![]() | |
---|---|
Патент США № | 8790615 |
Автор(ы) | Viswanathan |
Дата выдачи | 29 июля 2014 г. |
A method of synthesizing carbon-magnetite nanocomposites. In one embodiment, the method includes the steps of (a) dissolving a first amount of an alkali salt of lignosulfonate in water to form a first solution, (b) heating the first solution to a first temperature, (c) adding a second amount of iron sulfate (FeSO.sub.4) to the first solution to form a second solution, (d) heating the second solution at a second temperature for a first duration of time effective to form a third solution of iron lignosulfonate, (e) adding a third amount of 1N sodium hydroxide (NaOH) to the third solution of iron lignosulfonate to form a fourth solution with a first pH level, (f) heating the fourth solution at a third temperature for a second duration of time to form a first sample, and (g) subjecting the first sample to a microwave radiation for a third duration of time effective to form a second sample containing a plurality of carbon-magnetite nanocomposites.
Авторы: | Tito Viswanathan (Little Rock, AR) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | Board of Trustees of the University of Arkansas (Little Rock, AR) |
||||||||||
ID семейства патентов | 44276783 | ||||||||||
Номер заявки: | 13/069,097 | ||||||||||
Дата регистрации: | 22 марта 2011 г. |
Document Identifier | Publication Date | |
---|---|---|
US 20110174738 A1 | Jul 21, 2011 | |
Application Number | Filing Date | Patent Number | Issue Date | ||
---|---|---|---|---|---|
12487323 | Jun 18, 2009 | ||||
61316669 | Mar 23, 2010 | ||||
61132380 | Jun 18, 2008 | ||||
Класс патентной классификации США: | 423/632; 252/500; 252/503; 252/62.55; 423/138; 423/633; 423/634; 430/111.32; 502/180; 502/185; 502/5; 508/123; 75/345; 75/351; 75/362; 977/773; 977/788 |
Класс совместной патентной классификации: | B82Y 30/00 (20130101); C01B 39/46 (20130101); C01B 39/48 (20130101); C01G 49/06 (20130101); B01J 20/06 (20130101); B01J 20/20 (20130101); B01J 20/22 (20130101); C02F 1/288 (20130101); B01J 20/0229 (20130101); C01P 2002/50 (20130101); C01P 2002/72 (20130101); C01P 2004/03 (20130101); C02F 1/281 (20130101); C02F 1/286 (20130101); C02F 1/36 (20130101); B01J 2220/42 (20130101); B01J 2220/46 (20130101); C02F 2101/103 (20130101); C02F 2305/08 (20130101) |
Класс международной патентной классификации (МПК): | H01B 1/00 (20060101); C22B 5/20 (20060101); B22F 9/00 (20060101); B22F 1/00 (20060101); C08L 79/08 (20060101); B22F 3/00 (20060101); H01B 1/04 (20060101); G03G 9/00 (20060101); C01G 1/00 (20060101); C01G 49/02 (20060101); B01J 37/34 (20060101); B01J 21/18 (20060101) |
3803033 | April 1974 | Sutherland |
3886093 | May 1975 | Dimitri |
4019995 | April 1977 | Briggs |
4108767 | August 1978 | Cooper |
4176172 | November 1979 | Bennetch et al. |
4414196 | November 1983 | Matsumoto et al. |
4457853 | July 1984 | Detroit |
4985225 | January 1991 | Hashimoto et al. |
5531922 | July 1996 | Okinaka et al. |
5604037 | February 1997 | Ting |
5972537 | October 1999 | Mao |
6030688 | February 2000 | Hayashi et al. |
6099990 | August 2000 | Denton |
6232264 | May 2001 | Lukehart |
6486008 | November 2002 | Lee |
6616747 | September 2003 | Sumita |
6733827 | May 2004 | Mitchell et al. |
6764617 | July 2004 | Viswanathan |
7208134 | April 2007 | Bromberg et al. |
7220484 | May 2007 | Ton-That |
7297652 | November 2007 | Jhung |
7303679 | December 2007 | Ulicny |
7358325 | April 2008 | Hayes |
7758756 | July 2010 | Kim |
7811545 | October 2010 | Hyeon et al. |
8167973 | May 2012 | Viswanathan |
2002/0064495 | May 2002 | Miura et al. |
