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Abstract 

Finding an optimal path for a redundant robotic system to visit a sequence 
of several goal locations is a complex optimization problem and poses two 
main technical challenges. Because of the redundancy in the system, the 
robot can assume an infinite number of goal configurations to reach each 
goal location. Therefore, not only an optimal sequence of the goals has 
to be defined, but also, for each goal, an optimal configuration has to be 
chosen among infinite possibilities. Second, the actual cost for the system 
to move from one configuration to the next depends on many factors, such 
as obstacle avoidance or energy consumption, and can be calculated only 
through the employment of specific path planning techniques. 

We first address the optimization problem of finding an optimal sequence 
of optimal configurations, while assuming the cost function to be analyti­
cally defined. This problem is modeled as a Traveling Salesman Problem 
with Neighborhoods (TSPN), which extends the well-known TSP to more 
general cases where each vertex (goal configuration) is allowed to move in a 
given region (neighborhood). In the literature, heuristic solution approaches 
are available for TSPN instances with only circular or spherical neighbor­
hoods. For more general neighborhood topologies, but limited to the Eu­
clidean norm as edge weighting function, approximation algorithms have also 
been proposed. We present three novel approaches: (1) a global Mixed Inte­
ger Non Linear Programming (MINLP) optimizer and (2) a convex MINLP 
optimizer are modified to solve to optimality TSPN instances with up to 
20 convex neighborhoods, and (3) a hybrid random-key Genetic Algorithm 
(GA) is developed to address more general problems with a larger number of 
possibly non-convex neighborhoods and with different types of edge weight­
ing functions. Benchmark tests show that the GA is able to find the same 
optimal tour calculated by the MINLP solvers while drastically reducing 
the computational cost, and it always improves the best known solutions for 
available test problems with up to 1,000 neighborhoods. 

Second, we integrate the GA with a probabilistic path planning tech­
nique to apply the proposed procedure to two practical applications. We 
minimize the time currently required by an industrial vision inspection sys­
tem to complete a multi-goal cycle, where the neighborhoods are defined 
using piecewise cubic splines in a seven-dimensional configuration space. 
Afterwards, we optimize the flight path and the energy consumption of a 
quadrotor Unmanned Aerial Vehicle (UAV) on an urban survey mission. 
The specifications of the camera installed on the UAV are used here to 
define the neighborhoods as three-dimensional polyhedra. 
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Chapter 1 

Introduction 

In this chapter, we first provide a literature review about recent works rel­
evant to our research, and we illustrate their limitations for practical ap­
plications. Then, we state our contribution and summarize the obtained 
numerical results. 

1.1 Literature Review 

1.1.1 The TSPN 

There are optimization instances in which the standard Traveling Salesman 
Problem (TSP) formulation cannot fully capture the exact nature of the 
problem. Indeed, if the vertices are allowed to move in certain continuous 
domains (neighborhoods), not only an optimal Hamiltonian cycle has to be 
found that visits each vertex once, but also the optimal position of each 
vertex in its neighborhood has to be defined. The combination of an opti­
mal Hamiltonian cycle and optimal vertices positions is called optimal tour 
hereafter. This problem was initially introduced by Arkin and Hassin [9], 
and it is commonly referred to as the TSP with Neighborhoods (TSPN). 

Some technical problems have been recently posed in the literature where 
the TSPN formulation seems to be a suitable approach to properly capture 
their nature. Utility companies employ automated meter reading (AMR) 
based on radio frequency identification (RFID) to read meters from a cer­
tain distance. The reader has thus to plan in advance the shortest path that 
travels within a certain radius from each meter to minimize the reading 
costs [47, 93]. The same scenario occurs when mobile robots have to acquire 
data from distributed sensors and therefore they have to approach each sen­
sor from a minimum distance to allow the wireless communication working 
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properly [105]. Unmanned aerial vehicles (UAV) can be deployed to monitor 
a set of sites. A flight path has thus to be calculated such that the UAV 
flies within a certain distance from the center of each site, while minimizing 
the flying time or the fuel consumption [62]. Industrial manipulators can 
be used to perform a sequence of multiple tasks during an operating cycle. 
If the robotic system has 7 or more degrees of freedoms (DOF) there is an 
infinite number of possible configurations that can be used while performing 
each task in the sequence. Thus, an optimal sequence of optimal configura­
tions has to be calculated by a multi-goal path planner [44]. In all but the 
last cited cases the neighborhoods are represented by balls in R2 or in R3, 
and only in the last application the neighborhoods Eire non-convex regions 
in the robot configuration space. Depending on the topology of the neigh­
borhoods and on the type of the edge weighting function, specific heuristic 
approaches are available in the literature. 

