РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ |
(19)
RU
(11)
2 461 494
(13)
C2 | |||||
|
Статус: | действует (последнее изменение статуса: 05.10.2022) |
Пошлина: | учтена за 13 год с 16.10.2022 по 15.10.2023. Установленный срок для уплаты пошлины за 14 год: с 16.10.2022 по 15.10.2023. При уплате пошлины за 14 год в дополнительный 6-месячный срок с 16.10.2023 по 15.04.2024 размер пошлины увеличивается на 50%. |
(21)(22) Заявка: 2010142153/11, 15.10.2010 (24) Дата начала отсчета срока действия патента: Приоритет(ы): (22) Дата подачи заявки: 15.10.2010 (43) Дата публикации заявки: 20.04.2012 Бюл. № 11 (45) Опубликовано: 20.09.2012 Бюл. № 26 (56) Список документов, цитированных в отчете о поиске: US 3684217 A1, 15.08.1972. US 5979824 A, 09.11.1999. RU 2353547 C2, 27.04.2009. Адрес для переписки: |
(72) Автор(ы): (73) Патентообладатель(и): |
(54) БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ
(57) Реферат:
Изобретение относится к области авиации. Беспилотный летательный аппарат содержит крыло, выполненное с единой передней кромкой большой стреловидности и задней кромкой меньшей обратной стреловидности, двухкилевое хвостовое оперение, рули на килях хвостового оперения и элевоны в хвостовой части. Кили завалены к плоскости симметрии аппарата под углом ψ к вертикали больше 45° и соединены в концевом сечении, Задняя кромка хвостовой части составляет с передней кромкой крыла угол φ≈92-95°. Рули и элевоны использованы в качестве органов продольного, поперечного и путевого управления. Изобретение направлено на повышение эффективности органов управления. 8 ил.
Предлагаемое изобретение относится к авиации, в частности к беспилотным летательным аппаратам.
Известны проекты беспилотных летательных аппаратов (БЛА) с низким уровнем радиолокационной заметности, выполненных по схеме «летающее крыло» Х-45, Х-47, nEUROn (Aviation Week&Space Technology, August, 6, 2001, p.41; Aviation Week&Space Technology, July, 29, 2002, p.46; FlightInternational, 15-21 April, 2003, p.20; FlightIntemational, 6-12 May, 2003, р.21). С целью снижения эффективной площади рассеяния (ЭПР) в аэродинамических компоновках этих БЛА не используются горизонтальное и вертикальное оперения.
Известен БЛА, выполненный по схеме «летающее крыло» (Aviation Week&Space Technology, January, 7, 2007) с единой передней кромкой большой стреловидности и задней кромкой меньшей стреловидности. На крыле выполнены элевоны и интерцепторы. Управление по тангажу и крену осуществляется элевонами, по рысканью - расщепляющимися концевыми элевонами или интерцепторами.
К недостаткам такого БЛА относится малая эффективность органов продольного управления из-за небольшого продольного расстояния между аэродинамическими фокусами по углу атаки и углу отклонения элевона. Эффективность расщепляющегося элевона на задней кромке стреловидного крыла малого удлинения мала вследствие небольшого плеча и существенно уменьшается с ростом угла атаки из-за отклонения потока от плоскости симметрии модели, а создание управляющих моментов рысканья сопровождается существенными приращениями сопротивления.
За прототип принят летательный аппарат, который может быть использован как беспилотный летательный аппарат, выполненный по схеме «летающее крыло», с единой передней кромкой большой стреловидности и задней кромкой меньшей обратной стреловидности, содержащий двухкилевое хвостовое оперение, рули на килях хвостового оперения и элевоны в хвостовой части. Кили вертикального оперения расположены на концах крыла так, что передние кромки крыла и киля пересекаются (Патент США 3684217, 15.08.1972 г., реф. на 1 стр.).
Недостатком такого летательного аппарата является то, что при больших углах атаки кили окажутся в области вихревого течения над крылом. Кили станут неэффективными, уменьшится подъемная сила.
Задача данного изобретения - создание аэродинамической компоновки малозаметного БЛА.
Технический результат состоит в достижении потребного уровня статической устойчивости в путевом и продольном каналах управления, высокой эффективности органов управления по тангажу, крену и рысканью в широком диапазоне углов атаки и скольжения при уровне эффективной площади рассеяния, характерном для бескилевой компоновки.
Решение задачи и технический результат достигаются тем, что в беспилотном летательном аппарате, содержащем крыло, выполненное с единой передней кромкой большой стреловидности и задней кромкой меньшей обратной стреловидности, двухкилевое хвостовое оперение, рули на килях хвостового оперения и элевоны в хвостовой части, кили завалены к плоскости симметрии аппарата под углом ψ к вертикали больше 45° и соединены в концевом сечении, задняя кромка хвостовой части (заднего корневого наплыва)составляет с передней кромкой крыла угол φ 92-95°, а упомянутые рули и элевоны использованы в качестве органов продольного, поперечного и путевого управления.
