Выделить слова: 


Патент США №

7911771

Автор(ы)

DiFonzo и др.

Дата выдачи

22 марта 2011 г.


Electronic device with a metal-ceramic composite component



РЕФЕРАТ

An electronic device is disclosed. The electronic device may include a first component. The electronic device may also include a metal-ceramic composite component coupled to the first component and configured to reinforce at least a portion of the first component in a first direction.


Авторы:

John DiFonzo (San Mateo, CA), Chris Ligtenberg (San Carlos, CA)

Заявитель:

Apple Inc. (Cupertino, CA)

ID семейства патентов

40072181

Номер заявки:

11/752,850

Дата регистрации:

23 мая 2007 г.

Prior Publication Data

Document IdentifierPublication Date
US 20080291617 A1Nov 27, 2008

Класс патентной классификации США:

361/679.01; 428/545

Класс совместной патентной классификации:

H05K 5/0086 (20130101)

Класс международной патентной классификации (МПК):

H05K 5/00 (20060101); B22F 3/00 (20060101)

Область поиска:

;361/679.01 ;428/545

Использованные источники

[Referenced By]

Патентные документы США

D264969June 1982McGourty
4976435December 1990Shatford et al.
5066368November 1991Pasqualoni et al.
5192082March 1993Inoue et al.
5379057January 1995Clough
5661632August 1997Register
5675362October 1997Clough
5917545June 1999Kowno et al.
D412940August 1999Kato et al.
5964661October 1999Dodge
6058356May 2000Swanson
D430169August 2000Scibora
6122526September 2000Parulski et al.
D432523October 2000Grinkus et al.
6127986October 2000Wen et al.
6178094January 2001Hakozaki
D437860February 2001Suzuki et al.
6220680April 2001Chen
6227966May 2001Yokoi
6249427June 2001Carroll
6254477July 2001Sasaki et al.
6262785July 2001Kim
6292556September 2001Laetsch
D448810October 2001Goto
D450713November 2001Masamitsu et al.
6314483November 2001Goto et al.
6319631November 2001Bay et al.
D452250December 2001Chan
6351374February 2002Sherry
D455793April 2002Lin
6449164September 2002Gershfeld
D468365January 2003Bransky et al.
D469109January 2003Andre et al.
D472245March 2003Andre et al.
6643918November 2003Ortiz et al.
D483809December 2003Lim
6693601February 2004Billiet et al.
D489731May 2004Huang
D490068May 2004Chen
6790556September 2004Meitav et al.
6795715September 2004Kubo et al.
D497618October 2004Andre et al.
6837435January 2005Kehoe et al.
6840311January 2005Ghosh et al.
D506476June 2005Andre et al.
D515545February 2006Griffin
6995715February 2006Ying et al.
D516579March 2006Nakamura
7013164March 2006Lin
D521023May 2006Kim et al.
7046230May 2006Zadesky et al.
7070881July 2006Kishiyama et al.
7188484March 2007Kim
7203309April 2007Nuovo
7495659February 2009Marriott et al.
2001/0034222October 2001Roustaei et al.
2001/0053464December 2001Ra
2002/0195562December 2002Salapow et al.
2003/0100275May 2003Hsu et al.
2003/0183448October 2003Sleet et al.
2004/0053014March 2004Sato
2004/0102229May 2004Hutchinson
2004/0196607October 2004Didier
2004/0224638November 2004Fadell et al.
2005/0052425March 2005Zadesky et al.
2008/0059680March 2008Hiew et al.
2008/0074329March 2008Caballero et al.
2008/0165071July 2008Chiang et al.
2008/0291620November 2008DiFonzo et al.
2009/0040129February 2009Degner et al.

