РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ |
(19)
RU
(11)
2 526 094
(13)
C1 | |||||
|
Статус: | действует (последнее изменение статуса: 27.08.2014) |
Пошлина: | не взимаются - статья 1366 ГК РФ |
| |
(21)(22) Заявка: 2013126634/07, 10.06.2013 (24) Дата начала отсчета срока действия патента: Приоритет(ы): (22) Дата подачи заявки: 10.06.2013 (45) Опубликовано: 20.08.2014 Бюл. № 23 (56) Список документов, цитированных в отчете о поиске: RU 2419814 C1, 27.05.2011. RU 2248584 C2, 20.03.2005. RU 2363011 C1, 27.07.2009. RU 2459218 C1, 20.08.2012. US 5181041 A, 19.01.1993. JP 2010034797 A, 12.02.2010. WO 2006110333 A2,19.10.2006. EP 713344 A2, 22.05.1996. EP 580139 A3, 17.08.1994 Адрес для переписки: |
(72) Автор(ы): (73) Патентообладатель(и): |
(54) СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ
(57) Реферат:
Способ местоопределения источника радиоизлучения (ИРИ) относится к радиотехнике, а именно к пассивным системам радиоконтроля. Достигаемый технический результат - повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер". В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения (НВО), ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них, и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с НПУО, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока НВО определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат РДС и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ. 4 ил.
Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано в системах местоопределения радиоизлучающих средств ОВЧ-УВЧ диапазона, функционирующих в труднодоступной местности.
Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер" (Фиг.1, см., например, Е. Ерохин, А. Коломиец «Мультикоптеры: новый вид», электронный ресурс - http://www.uav.ru/articles/multicopters.pdf. (дата обращения: 12.12.12 г.)). В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с наземного пункта управления и обработки, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока навигационно-временного обеспечения определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат разностно-дальномерной системы и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ.
Технический результат достигается тем, что БЛА-датчики на базе мультикоптеров могут быть доставлены в труднодоступный район предполагаемого функционирования ИРИ, где за счет использования свойства мультикоптеров принимать неподвижное состояние в пространстве, а также за счет их маневренности, появляется возможность формировать подобие стационарных наземных пунктов приема разностно-дальномерной системы местоопределения с оптимальным геометрическим фактором, что, в свою очередь, позволяет повысить точность определения координат ИРИ.
Достигаемым техническим результатом изобретения является повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности.
Известен способ местоопределения ИРИ, близкий по технической сущности к заявляемому изобретению (см., например, Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы - М.: «Радио и связь», 1986. - 264 с), основанный на измерении корреляционным методом временных задержек приема сигнала ИРИ, относительно одного из N≥2 пространственно разнесенных пунктов радиоконтроля. Недостатками указанного способа являются необходимость устойчивого приема пунктами радиоконтроля сигналов контролируемого ИРИ, что не всегда возможно в условиях сложного рельефа труднодоступной местности и недостаточная точность местоопределения ИРИ, связанная с большим удалением ИРИ от пунктов радиоконтроля.
Известен способ (прототип) местоопределения (см. Пат. РФ 2363011, МПК 00185/12, опубл. 27.07.2009 г.), сущность которого заключается в предварительной доставке в предполагаемый район нахождения ИРИ как минимум 3 кассет. Каждая из кассет содержит навигационный приемник и приемопередатчик. Приемопередатчик включает в себя панорамный приемник и передатчик параметров сигналов. После фиксации в грунте носителя навигационный приемник и приемопередатчик одновременно по сигналу «пуска» или автоматически приводятся в работоспособное состояние. По сигналам навигационно приемника определяют координаты мест фиксации в грунте каждого носителя. Каждый приемопередатчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика через спутник-ретранслятор на пункт радиоконтроля. На пункте радиоконтроля по поступившим данным осуществляется определение местонахождения ИРИ относительно координат навигационных приемников. Данный способ позволяет обеспечить ЭМД ИРИ и повысить точность местоопределения за счет уменьшения трассы распространения радиоволн от ИРИ к пунктам радиоконтроля. Недостатками данного способа местоопределения ИРИ являются трудности в обеспечении оптимального геометрического фактора, зависящего, в частности, от точности доставки кассет в район формирования системы местоопределения, отсутствие возможности перемещения зафиксированных в грунте кассет в зависимости от изменения положения ИРИ, необходимость обеспечения электромагнитной доступности к спутнику-ретранслятору.