1.1.2 Heuristics 

In the case of partially overlapping or disjoint balls in R2 and Euclidean 
norm, indicated also as Close Enough TSP (CETSP), Gulczynski et al. [47] 
propose different heuristics based on tiling, sweeping circles, radial adja­
cency, and Steiner zones. Dong et al. [28] propose two heuristics to extract 
representatives vertices for each neighborhood based on tiling or convex 
hulls, and then simulated annealing is used to search for a near optimal 
tour. An extension of the Steiner zones heuristic is provided by Mennell [74], 
where also balls in R3 and Manhattan norm are considered. First a graph re­
duction is performed by finding the intersections of the partially overlapping 
balls (Steiner zones), and representative vertices are chosen for each zone. 
Then a classical TSP is solved using these vertices, and finally the solution 
is improved by solving a continuous touring problem. Among the several 
variants of the main procedure, Mennell [74] proposes also to discretize the 
Steiner zones into several representative points, and to employ a Genetic 
Algorithm (GA) to solve the resulting Generalized TSP (GTSP) [94]. The 
proposed procedures are applied on a set of test instances and results are 
compared to the one obtained applying different approaches proposed by 
other authors. Instances from the same test set will be used in this work to 
benchmark our proposed method. 

In the case of partially overlapping or disjoint balls in R2 and where air­
craft dynamics is considered in defining the edge weighting function, Klesh 
[62] discusses necessary conditions for optimality and proposes two heuris­
tics, based on a "rubberband" approach or on a GTSP model. Since edges 

2 

 
 
 
 

 
 
 

PREVIE
W



are trajectories rather straight lines, not only the position of each vertex 
has to be considered while searching for a near optimal tour, but also the 
derivative of the trajectory at each vertex location. 

In the case of disjoints balls in R2 and Euclidean or Manhattan norm 
Yuan et al. [105] propose a two step approach: a permutation of the neigh­
borhoods is found by a traditional TSP algorithm, and then an evolutionary 
approach is employed to find the best point in each neighborhood. 

In the case of multi-goal path planning for redundant robotic systems, 
where the problem complexity is further increased by the fact that a collision 
free path between neighborhoods has to be found, Gueta et al. [44] propose 
to find first a near optimal sequence in three steps: (1) cluster the repre­
sentative placements in the workspace, (2) solve the resulting TSP in each 
cluster, and (3) concatenate the resulting paths. Then each neighborhood 
is sampled, and a configuration is chosen for each neighborhood by combin­
ing a greedy nearest neighbor method and the Dijkstra algorithm using a 
rough-to-smooth procedure. For similar cases, Saha et al. [91] propose first 
to extract a small number of discrete samples for each neighborhood. The 
resulting GTSP is then approximated by calculating a minimum group span­
ning tree as a special case of the Steiner tree problem [85] and by performing 
a preorder tree walk. 

The main limitation of the mentioned heuristic approaches is the fact 
that only balls in K2 or in R3 are employed as neighborhoods. Only in the 
case of robotic manipulators also non-convex neighborhoods are considered, 
but a pre-sampling step is performed to transform the TSPN into a GTSP. 
In this case, to avoid an excessive complexity in the GTSP model, only few 
samples can be used to replace the continuous neighborhoods with clusters 
of nodes [91]. 

1.1.3 Approximation algorithms 

Besides heuristic approaches, in the computational geometry literature many 
approximation algorithms have been proposed for the case of the TSPN 
in R2 with Euclidean norm. The achieved approximation factors vary for 
the different cases depending on the fact that the neighborhoods may be 
connected or non-connected, disjoint or intersecting, with comparable or 
varying diameter, convex or non-convex, and fat or non-fat. Two definitions 
of fatness are available in the literature: 

• A region O C R2 is said to be a-fat if for any disk D, which does not 
fully contain O and whose center lies in O as illustrated in Figure 1.1, 
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Figure 1.1: A disk D used in the definition of fatness for a region O C R2. 

the area of the intersection of O and D is al least 1/a the area of D 
[30]. For example a is 1 for plane, 2 for the half plane, 4 for disk, oo 
for a line segment. 

• A region O is said to be a-fat if the ratio of the radius of the smallest 
circumscribing circle to the radius of largest inscribed circle is bounded 
by a [77]. 