Другие источники


US. Appl. No. 12/034,104, filed Feb. 20, 2008. cited by other .
Office Action dated Oct. 18, 2010 in U.S. Appl. No. 12/685,463. cited by other .
Notice of Allowance dated Jul. 28, 2010 in U.S. Appl. No. 12/412,108. cited by other .
Office Action dated Apr. 12, 2010 in U.S. Appl. No. 12/412,108. cited by other .
Notice of Allowance dated Jan. 15, 2010 in U.S. Appl. No. 11/501,184. cited by other .
Notice of Allowance dated Sep. 8, 2009 in U.S. Appl. No. 12/395,570. cited by other .
Office Action dated Aug. 17, 2009 in U.S. Appl. No. 11/501,184. cited by other .
"Maxtor OneTouch II FireWire and USB", Maxtor.com, http://www.maxtor.com/portal/site/Maxtor/menuitem.ba88f6d7cf664718376049b- 2913460... downloaded Dec. 1, 2004. cited by other .
"Maxtor OneTouch USB OneTouch Family", Maxtor.com, http://www.maxtor.com/portal/site/Maxtor/menuitem.ba88f6d7cf664718376049b- 2913460... downloaded Dec. 1, 2004. cited by other .
CoolerMaster Wave Master Black Aluminum Case Review:, PCStats.com, http://www.pcstats.com/articleview.cfm?articleID=1552, Dowloaded Dec. 1, 2004. cited by other .
Office Action mailed Nov. 16, 2005 from U.S. Appl. No. 10/884,172. cited by other .
Final Office Action mailed May 4, 2006 from U.S. Appl. No. 10/884,172. cited by other .
Office Action mailed Jul. 27, 2007 from U.S. Appl. No. 10/884,172. cited by other .
Final Office Action mailed Dec. 28, 2007 from U.S. Appl. No. 10/884,172. cited by other .
Office Action mailed Aug. 6, 2008 from U.S. Appl. No. 10/884,172. cited by other .
Notice of Allowance mailed Dec. 1, 2008 from U.S. Appl. No. 10/884,172. cited by other .
Supplemental Notice of Allowability mailed Feb. 4, 2009 from U.S. Appl. No. 10/884,172. cited by other .
U.S. Appl. No. 29/196,832, filed Jan. 5, 2004. cited by other .
Andre et al., entitled "Media Device," Design U.S. Appl. No. 29/180,558, filed Apr. 25, 2003. cited by other .
Zadesky et al., "Movable touch pad with added functionality," U.S. Appl. No. 10/643,256, filed Aug. 18, 2003. cited by other .
Andre et al., "Media Device," Design U.S. Appl. No. 29/212,343, filed Aug. 31, 2004. cited by other .
Office Action mailed Feb. 26, 2009 from U.S. Appl. No. 11/501,184. cited by other.

Главный эксперт: Gandhi; Jayprakash N
Assistant Examiner: Haughton; Anthony M
Уполномоченный, доверенный или фирма: Beyer Law Group LLP


ФОРМУЛА ИЗОБРЕТЕНИЯ



What is claimed is:

1. An electronic device comprising: an enclosure; and a metal-ceramic composite component made of a metal-ceramic composite material containing at least a metal material and a ceramic material, coupled to a portion of an inner wall of the enclosure, and configured to reinforce at least a portion of the enclosure in a first direction, wherein the metal-ceramic composite component has a greater strength in the first direction than in a second direction and wherein the metal-ceramic composite component is configured to provide an opening for receiving an object that is inserted into the electronic device in the first direction.

2. The electronic device of claim 1 wherein the metal-ceramic composite material contains at least one of aluminum and magnesium.

3. The electronic device of claim 1 wherein the metal-ceramic composite component is made of a metal-ceramic matrix composite.

4. The electronic device of claim 1 wherein the metal-ceramic composite component has a metal surface.

5. The electronic device of claim 1 wherein at least a surface of the metal-ceramic composite component is anodized.

6. The electronic device of claim 1 wherein at least a surface of the metal-ceramic composite component is colored through anodization.

7. The electronic device of claim 1 wherein the metal-ceramic composite component represents at least part of at least one of a disk drive bezel a memory card bezel, and a connector.

8. The electronic device of claim 1 wherein the metal-ceramic composite component represents at least part of a user interface component.

9. The electronic device of claim 1 further comprising a second component, wherein the metal-ceramic composite component includes a cast feature configured to match at least a portion of the second component.

10. The electronic device of claim 1 further comprising a second component, wherein at least a portion of the second component is inserted between at least a portion of the metal-ceramic composite component and at least a portion of the first component.

11. The electronic device of claim 1 further comprising a structural component coupled to the metal-ceramic composite component.

12. The electronic device of claim 11 wherein the metal-ceramic composite component is disposed between at least a portion of the structural component and at least a portion of the first component.

13. The electronic device of claim 11 wherein the metal-ceramic composite component is bonded to the structural component by an adhesive.

14. The electronic device of claim 11 wherein the structural component includes an opening configured to receive an object that is inserted into the electronic device in the first direction.