Для достижения технического результата изобретения предлагается в указанном способе-прототипе вместо кассет использовать множество K≥4 пространственно-разнесенных малых размеров БЛА-датчиков, каждый из которых содержит блок навигационно-временного обеспечения, ненаправленную антенну, панорамный приемник и приемопередатчик. Базой для размещения аппаратуры датчиков выбраны мультикоптеры, которые имеют ряд преимуществ перед кассетами, указанными в способе-прототипе. Основными преимуществами использования мультикоптеров являются их высокая маневренность и возможность принимать неподвижное состояние в пространстве, за счет чего появляется возможность формировать подобие стационарных наземных пунктов приема разностно-дальномерной системы местоопределения с оптимальным геометрическим фактором, что, в свою очередь, позволяет повысить точность определения координат ИРИ. Еще одним существенным отличием предлагаемого способа от способа-прототипа является то, что обработка координатной информации производится не на наземном пункте радиоконтроля, а на центральном БЛА-датчике, после чего информация о местоположении ИРИ ретранслируется через ЛА-ретранслятор на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом обеспечения оптимального геометрического фактора, при этом вместо спутника-ретранслятора для ретрансляции команд управления и координатной информации используется пилотируемый или беспилотный летательный аппарат среднего класса, что позволяет обеспечить бесперебойную связь с НПУО.
Заявленный способ поясняется иллюстрацией, представленной на фиг.2. На фиг.2 приняты следующие обозначения: 1 - наземный пункт управления и обработки (НПУО); 2 - пилотируемый или беспилотный летательный аппарат среднего класса (ЛА-ретранслятор), который одновременно является носителем БЛА-датчиков и ретранслятором сигналов между НПУО и центральным пунктом (БЛА-датчиком) системы; 3 - периферийные БЛА-датчики (пункты) РДС; 4 - центральный БЛА-датчик (пункт) РДС; 5 - источник радиоизлучений, местоположение которого определяется; 6 - препятствие, ограничивающее зону приема сигналов ИРИ.
Множество БЛА-датчиков доставляют в предполагаемый район нахождения ИРИ посредством беспилотного или пилотируемого летательного аппарата 2 среднего класса. Совокупность БЛА-датчиков 3, 4, по командам с НПУО 1, размещают в пространстве на границе (вокруг) предполагаемого района функционирования источника радиоизлучений 5 за препятствием, ограничивающим зону приема сигналов ИРИ 6, затем назначают центральный БЛА-датчик 4, формируя, таким образом, разностно-дальномерную систему радиоконтроля. В этом случае вся зона радиоконтроля покрывается сетью БЛА-датчиков. По сигналам блока навигационно-временного обеспечения определяются координаты в пространстве каждого БЛА-датчика и осуществляется высокоточная привязка к собственной системе координат РДС, происходит передача координатной информации о пунктах сформированной РДС на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, по команде с центрального БЛА-датчика, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик системы радиоконтроля. На центральном БЛА-датчике, по поступившим данным осуществляется определение местоположения ИРИ. При определении местоположения источников радиоизлучений используется корреляционный метод, основанный на измерении временных задержек приема БЛА-датчиками РДС обнаруженных сигналов относительно центрального. После определения местоположения обнаруженного источника радиоизлучения, центральный БЛА-датчик РДС через ЛА-ретранслятор отправляет координаты обнаруженного ИРИ на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом обеспечения оптимального геометрического фактора.
Предложенный способ позволяет обеспечить прием сигналов от ИРИ, функционирующего в труднодоступной местности, а использование множества K≥4 датчиков позволяет сформировать на границе (вокруг) предполагаемого района нахождения ИРИ разностно-дальномерную систему радиоконтроля с оптимальным геометрическим фактором, обеспечивающим высокую точность местоопределения.
Таким образом, повышение точности местоопределения достигается за счет обеспечения оптимального геометрического фактора формируемой разностно-дальномерной системы радиоконтроля, а высокая маневренность БЛА-датчиков системы позволяет по команде оператора НПУО за короткие интервалы времени перестроить ее таким образом, что источник радиоизлучения попадает в рабочую зону местоопределения РДС с минимальной погрешностью местоопределения координат.