Non-fatness and intersection seem to make the problem harder. More­
over, it has been proved that the most general case of TSPN is APX-hard 
[22, 90], even for the simple case where the neighborhoods are line seg­
ments of approximately the same length [30]. For connected, disjoint, vary­
ing diameter, and a-fat neighborhoods, Elbassioni et al. [30] propose an 
0(a)-approximation algorithm, which can be extended to 0{a/y/m) in Rm. 
Under the second definition of fatness, Mitchell [77] proposes a polynomial-
time approximation scheme (PTAS) for the same problem topology. For 
connected, intersecting, and comparable diameters neighborhoods a 0(1)-
approximation is proposed by Dumitrescu and Mitchell [29]. Furthermore, if 
the neighborhoods are convex and a-fat an 0(a3) approximation is given in 
[30]. Finally, in the case of connected and intersecting neighborhoods with 
varying diameter, an 0(log(n)) approximation is proposed for polygons [43] 
and for more general neighborhoods [30], where n is the number of neighbor­
hoods. The latter approximation becomes 0(1) if the neighborhoods have 
comparable diameters. 

The above mentioned approximation algorithms, which are polynomial 
time in many cases and represent a useful tool for finding a valid upper 
bound to the solution, can deal with several types of neighborhoods but 
non-connected. However, their deterministic nature may cause them to pro­
vide a near optimal tour with an effective approximation factor yet too large 
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for practical applications. Yuan et al. [105] have shown that for the simple 
case of disjoint balls in R2 the solution provided by his evolutionary ap­
proach always outperforms the approximation algorithm provided in [30], 
although it generally requires a larger CPU time. Moreover, approximation 
algorithms are based on the Euclidean norm and mainly deal with neigh­
borhoods in R2, except for the extension to Rm proposed in [30], while in 
many technical fields different definitions of the objective function in higher 
dimensional spaces might be required. 

1.2 Contribution 

A robotic system is said to be redundant if, for reaching a given goal location, 
it can assume several, possibly infinite, configurations. For example, a robot 
manipulator typically interacts with objects by using a device mounted at 
the end of its arm and called end-effector. If the manipulator has seven or 
more joints, for placing its end-effector at a given position and orientation 
in the workspace, its various joints can assume infinitely many possible po­
sitions, or configurations. Another example is an UAV that has to acquire 
a picture of a target. This picture can be taken from an infinite number of 
positions, or configurations, as fax as some given specifications are fulfilled, 
such as image resolution or distortion. 

In practical applications, a redundant robotic system might be asked to 
reach not only one but n goal locations within an operation cycle. Each goal 
location i can be represented by a set Qi of configurations in the collision 
free configuration space, Qfree, of the robotic system. The set Qi is the 
neighborhood for goal i. Given two goals i ^ j and two configurations 
qi G Qi and qj £ Qj, a cost function for the manipulator to move from qi 
to qj is defined. This function is called hereafter edge weighting function, 
and it is indicated as d (quqj). In this work we aim to find configurations 
qi G Qi for i = 1,..., n and a tour that connects these n configurations such 
that its total cycle cost is minimized. 

This problem is very complex in its full generality, as neighborhoods can 
have arbitrary shapes determined by the system specifications or physical 
constraints. Moreover, computing the optimal path and thus the cost to 
move between two goal locations is in itself a difficult problem since it in­
volves robot kinematics and obstacle avoidance. In this work we study first 
a simplified version of this problem using analytically defined cost functions. 
However, we address most of the limitations of previous approaches illus­
trated in Section 1.1, allowing wider classes both of neighborhood topologies 

5 

 
 
 
 

 
 
 

PREVIE
W



Figure 1.2: An ATSPN instance. The five areas around the vertices shaded 
in bright blue are the neighborhoods. The directed tour depicted with black 
arrows is a feasible solution. 

and of edge weighting functions. In particular, polyhedra, ellipsoids, and 
cubic splines in Rm have been employed as neighborhood, and four types 
of edge weighting functions have been considered: Manhattan, Euclidean, 
Quadratic, and Maximum norm. These provide enough flexibility to reason­
ably estimate the actual system performance for practical purposes. Under 
these initial assumptions, we propose three novel approaches to search for 
an optimal tour. 

The first approach to solve such instances of TSPN is to formulate it as 
a non-convex Mixed Integer Non Linear Programming (MINLP) using as 
variables the coordinates of the vertices qi for i = 1,..., n as well as binary 
variables £ij for i, j = 1,... ,n to represent the possible edges of the tour, 
as shown in Figure 1.2. The resulting MINLP is non-convex, even when the 
integrality constraints on the variables €ij are relaxed. It follows that only 
solvers for non-convex MINLP problems can be used for its solution, such 
as BARON [92], COUENNE [12, 20], and LINDOGLOBAL [68]. 