15. The electronic device of claim 11 wherein the structural component represents at least part of at least one of a disk drive bezel, a memory card bezel, and a connector.

16. A structural component configured for use in an electronic device, the structural component comprising a first part, wherein the first part is made of a metal-ceramic composite material and is configured to reinforce an enclosure of the electronic device in a first direction, wherein the first part is coupled to an inner wall of the enclosure and wherein the first part has a greater strength in the first direction than in a second direction and wherein the first part is configured to provide an opening for receiving an object that is inserted into the opening in the first direction.

17. The structural component of claim 16 representing at least part of at least one of a disk drive bezel, a memory card bezel, and a connector.

18. The structural component of claim 16 wherein the first part is further configured to secure a member of the electronic device in place with respect to the enclosure of the electronic device.


ОПИСАНИЕ




ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ



For electronic devices, miniaturization and weight reduction may provide significant advantages such as, for example, improved portability and/or reduced costs for storage, packaging, and/or transportation. However, miniaturization and weight reduction of electronic devices may be hindered by various physical constraints (e.g., physical properties of structural component/enclosure materials) due to various design requirements (e.g., strength and durability requirements of the electronic devices).

In addition to functionality, performance, and durability requirements, aesthetic and tactile characteristics of electronic devices also have become more and more important. For example, buyers/users may expect surfaces (e.g., enclosure surfaces) of electronic devices to be scratch and dent resistant. Further, buyers/users may also expect electronic devices to look good and to have a comfortable, quality feel.

In the prior art, designers of electronic devices may have had difficulties designing electronic device components with the right materials to enable/help electronic devices to satisfy all the strength, weight, size, aesthetic/cosmetic, and tactile requirements and expectations with a generally affordable cost.

For example, materials typically utilized in structural components and/or enclosures of electronic devices may include plastics, such as polycarbonate, nylon, and ABS, which may be associated with lower cost, lighter weight, and a higher variety of visual characteristics (e.g., colors, patterns, etc.), compared with the cost, weight, and appearance of a metal. However, a plastic component may need a relatively large dimension (e.g., thickness) to provide sufficient strength. Further, a plastic component may not be able to satisfactorily resist scratch.

Metals, such as steel, titanium, aluminum, and magnesium, also may be utilized in forming structural components and/or enclosures of electronic devices. Metals may provider higher strength and higher scratch resistance than plastics. However, metals may incur higher material and manufacturing costs. Metals may also significantly add weight to electronic devices. Light metals, such as titanium, aluminum, etc., may be utilized to minimize the weight problem. However, light metals may have a high cost and/or may need an undesirably large dimension to provide sufficient dent resistance and strength, as further discussed with reference to FIG. 1.

FIG. 1 illustrates a partial cross-sectional view of an example prior-art electronic device 100. As illustrated in the example of FIG. 1, electronic device 100 may include an enclosure 110 and a disk drive bezel 120 disposed inside enclosure 110. When a user of electronic device 100 loads optical disks through disk drive bezel 120, a force may be applied to enclosure 110 in a first direction 101, for example, by one or more fingers of the user. The force may then be transmitted to disk drive bezel 120. Enclosure 110 may rely on the support of disk drive bezel 120 to withstand the force, to ensure that enclosure 110 may not be deformed or damaged by the force.

Disk drive bezel 120 may be made of aluminum, a relatively inexpensive light metal, for minimizing the weight of electronic device 300 without incurring a high material cost (associated with employing titanium, for example). In order to provide sufficient strength to support enclosure 110 and to prevent deformation and damage, disk drive bezel 120 may need to have dimensions that are sufficiently large. For example, disk drive bezel 120 may be required to have a sufficiently large thickness T1, along first direction 101. The requirement of thickness T1 may be associated with the amount of aluminum, which contributes to the weight of electronic device 100. The requirement of thickness T1 may also be associated with utilization of space, which is to be shared by various components inside electronic device 100. As a result, the requirement of thickness T1 may hinder the miniaturization and weight reduction of electronic device 100.


СУЩНОСТЬ ИЗОБРЕТЕНИЯ



An embodiment of the present invention relates to an electronic device. The electronic device may include a first component. The electronic device may also include a metal-ceramic composite component coupled to the first component and configured to reinforce at least a portion of the first component in a first direction.

The above summary relates to only one of the many embodiments of the invention disclosed herein and is not intended to limit the scope of the invention, which is set forth in the claims herein. These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.


