I5 
Training 0.57 0.60 0.63 0.57 0.60 0.62 0.55 0:60 0:61 0.58 0.60 0.63 0.56 0.60 0.63 

1 Testing 0.47 0.47 0.51 0.48 0.52 0.53 0.52 0.50 0.51 0.53 0.53 0.54 0.51 0.53 0.52 
Rank 15 14 10 13 8 5 12 9 4 6 2 1 II 3 7 

Training 0.61 0.65 0.67 0.60 0.63 0.65 0.61 0.63 0.65 0.62 0.64 0.66 0.61 0.63 0.65 
2 Testing 0.44 0.44 0.46 0.47 0.49 0.48 0.50 0.51 0.50 0.50 0.51 0.51 0.48 0.51 0.51 

Rank 14 15 13 12 9 8 10 7 5 6 3 2 11 I 4 
Total Rank 29 29 ?' _.) 15 17 13 22 16 9 12 5 3 22 4 11 

, 
AUR is normalized to 0.1 FA/m-. Bold mdJcates best result. 

5.2 .MKL 

We perfonned several experiments to detennine how the MKL approach could improve AUR. First, we selected the best 
performing feature set, 12, from the SK-SVM experiment in Table 3, and then we used the MKL method to combine 
different types of kernels (RBF and polynomial). Table 4 shows the AUR of these experiments; bold indicates that the 
MKL result was equal to or better than the best SK-SVM result for each lane. The first three rows show the results for 
combinations of kernels with different RBF widths. For example, y = { 10/d, 1/d, 0.1/d } indicates 3 RBF kernels. As the 
table shows, the MKL approach is able to achieve better performance than SK-SVM for both training and testing on 
Lane 1 and for training on Lane 2. On Lane 1, the MKL approach shows improved testing performance for all 3 
experiments that combine multiple RBF kernels. But this is not observed on Lane 2. MKL only is able to match SK
SVM for one of the RBF combinations. The addition of the polynomial kernel improves the training AUR for both lanes, 
but negatively impacts the testing AUR. This is an example of classifier overfitting. Because of this, we discourage the 
use of the polynomial kernel for this application. 

T bl 4 AUR fMKI F . K lT (C a e 0 ·uswn vs. erne ypes = ,p = , • = -
Lane 1 Lane 2 

Kernels Training Testing Training·. Testing 
y = { 10/d, lid, 0.1/d} 0.63 0.56 0.66 0.49 
y = {100/d, 10/d, 1/d} 0.68 0.57 0.7L 0.51 

y= {1/d,O.l/d} 0.57 0.55 Q.60 0.50 
y = {lid, 0.1/d }, p = {2} 0.67 0.48 (1.70 0.48 

p = {2, 5} ·o.67 0.50 o:7f'.· . 0.49 
A UR IS normahzed to 0 .I FA/m2

. Bold md1cates that MKL result IS equal to or better than 
SK-SVM. y indicates width ofRBF; p indicates degree of polynomial. 

The second experiment we perfonned with MKL tested combinations of feature sets from Table 3. We used a greedy 
approach to choose feature sets, starting with the combination of {I2, I4}, the two best perfonning feature sets overall in 
Table 3. Table 5 shows the A UR of five combinations of feature sets. Bold indicates that the MKL-trained classifier was 
as good as or better than the best SK-SVM result for each lane. Interestingly for this experiment, none of the MKL 
training results were as good as the SK-SVM training results. However, the Lane I MKL testing results were superior to 
those ofSK-SVM, showing nearly 4% improvement in AUR. The performance ofMKL on Lane 2 was equal to that of 
SK-SVM for most combinations of feature sets. 
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Table 5. AUR ofMKL Feature-Set Fusion C= !,p= 100) 

Lane 1 Lane 2 

Features, F Tr!linjp'g ... Testing Testing 
{12, 14} I. tf:.5~' ··. ··.. 0.56 

{11, 12, 14} 059 0.56 
{9, 11, 12, 14} i!L60 0.57 

{9, 11, 12, 14, 15} I o;61 . . o.56 

{9, 10, 11, 12, 14, 15} 0.56 

•o.si·· .. 
0.62 

]).62'. 
0.63' 

o:63 

0.51 

0.51 

0.51 

0.51 

0.50 

AUR is normalized to 0.1 FA/m2
. Bold indicates that MKL result is equal to or 

better than SK-SVM. 