Справедливость данного утверждения подтверждается следующей оценкой. Пусть задано местоположение БЛА-датчиков 1, K≥4, (фиг.3) многопозиционной разностно-дальномерной системы радиоконтроля. В предлагаемой геометрической конфигурации БЛА-датчиков расстояние от ИРИ r0 до центрального БЛА-датчика (пункта) 2 сопоставимо с расстоянием базы РДС, в результате чего выполняется условие функционирования системы в ближней зоне радиоконтроля , в таком случае погрешность определения координат зависит от погрешности измерения расстояний баз разностно-дальномерной системы (см. Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы - М.: «Радио и связь», 1986. - 264 с.). В предлагаемой геометрической конфигурации рабочей системы и, исходя из условия ее функционирования в ближней зоне, оптимально располагать БЛА-датчики в вершинах квадрата. Тогда вариант разностно-дальномерной системы радиоконтроля будет включать в себя K=4 БЛА-датчиков 1 из всего множества K≥4, которые будут располагаться в вершинах квадрата (фиг.2). Поскольку базы датчиков взаимно перпендикулярны (γ=γ1=γ2=γ3=γ4=90°), а их значения равны (d=d1=d2=d3=d4), то обеспечивается повышение точности местоопределения внутри квадрата (см. Белавин О.В. Основы радионавигации - М.: «Советское радио», 1977. - 320 с.).
Для определения точности местоопределения построим кривые равной точности для выбранной геометрической конфигурации РДС. Используя выражение (см., например, Семенюк С.С., Уткин В.В., Бердинских Л.Н. Геометрический фактор разностно-дальномерной сети датчиков в пространстве. Наукоемкие технологии, 2012, №8. - С.66-72)
где: tr(KS) - след матрицы; ковариационная матрица ошибок определения вектора координат ИРИ.
Полученные линии равной точности (в плановых координатах) с использованием выражения (1) отображены на фиг.4, откуда видно, что наибольшая точность местоопределения располагается в центре квадрата данной геометрической конфигурации РДС.
В случае, когда источник радиоизлучения располагается ближе к одной из баз системы радиоконтроля или требуется повышение точности определения его координат, то оператор дает команду на формирование (перестроение) в пространстве из множества БЛА-датчиков конфигурации системы с учетом оптимального геометрического расположения датчиков в пространстве, или назначить для формирования из множества те БЛА-датчики, которые имеют оптимальную геометрическую конфигурацию РДС, которая позволяет определять координаты ИРИ с заданной точностью.
Таким образом, предлагаемый способ местоопределения обладает рядом существенных преимуществ перед прототипом, которые позволяют повысить точность местоопределения ИРИ, функционирующих в труднодоступной местности, а использование пилотируемого или беспилотного летательного аппарата среднего класса (ЛА-ретранслятора) позволяет обеспечить бесперебойную связь с НПУО.
Формула изобретения
Способ определения местоположения источника радиоизлучения (ИРИ), основанный на измерении корреляционным методом временных задержек приема сигнала ИРИ относительно одного из N≥4 пространственно разнесенных пунктов (приема) радиоконтроля, при этом один из пунктов радиоконтроля является центральным (опорным) и осуществляет прием и обработку сигналов, а остальные осуществляют прием сигналов, отличающийся тем, что в предполагаемый район нахождения ИРИ доставляют посредством беспилотного или пилотируемого летательного аппарата (ЛА) среднего класса, одновременно являющегося носителем мультикоптеров и ретранслятором сигналов между наземным пунктом управления и обработки (НПУО), множество N≥4 пунктов радиоконтроля (датчиков), размещенных на БЛА типа "мультикоптер", каждый из которых содержит блок навигационно-временного обеспечения, ненаправленную антенну, панорамный приемник и приемопередатчик, распределяют в пространстве по команде с наземного пункта обработки и управления через ЛА-ретранслятор, назначают из множества датчиков центральный, который расположен на минимальном расстоянии от ЛА-ретранслятора, далее БЛА-датчики (пункты радиоконтроля) определяют свое местоположение с помощью блока навигационно-временного обеспечения, осуществляют частотный поиск, оцифровку обнаруженных сигналов и передачу на центральный БЛА-датчик (пункт радиоконтроля) данных о своем местоположении в пространстве, а также оцифрованные сигналы обнаруженного источника радиоизлучения, при этом центральный БЛА-датчик по поступившим данным от множества БЛА-датчиков определяет координаты ИРИ и осуществляет передачу данных на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом оптимального размещения в пространстве БЛА-датчиков (пунктов радиоконтроля), с целью повышения точности местоопределения координат ИРИ, формируя команды управления и передачу их через ЛА-ретранслятор на центральный БЛА-датчик формируемой многопозиционной системы местоопределения в пространстве.