КРАТКОЕ ОПИСАНИЕ РИСУНКОВ



The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:

FIG. 1 illustrates a partial cross-sectional view of an example prior-art electronic device.

FIG. 2 illustrates a partial cross-sectional view of an electronic device in accordance with one or more embodiments of the present invention.


ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ



The present invention will now be described in detail with reference to a few embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.

One or more embodiments of the invention relate to an electronic device. For example, the electronic device may represent one or more of a computing device (e.g., a computer), a computer part (e.g., a disk drive), a communication device (e.g., a cellular phone), a media player (e.g., an MP3 player), etc.

The electronic device may include a first component, for example, an enclosure (or case). The electronic device may also include a metal-ceramic composite component coupled to the first component and configured to reinforce at least a portion of the first component in a first direction, e.g., a direction in which the electronic device may be frequently applied a force or pressure. The metal-ceramic composite component may have a greater strength in the first direction than in a second direction.

The metal-ceramic composite component may be made of a metal-ceramic composite material containing at least one of aluminum, magnesium, titanium, zirconia, and alumina. Additionally or alternatively, the metal-ceramic composite component may be made of a metal-ceramic matrix composite material. The metal-ceramic composite component may have a metal surface. At least a surface of the metal-ceramic composite component may be colored through anodization. Additionally or alternatively, at least a surface of the metal-ceramic composite may be painted and/or coated such that the metal-ceramic composite component also serves as a cosmetic and/or tactile member for the electronic device, in addition to being a structural member. Accordingly, no additional cover member is needed for the metal-ceramic composite component. Advantageously, the number of cosmetic/tactile members for the electronic device may be reduced, and the size (or form factor) of the electronic device may be reduced or minimized.

The metal-ceramic composite component may be configured to provide an opening for receiving an object (e.g., an optical disk, a memory card, or a connector) that is inserted into the electronic device. The object may be inserted into the electronic device in the first direction. For example, the metal-ceramic composite component may represent at least part of one of a disk drive bezel (e.g., an optical disk drive bezel), a memory card bezel, a connector, etc. The metal-ceramic composite component may also represent at least part of a user interface component, such as one or more of a coin turn, a track pad, and a button.

The metal-ceramic composite component may include a feature formed though casting, such as mold casting and configured to match at least a portion of a second component of the electronic device. For example, the second component may represent a shutter/curtain through which a storage medium (e.g., an optical disk or a memory card) may enter and exit the electronic device. Alternatively or additionally, at least a portion of the second component may be inserted between at least a portion of the metal-ceramic composite component and at least a portion of the first component.

The electronic device may further include a structural component coupled to the metal-ceramic composite component. The metal-ceramic composite component may be disposed between at least a portion of the structural component and at least a portion of the first component. The metal-ceramic composite component may be bonded to the structural component by an adhesive, such as DP810 available from 3M Company (www.3m.com).

The structural component also may include an opening configured to receive an object that is inserted into the electronic device in the first direction. For example, the structural component also may represent at least part of one of a disk drive bezel (e.g., an optical disk drive bezel), a memory card bezel, a connector, etc.

One or more embodiments of the present invention relate to a structural component configured for use in an electronic device. For example, the structural component may represent one of a disk drive bezel (e.g., an optical disk drive bezel), a memory card bezel, a connector, etc. The structural component may include a first part is made of a metal-ceramic composite material and configured to reinforce the electronic device in a first direction. The structural component may include an opening configured to receive an object that is inserted into the electronic device in the first direction. The first part may be further configured to secure a member (e.g., a flexible component) of the electronic device in place with respect to an enclosure of the electronic device.

The features and advantages of the present invention may be better understood with reference to the figure and discussions that follow.

FIG. 2 illustrates a partial cross-sectional view of an electronic device 200 in accordance with one or more embodiments of the present invention. As illustrated in the example of FIG. 2, electronic device 200 may include a first component (e.g., an enclosure 210) and a metal-ceramic composite component/part 221 coupled to enclosure 210. Metal-ceramic composite component 221 may be configured to support enclosure 210 in a first direction 101, such that enclosure 210 may not be deformed or damaged when a force in direction 101 is applied thereon. Metal-ceramic composite component 210 may have a greater strength in first direction 101 than in a second direction, such as direction 202.