Фиг.1 - Вид беспилотного летательного аппарата в плане.
Фиг.2 - Вид беспилотного летательного аппарата спереди.
Фиг.3 - Общий вид беспилотного летательного аппарата.
Фиг.4 - Влияние хвостового оперения на путевую статическую устойчивость модели беспилотного летательного аппарата.
Фиг.5 - Приращения коэффициента момента тангажа модели беспилотного летательного аппарата от отклонения руля на левом киле хвостового оперения.
Фиг.6 - Приращения коэффициента момента рысканья модели беспилотного летательного аппарата от отклонения руля на левом киле хвостового оперения.
Фиг.7 - Приращения коэффициента момента тангажа модели беспилотного летательного аппарата от отклонения элевона на левой консоли крыла.
Фиг.8 - Приращения коэффициента момента крена модели беспилотного летательного аппарата от отклонения элевона на левой консоли крыла.
Как видно из фиг.1, беспилотный летательный аппарат содержит центроплан 1, единую переднюю кромку 2 большой стреловидности, заднюю кромку 3 меньшей обратной стреловидности, двухкилевое хвостовое оперение, рули 4 на килях хвостового оперения и элевоны в хвостовой части. Угол φ между передней кромкой крыла и задней кромкой хвостовой части составляет 92-95°. Данный выбор угла φ обусловлен тем, что именно в указанном диапазоне обеспечивается перпендикулярность вектора скорости потока на верхней поверхности крыла к оси вращения элевона и его наибольшая эффективность. При угле φ менее 92° и более 95° происходит увеличение сопротивления и потери аэродинамических качеств летательного аппарата на балансировку.
В качестве органа путевой и продольной стабилизации используется двухкилевое хвостовое оперение с рулями 4. Кили хвостового оперения завалены к плоскости симметрии аппарата под углом ψ к вертикали больше 45° и соединяются в концевом сечении, что повышает жесткость конструкции.
Объединение в беспилотном летательном аппарате крыла с большой стреловидностью передней кромки, двухкилевого хвостового оперения с заваленными с углом ψ более 45° к плоскости симметрии аппарата килями и заднего корневого наплыва крыла, задняя кромка которого составляет с передней кромкой крыла угол φ≈92-95°, дает новое качество: эффективность рулей на килях и корневых элевонов практически не уменьшаются с ростом угла атаки α в широком диапазоне углов атаки.
Достигнутый положительный эффект подтвержден экспериментальными исследованиями, проведенными в аэродинамической трубе на модели БЛА. На фиг.4-8 приведены результаты этих исследований.
На фиг.4 показано влияние хвостового оперения на путевую статическую устойчивость модели . Из графика видно, что установка хвостового оперения обеспечивает путевую статическую устойчивость модели в исследованном диапазоне углов атаки.
На фиг.5 и 6 - приращения коэффициентов моментов тангажа Δmza и рысканья Δmy модели от отклонения руля на левом киле хвостового оперения на угол δ°р лев. Из графика видно, что приращения коэффициентов моментов тангажа и рысканья модели от отклонения руля на хвостовом оперении сохраняются в исследованном диапазоне углов атаки практически неизменными.
На фиг.7 и 8 - приращения коэффициентов моментов тангажа Δmza и крена Δmx модели от отклонения левого элевона на угол δ°э лев. Из графика видно, что приращения коэффициентов моментов тангажа от отклонения элевона незначительно уменьшаются с ростом угла атаки, начиная с α≈15°, а приращения коэффициента момента крена остаются неизменными до α≈12°, и при дальнейшем увеличении угла атаки несколько увеличиваются.
Стреловидность передней кромки киля оперения согласована со стреловидностью передней кромки крыла, задних кромок консольной части крыла - с задней кромкой хвостового оперения и заднего наплыва. Это, а также значительный наклон киля к плоскости симметрии аппарата приводит к тому, что эффективная площадь рассеяния компоновки от установки оперения практически не увеличивается.
Формула изобретения
Беспилотный летательный аппарат, содержащий крыло, выполненное с единой передней кромкой большой стреловидности и задней кромкой меньшей обратной стреловидности, двухкилевое хвостовое оперение, рули на килях хвостового оперения и элевоны в хвостовой части, отличающийся тем, что кили завалены к плоскости симметрии аппарата под углом ψ к вертикали больше 45° и соединены в концевом сечении, задняя кромка хвостовой части составляет с передней кромкой крыла угол φ≈92-95°, а упомянутые рули и элевоны использованы в качестве органов продольного, поперечного и путевого управления.