Table 6 demonstrates the results of MKL using different regularization norn1s p; see Eq. (6). For this experiment, we 
chose the best combination of feature sets from Table 5, namely {9, 11, 12, 14}. As the results in Table 6 show, the 
regularization norm seems to have little effect on the AUR of the MKL classifier, but large values of p show slightly 
better performance than small values. This is especially noticeable on Lane 2, where p = 1.1, 2, and 10 produce results 
inferior to that of SK-SVM. 

Table 6. AUR ofMKL Fusion vs. Regularization-Norm p (C = I, F = {9,11,12,14}) 
Lane 1 

p Training· 

2 '·: "605'7 . 
10 · 0~59 

Testing 

0.55 

0.56 

0.57 

Lane2 

Training 

0.57 
·. ·o.5s 

0;60 

Testing 

0.49 

0.50 

0.50 
100 0.60 0.57 O.q2 0.51 

1000 I > Q.60 . 0.57 0~62 0.51 

AUR is normalized to 0.1 FA/m2
• Bold indicates that MKL 

result is equal to or better than SK-SVM. 

The last experiment we performed on MKL was using separate kernel matrices for each type of feature (confidence, 
local statistics, LBP, and HOG), resulting in 4 input kernel matrices. Table 7 shows the AUR for four different kernel 
combinations. The first row combines 4 RBF kernel matrices, each with width y = 1/1030 (d= 1030 is the dimension 
of feature set 12). The second row sets the RBF width of the kernel matrices to 11d1 where d1 is the dimension of the 
feature in each kernel matrix (confidence dimension= 1, local statistic= 198, etc.). The fmal two rows in Table 7 show 
the AUR if we use polynomial kernels of degree= 3 and 1, respectively. The best performing combination is the first 
row, which uses the same kernel width as the corresponding SK-SVM. However, MKL is only able to improve the AUR 
on Lane 1. The Lane 2 MKL results are the same as SK-SVM. The other three classifiers (rows 2-4) are inferior, 
especially the polynomial kernel combinations. This result is similar to what we saw in Table 4, where the polynomial 
kernel showed overfitting behavior. This is further evidence that the polynomial kernel is inappropriate for this 
application. 

Table 7. AUR ofMKL Feature Fusion (C = 1, p = 100, F = {12}) 

Lane 1 

Testing 

y = {1/1030, 111030, 111030, 111030} 1 .. f).;5'7 

y = {1' 1198, 1/490, 11441} d.58 
p = {3, 3, 3, 3} <<();(;7 
p = {1, 1, 1, 1} ; 9 .. ~§! 

0.55 

0.54 

0.48 

0.47 

Lane 2 

•.. o.()o····· o.51 

·.··•· 0.59 0.49 

0.70 0.47 

Jl.~69 0.48 

AUR is normalized to 0.1 FA/m2
. Bold indicates that MKL result is equal to or better than SK

SVM. y indicates width ofRBF for each feature kernel; p indicates degree of polynomial. 
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5.3 High-Metal Targets 

For these experiments we only considered the high-metal content targets. The AUR of the prescreener against these targets is 0.73 for Lane I and 0.7I for Lane 2. Clearly, the FLGPR is more suited to detecting high-metal objects. Tables 8 and 9 show the SK-SVM and MKL results, respectively, if we only consider high-metal targets. Table 8 shows the SKSVM results. As you can see, the FLGPR performance against high-metal targets is significantly better than against all targets, as shown in Table 3. Interestingly, the best feature set for the high-metal targets is 6, which was not even in the top 5 for the all-targets experiment. Similar to the results shown in Table 3, the small-sized cells (feature sets I-4) underperformed. For the high-metal targets, the best performing features show a compromise between cell-grid size and cell dimension. 

Table 9 shows the same MKL experiment as performed in Table 5, except we only consider high-metal targets. Hence, we choose the best performing features sets from Table 8 in a greedy approach. Similar to that in Table 5, we see that MKL shows improved perfonnance for Lane 1 and equal perfom1ance to SK-SVM for Lane 2. However, the improvement here is only slight. We believe that because there are very few high-metal target alarms in the training data, relative to false alarms, the MKL training only shows slight improvement because the class distribution is so lopsided. 

a e 0 eature ets Agamst rgt- eta argets - assr rer, = 
' y= 

T bl 8 AUR fF s H' hM IT (SK SVM Cl 'fi C I RBF 
Feature Set 

Lane I 2 3 4 5 6 7 8 9 10 11 I2 
Training 0 .. 77 0.8L 0.82 0.79 0.80 0.82 0.75 0.81 0.82 6:86 o:81 0.83 

