Патент США № | 6660109 |
---|---|
Автор(ы) | Hajaligol и др. |
Дата выдачи | 09 декабря 2003 г. |
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Авторы: | Mohammad R. Hajaligol (Midlothian, VA), Clive Scorey (Cheshire, CT), Vinod K. Sikka (Oak Ridge, TN), Seetharama C. Deevi (Midlothian, VA), Grier Fleishhauer (Midlothian, VA), A. Clifton Lilly, Jr. (Chesterfield, VA), Randall M. German (State College, PA) |
---|---|
Заявитель: | Chrysalis Technologies Incorporated (Richmond, VA) |
ID семейства патентов | 25531315 |
Номер заявки: | 09/984,871 |
Дата регистрации: | 31 октября 2001 г. |
Application Number | Filing Date | Patent Number | Issue Date | ||
---|---|---|---|---|---|
399364 | Sep 20, 1999 | 6332936 | Dec 25, 2001 | ||
985246 | Dec 4, 1997 | 6030472 | Feb 29, 2000 | ||
Класс патентной классификации США: | 148/651; 419/28; 419/29; 419/43; 419/50 |
Класс совместной патентной классификации: | B22F 3/18 (20130101); B22F 5/006 (20130101); C22C 33/0278 (20130101); C22C 1/0491 (20130101); C21D 8/0205 (20130101); B22F 9/082 (20130101); B22F 3/115 (20130101); B22F 3/18 (20130101); B22F 3/16 (20130101); B22F 9/082 (20130101); B22F 3/18 (20130101); B22F 3/16 (20130101); B22F 3/16 (20130101); B22F 3/18 (20130101); B22F 3/24 (20130101); C21D 8/0273 (20130101); C21D 8/0236 (20130101); B22F 2998/10 (20130101); B22F 2009/088 (20130101); B22F 2009/0824 (20130101); B22F 2003/248 (20130101); B22F 2998/10 (20130101); B22F 2998/10 (20130101); B22F 2998/10 (20130101) |
Класс международной патентной классификации (МПК): | B22F 3/18 (20060101); B22F 3/00 (20060101); B22F 5/00 (20060101); B22F 9/08 (20060101); C22C 33/02 (20060101); C22C 1/04 (20060101); C21D 8/02 (20060101); C21D 008/00 (); B22F 003/00 () |
Область поиска: | ;148/651,514 ;419/28,29,43,50 |
1550508 | August 1925 | Cooper |
1990650 | February 1935 | Jaeger |
2582993 | January 1952 | Howatt |
2768915 | October 1956 | Nachman et al. |
2889224 | June 1959 | Evans et al. |
2966719 | January 1961 | Park |
3026197 | March 1962 | Schramm |
3097929 | July 1963 | Ragan |
3144330 | August 1964 | Storchheim |
3676109 | July 1972 | Cooper |
3951642 | April 1976 | Chang et al. |
4018569 | April 1977 | Chang |
4198442 | April 1980 | Gupta et al. |
4334923 | June 1982 | Sherman |
4385929 | May 1983 | Ichidate et al. |
4391634 | July 1983 | Kelly et al. |
4429019 | January 1984 | Schrewelius |
4684505 | August 1987 | Brinegar et al. |
4917858 | April 1990 | Eylon et al. |
4961903 | October 1990 | McKamey et al. |
5024109 | June 1991 | Romero et al. |
5032190 | July 1991 | Suarez et al. |
5141571 | August 1992 | Dubois |
5158744 | October 1992 | Nazmy |
5238645 | August 1993 | Sikka et al. |
5249586 | October 1993 | Morgan et al. |
5269830 | December 1993 | Rabin et al. |
5320802 | June 1994 | Liu et al. |
5346562 | September 1994 | Batawi et al. |
5350107 | September 1994 | Wright et al. |
5422070 | June 1995 | Nazmy et al. |
5429173 | July 1995 | Wang et al. |
5445790 | August 1995 | Hu et al. |
5455001 | October 1995 | Hu |
5484568 | January 1996 | Sekhar et al. |
5489411 | February 1996 | Jha et al. |
5545373 | August 1996 | Maziasz et al. |
5620561 | April 1997 | Kuhn et al. |
5671532 | September 1997 | Rao et al. |
5719238 | February 1998 | Flood et al. |
5738705 | April 1998 | Anderson et al. |
5749938 | May 1998 | Coombs |
5756112 | May 1998 | Mackey |
6059853 | May 2000 | Coombs |
6085714 | July 2000 | Wilson et al. |
6165628 | December 2000 | Borom et al. |
648140 | Sep 1962 | CA | |||
648141 | Sep 1962 | CA | |||
53-119721 | Oct 1978 | JP | |||
Microstructure and Mechanical Properties of P/M Fe .sub.3 Al Alloys, J.R. Knibloe et al., 1990, Advances in Powder Metallurgy, pp. 219-231. . Powder Processing of Fe .sub.3 Al-Based Iron-Aluminide Alloys, V.K. Sikka, 1991, Mat. Res., Soc. Symp. Proc., vol. 213, pp. 901-906. . Powder Production, Processing, and Properties of Fe .sub.3 Al, V.K. Sikka, 1990, Powder Metallurgy Conference Exhibition, pp. 1-11. . Mechanical Behavior of FeAl.sub.40 Intermetallic Alloys, A. LeFort et al., (Jun. 17-20, 1991), Proceedings of International Symposium on Intermetallic Compounds--Structure and Mechanical Properties (JMIS-6), pp. 579-583. . Production and Properties of CSM FeAl Intermetallic Alloys, D. Pocci et al., Feb. 27-Mar. 3, 1994), Minerals, Metals and Materials Society Conference, pp. 19-30. . Selected Properties of Iron Aluminides, J.H. Schneibel, 1994 TMS Conference, pp. 329-341. . Flow and Fracture of FeAl, J. Baker, 1994 TMS Conference, pp. 101-115. . Impact Behavior of FeAl Alloy FA-350, D. J. Alexander, 1994 TMS Conference, pp. 193-202. . The Effect of Ternary Additions on the Vacancy Hardening and Defect Structure of FeAl, C. H. Kong, 1994 TMS Conference, pp. 231-239. . Microstructure and Tensile Properties of Fe-40 At. Pct. Al Alloys with C, ZR, Hf and B Additions, D.J. Gaydosh et al., Sep. 189, Met. Trans A, vol. 20 A, pp. 1701-1714. . A Review of Recent Developments of Fe .sub.3 Al-based Alloys, C.G. McKarney et al., Aug. 1991, J. of Mater. Res., vol. 6, No. 8, pp. 1779-1805. . Ceramics and Glasses, Richard E. Mistler, 1991, Engineered Materials Handbook, vol. 4. . Tape Casting: The Basic Process for Meeting the Needs of the Electronics Industry, Richard E. Mistler, 1990, Ceramic Bulletin, vol. 69, No. 6. . Thermal Spraying as a Method of Producing Rapidly Solidified Materials, K. Murakami et al., (May 20-25, 1990), Third National Spray Conference, pp. 351-355. . The Osprey Process: Principles and Applications, A.G. Leatham et al., 1993, International Journal of Powder Metallurgy, vol. 29, No. 4, pp. 321-351. . Applications of Neural Networks in Spray Forming Technology, R. Payne et al., 1993, The International Journal of Powder Metallurgy, vol. 29, No. 4, pp. 345-351.. |