Metal-ceramic composite component 221 may be made of a metal-ceramic composite material or metal-ceramic matrix composite containing at least one of aluminum, magnesium, and titanium. The metal-ceramic (matrix) composite material may have a low density and a high strength, and may provide metal surfaces, anodization possibilities, and mold-casting manufacturability, discussed below.

The metal-ceramic (matrix) composite material may generally have a higher strength and only a slightly higher density than aluminum. Accordingly, referring to the examples illustrated in FIGS. 1-2, for providing a support to enclosure 210 that is equivalent to the support provided to enclosure 110 by disk drive bezel 120 in first direction 101, thickness T2 of metal-ceramic composite component 221 may be less than thickness T1 of disk drive bezel 120. Advantageously, with the reduction in thickness, the size and the weight of electronic device 200 may be reduced with respect to electronic device 100. If thickness T2 is equal to thickness T1, electronic device 200 may have a higher strength/durability than electronic device 100.

The metal-ceramic (matrix) composite material may also have metal surfaces. Accordingly, metal-ceramic composite component 221 may be resistant to scratches and may provide a smooth, comfortable feel. In addition, the ceramic constituent under the metal surfaces may provide a high dent resistance. Further, metal-ceramic composite component 221 may have a metal surface that may be bonded with another metal surface utilizing one or more of metal-to-metal bonding techniques that are well known in the art.

The metal-ceramic (matrix) composite material may also provide anodization possibilities on the metal surfaces. Therefore, one or more surfaces of metal-ceramic composite component 221 may be colored through anodization, for example, for aesthetic considerations and/or material/parts management purposes.

The metal-ceramic (matrix) composite material may also provide manufacturability for casting, such as mold casting, which may be less expensive than machining. Accordingly, with a relatively low cost, metal-ceramic composite component 221 may be manufactured utilizing mold casting to include three-dimensional features/configurations for accommodating and/or matching one or more other components of electronic device 200, or for providing functions in addition to supporting enclosure 210.

For example, metal-ceramic composite component 221 may represent at least part of one of a disk drive bezel 220 (e.g., an optical disk drive bezel), a memory card bezel, a connector, etc. and may include a cast feature, such as mold-cast feature 231, configured to match at least a portion of a second component of the electronic device 200. In an example, the second component may represent a shutter 240 through which a storage medium (e.g., an optical disk or a memory card) may enter and exit electronic device 200. Alternatively or additionally, at least a portion of shutter 240 may be inserted between at least a portion of metal-ceramic composite component 221 and at least a portion of enclosure 210. Metal-ceramic composite component 221 may be configured to secure shutter 240 in place with respect to enclosure 210.

Further, for example, metal-ceramic composite component 221 may be configured to provide opening 224 for receiving an object (e.g., an optical disk, a memory card, or a connector) that is inserted into electronic device 200. The object may be inserted into electronic device 200 in first direction.

In another example, metal-ceramic composite component 221 may represent at least part of a user interface component, such as one or more of a coin turn, a track pad, and a button. For example, the coin turn may include a coin slot manufactured utilizing casting, such as mold casting. The coin turn may provide support to the portion of an electronic device enclosure that surrounds the coin turn.

Electronic device 200 may further include a structural component 222 coupled to the metal-ceramic composite component 221. Metal-ceramic composite component 221 may be disposed between structural component 222 and at least a portion of enclosure 210. Further, metal-ceramic composite component 221 may be bonded to structural component 222 by an adhesive, such as DP810 available from 3M Company (www.3m.com).

Structural component 222 also may include an opening 226 configured to receive the object that is inserted into the electronic device in first direction 101. For example, structural component 222 also may represent at least part of one of a disk drive bezel 220 (e.g., an optical disk drive bezel), a memory card bezel, a connector, etc.

As can be appreciated from the foregoing, embodiments of the present invention may simultaneously satisfy strength, weight, size, cost, aesthetic/cosmetic, and tactile requirements and expectations in manufacturing electronic devices. Advantageously, embodiments of the invention may provide strength, durability, feel, and scratch resistance comparable or superior to the benefits provided by metals, as well as low cost and light weight comparable or superior to benefits provided by plastics.

While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. Furthermore, embodiments of the present invention may find utility in other applications. The abstract section is provided herein for convenience and, due to word count limitation, is accordingly written for reading convenience and should not be employed to limit the scope of the claims. It is therefore intended that the following appended claims be interpreted as including all such alternations, permutations, and equivalents as fall within the true spirit and scope of the present invention.

* * * * *