1 Testing 0.72 0.73 0.75 0.73 0.77 0.77 0.72 0.76 0.75 0.76 0.76 0.75 
Rank 14 13 10 12 2 I 15 5 7 4 6 9 

Training o.i9 0.82 0.82 0.79 0.82 0.83 0.79 0.8~ 0 .. 83 0.82. 0,83 0.83 
2 Testing 0.70 0.69 0.71 0.71 0.76 0.76 0.74 0.75 0.75 0.77 0.77 0.75 

Rank 14 15 13 12 5 3 II 9 8 I 2 6 
Total Rank 28 28 23 24 7 4 26 14 15 5 8 15 

AUR rs normahzed to 0.1 FA/m2
• Bold indicates best result. 

Features, F Training Testing Testing 
{6, 10} 0.82 0.78 0.77 

{5, 6, 10} o:82 0.78 0.77 
{5, 6, 10, 14} 0.83. 0.78 0.77 

{5, 6, 10, 11, 14} 0 .. 83 0.78 0;82 0.77 
{5, 6, 8, 10, 11, 14} 0;84 0.78 

.... _···;&8i: 
0.76 

AUR is normalized to 0.1 FA/m2
• Bold indicates that MKL result is equal to or 

better than SK-SVM. 

Proc. of SPIE Vol. 8357 835710-13 

lfd) 

13 14 15 
O.Ti 0.81 0.83 
0.75 0.77 0.74 

8 3 II 

0.80 0.82 0.83 
0.75 0.76 0.75 

7 4 10 

15 7 21 



6. CONCLUSION 

We presented two approaches for detecting explosive hazards in FLGPR. First, the FLGPR image is filtered with a size
contrast filter, then a local-maxima detecting prescreener is used to mark candidate target locations. At each candidate 
location, a collection of features is computed; these features are prescreener confidence, cell-based local statistics, cell
based LBP, and cell-based HOG. We collected features for 15 different cell-grid counts and dimensions. The first 
classifier approach uses the SK-SVM on one of these feature sets to train a classifer. The second approach uses MKL to 
combine multiple kernel matrices; the combination weights as well as the SVM classifier are trained simultaneously. We 
experimented with four different methods for combing multiple kernels. The first method simply combined different 
types of kernels (RBF and polynomial) for one feature set. The second combined multiple feature sets, each feature set 
having its own kernel matrix. Third, we looked at how the regularization norm affected the MKL result. Finally, we 
tested a combination where there was one kernel matrix for each type of feature ( 5 total matrices). 

Our experiments showed that both SK-SVM and MKL improve AUR over a prescreener-only detector, with SK-SVM 
offering nearly 15% improvement in AUR over the prescreener and MKL producing another 4% of improvement (for 
Lane 1). Our results showed that MKL can produce improved performance over the SK-SVM method. The most 
effective MKL approach was to combine multiple feature sets using a large value for the regularization norm. One 
combination of RBF kernels also showed better performance, but combing multiple feature sets seemed to be more 
robust. Overall, the best MKL result improved AUR by 4% over the best SK-SVM result on Lane 1 and equaled the 
performance of SK-SVM on Lane 2. For this reason, we believe that MKL is a good candidate for future development of 
FLGPR explosive-hazard detection algorithms. Furthermore, the trained MKL classifier is simply a hyperplane in the 
kernel space; hence, implementing the classifier in real-time (e.g., on an embedded architecture) for an operational 
system would be very easy. 

Lastly, we showed that the FLGPR performance is significantly improved if only high-metal targets are considered. We 
aim to continue to investigate this phenomenon in the future. 

6.1 Future Work 

There is still much improvement to be had with this FLGPR system. We also believe that the methods proposed here can 
be further improved. First, it has been shown in other studies, such as image classification, that MKL can show great 
improvement over single-kernel SVM approaches. With the limited amount of test data we had for this study and the 
small amount of targets present in each lane, it was difficult to accurately model the target or true-positive class. In our 
future efforts, we will investigate solutions to training MKL classifiers for unbalanced class label distributions. We will 
also look at ways of modeling FLGPR target signatures and using these models in MKL training. Finally, we will 
continue to examine other features, such as the MSER, which has shown to be effective in our previous work using IR 
cameras?0

-
22 It is our belief that, as more data become available, MKL will show to be an effective method for training 

classifiers that minimize false alarms while maintaining high probability of detection. 
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