On the one hand, these solvers struggle to solve relatively small size 
instances of TSPN. On the other hand, by using a specific feature of the 
MINLP formulation and customizing the solver by adding specific cut gen­
erators and heuristics, we are able to solve instances with up to 16 polyhedral 
or ellipsoidal neighborhoods far more efficiently. The crucial feature that we 
exploit is that once all the binary variables in the formulation are fixed to 0 
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or 1 values, the continuous relaxation of the remaining problem is convex. 
It is thus possible to solve it to optimality using a continuous solver. For 
example, the solver COUENNE (with default settings) requires 733 seconds 
to solve a TSPN instance with ellipsoids in R2 (tspn2DP6_2) to optimality, 
while the proposed approach solves it in a fraction of a second. 

In the second approach, the problem is reformulated as a convex MINLP 
instance under the assumption that the neighborhoods and the edge weight­
ing functions are both convex, and three different formulations are de­
rived. Then, using a convex MINLP optimizer such as BONMIN [17, 20] 
or MOSEK [4] the problem earn be solved to optimality. The best perfor­
mance is obtained when BONMIN is customized to solve TSPN instances, 
and a specific cut generator is implemented to efficiently handle specific 
constraints existing in the MINLP formulation of the problem. Using this 
exact procedure CPU time is improved up to two orders of magnitude, and 
instances with up to 20 neighborhoods have been solved to optimality. 

A third approach is then proposed to handle larger scale TSPN instances 
with possibly non-convex neighborhoods. Starting from the MINLP frame­
work used in the previous approaches an hybrid random-key Genetic Al­
gorithm (GA) is specifically developed to search for a near optimal tour. 
The choice of a random-key coding for the GA guarantees feasibility during 
crossover operations, and avoids to explicitly formulate the subtour elimi­
nation constraints of the original MINLP formulation resulting in a more 
efficient representation of the problem. Moreover, the CPU time of the GA 
is drastically reduced by replacing commonly used mutation operators with 
two ad-hoc heuristics: (1) the position of each vertex is fixed, and their 
sequence is improved by using the Lin-Kernighan heuristic [67]; and (2) the 
position of each vertex is optimized by solving the Non Linear Programming 
(NLP) instance resulting from fixing their sequence in the original MINLP 
formulation. 

To evaluate the performance of the proposed GA, TSPN instances were 
either randomly generated or selected among the CETSP problems proposed 
by Mennell [74]. In the first case, the GA was able to find the optimal tour 
in all the cases where the solution was also calculated using the MINLP op­
timizers, while improving the computational performance by orders of mag­
nitude. In the second case, the GA improved the best known near optimal 
tour on average by 1.92%, although the proposed approach is not specif­
ically tailored to solve CETSP instances. Finally, it is worth mentioning 
that a drawback of the proposed heuristic approach is that no approxima­
tion factor for the results can be guaranteed. However, in case an upper 
bound is required, it is sufficient to first rim an approximation algorithm if 
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Figure 1.3: Collision-free near optimal tour for a TSPN instance. Obstacles 
are shaded in red/yellow and neighborhoods in bright blue. 

available, and then introduce the obtained approximation as a chromosome 
of the initial population used in the GA. 

Finally, to account for collision avoidance and thus to achieve a more 
realistic evaluation of the edge weighting function for practical applications 
we embed in the GA a probabilistic path planning technique based on bidi­
rectional Rapidly-exploring Random Trees (RRTs). Figure 1.3 illustrates a 
TSPN instance where obstacles are considered in the definition of the neax 
optimal tour. Moreover, we integrate a dynamic simulator within the GA 
to optimize the energy consumption of the considered robotic system. 

In particular we apply the proposed approach to two test cases. First, 
we minimize the cycle time of a 7 DOF robotic vision inspection system. 
The neighborhoods are here approximated using piecewise cubic splines in 
a seven-dimensional configuration space, and the employed edge weighting 
function is based on the Quadratic or the Maximum norm. For the specific 
scenario considered in this work with a 32-goal cycle, experimental tests 
show an improvement of the current cycle time up to 30%. Second, the 
flight path and the energy consumption of a quadrotor drone on an ur­
ban inspection mission are optimized. The neighborhoods axe here defined 
as three-dimensional polyhedra and the edge weighting function is either 
the Euclidean or the Quadratic norm. The level of the archived improve­
ment with respect to the results obtained with more traditional optimization 
techniques generally depends on the number of the neighborhood and their 
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spatial distribution. Within this work we observe the best improvement on 
the largest analyzed instance with more than 1,500 goals, where path length 
and energy consumption are improved up to 38% and 23%, respectively. 

The thesis is organized as follows. The used MINLP formulation is 
presented in chapter 2 together with the first two solution procedures. The 
hybrid random-key GA is presented in chapter 3. The two considered robotic 
applications are illustrated in chapters 4 and 5. Finally, chapter 6 contains 
conclusions and discusses potential future work. 
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