Патент США № | 6833019 |
---|---|
Автор(ы) | Lewis, III и др. |
Дата выдачи | 21 декабря 2004 г. |
A method of forming a nanocrystalline metal, comprising the steps of: providing a reaction mixture comprising a metal precursor and an alcohol solvent; continuously flowing the reaction mixture through a reactor; applying microwave or millimeter-wave energy to the reaction mixture; wherein the microwave or millimeter-wave energy is localized to the vicinity of the reaction mixture; and heating the reaction mixture with the microwave or millimeter-wave energy so that the alcohol solvent reduces the metal precursor to a metal; wherein the heating occurs in the reactor.
Авторы: | David Lewis, III (Alexandria, VA), Ralph W. Bruce (Arnold, MD), Arne W. Fliflet (Alexandria, VA), Steven H. Gold (New Carrollton, MD), Lynn K. Kurihara (Alexandria, VA) |
---|---|
Заявитель: | The United States of America as represented by the Secretary of the Navy (Washington, DC) |
ID семейства патентов | 32849526 |
Номер заявки: | 10/355,066 |
Дата регистрации: | 31 января 2003 г. |
Класс патентной классификации США: | 75/345; 75/351; 75/362 |
Класс совместной патентной классификации: | B22F 1/0018 (20130101); C30B 7/005 (20130101); B82Y 30/00 (20130101); C22B 4/00 (20130101); C22B 5/00 (20130101); C22B 5/20 (20130101); C22B 15/00 (20130101); C22B 23/065 (20130101); C30B 29/02 (20130101); C30B 29/60 (20130101); B22F 9/24 (20130101); B22F 2999/00 (20130101); B22F 2999/00 (20130101); B22F 9/24 (20130101); B22F 2202/11 (20130101) |
Класс международной патентной классификации (МПК): | B22F 1/00 (20060101); B22F 9/24 (20060101); B22F 9/16 (20060101); B22F 9/00 (20060101); C22B 5/00 (20060101); C22C 1/04 (20060101); C22B 5/20 (20060101); C21C 1/00 (20060101); C21C 1/04 (20060101); B22F 009/24 () |
Область поиска: | ;75/345,351,362 |
5652192 | July 1997 | Matson et al. |
5759230 | June 1998 | Chow et al. |
6232264 | May 2001 | Lukehart et al. |
6387494 | May 2002 | Yanagida et al. |
2004/0025635 | February 2004 | Kurihara et al. |
Komarneni et al., "Microwave-Polyol Process for Pt and Ag Nanoparticles", American Chemical Society 2002, vol. 18, pp. 5959-5962. . Tu et al., "Rapid Synthesis of Nanoscale Colloidal Metal Clusters By Microwave Irradiation", Journal of Materials Chemistry 2000, vol. 10, 2207-2211. . Kurihara et al., "Nanocrystalline Metallic Powders and Films Produced by The Polyol Method", NanoStructured Materials 1995, vol. 5, No. 6, pp. 607-613. . Grisaru et al., "Preparation of the Cd1-xZnx Se Alloys in the Nanophase Form Using Microwave Irradiation", Journal of Materials Chemistry 2002, vol. 12, pp. 339-344. . Kerner et al., "Sonochemical and Microwave-Assisted Preparations of Pbte and PbSe. a Comparative Study", American Chemical Society 2001, vol. 13, pp. 1413-1419. . Palchik et al., "Microwave-Assisted Polyol Method for the Preparation of CdSe Nanoballs", Journal of Materials Chemistry 2001, vol. 11, pp. 874-878. . Yu et al., "Synthesis of Nanoscale Platinum Colloids by Microwave Dielectric Heating", American Chemical Society 1999, vol. 15, pp. 6-9. . Grisaru et al., "Preparation of Cd1-xZnxSe Using Microwave Assisted Polyol Synthesis", American Chemical Society, vol. 40, pp. 4814-4815. . Kurihara et al., "Millimeter Wave Gyrotron Beam Processing of Nanocrystalline Metallic Powders and Coatings Using The Polyol Process", Non-Provisional Appl. No. 10/113,65, filed Mar. 29, 2002.. |