2003/0044712 | March 2003 | Matsui et al. |
2004/0147397 | July 2004 | Miller et al. |
2005/0139550 | June 2005 | Ulicny |
2005/0181941 | August 2005 | Sugo et al. |
2005/0186344 | August 2005 | Takagi |
2005/0271816 | December 2005 | Meschke |
2007/0129233 | June 2007 | Ueno et al. |
2007/0141502 | June 2007 | Aga et al. |
2007/0142225 | June 2007 | Baker |
2007/0218564 | September 2007 | Bachmann et al. |
2007/0243337 | October 2007 | Xiong |
2007/0264574 | November 2007 | Kim |
2007/0266825 | November 2007 | Ripley |
2008/0017291 | January 2008 | Shin et al. |
2008/0160306 | July 2008 | Mushtaq et al. |
2010/0200501 | August 2010 | Hoag |
2010/0283005 | November 2010 | Pickett et al. |
1876566 | Dec 2006 | CN | |||
1911792 | Feb 2007 | CN | |||
101402057 | Apr 2009 | CN | |||
2008127757 | Oct 2008 | WO | |||
Antal et al., Flash carbonization of biomass, Industrial & Engineering Chemistry Research, 2003, 42(16), 3690-3699. cited by applicant . Bao et al., A novel nanostructure of nickel nanotubes encapsulated in carbon nanotubes, Chemical Communications, Cambridge, United Kingdom, 2003, (2), 208-209. cited by applicant . Bender et al., Total Phosphorous in Residual Materials, In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters, Pierzynski, G.M., Ed. Southern Cooperative Series Bulletin No. 396.2000. cited by applicant . Chen et al., Microwave-assisted synthesis of carbon supported Pt Nanoparticles for fuel cell applications, Chemical Communications, Cambridge, United Kingdom, 2002, (21), 2588-2589. cited by applicant . Compere et al., Low cost carbon fiber from renewable resources, Oak Ridge National Laboratory, Oak Ridge TN, USA, International Sampe Technical Conference, 2001, 33, 1306-1314, Society for the Advancement of Material and Process Engineering. cited by applicant . Hu et al., Microwave-assisted synthesis of a superparamagnetic surface-functionalized porous Fe3O4/C nanocomposite, Chemistry--An Asia Journal, 2006, 1(4), 605-610. cited by applicant . Kang et al., Obtaining carbon nanotubes from grass, Nanotechnology, 2005, 16(8), 1192-1195. cited by applicant . Kubo et al., Carbon fibers from Lignin-recyclable plastic blends, Encyclopedia of Chemical Processing, vol. 1, 2003, Sunggyu Lee, CRC Press pp. 317-332. cited by applicant . Lagashetty et al., Microwave-assisted route for synthesis of nanosized metal oxides, Science and Technology of Advanced Materials, 2007, 8(6), 484-493. cited by applicant . Liu, Shuling; Liu, Xinzheng; Xu, Liqiang; Qian, Yitai; Ma, Xicheng. Controlled synthesis and characterization of nickel phosphide nanocrystal. Journal of Crystal Growth (2007), 304(2), 430-434. cited by applicant . Marina Sofos et al., A synergistic assembly of nanoscale lamellar photoconductor hybrids, Nature Materials, 2009, 68-75, vol. 8, Nature Publishing Group. cited by applicant . Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL, The effect of nanocrystalline magnetite size on arsenic removal, Science and Technology of Advanced Materials (2007), 8(1-2), 71-75. cited by applicant . Meng Qinghan et al., Copper-doped mesoporous activated carbons as electrode material for electrochemical capacitors, Journal of Applied Electrochemistry, 2006, 36(1), 63-67. cited by applicant . Osswald et al., Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air, J. Am. Chem. Soc., 2006, 128(35), pp. 11635-11642. cited by applicant . Oyama, Novel catalysts for advanced hydroprocessing: transition metal phosphides, Journal of Catalysis, 2003, 216 (1-2), 343-352. cited by applicant . Oyama, S. T.; Wang, X.; Requejo, F. G.; Sato, T.; Yoshimura, Y. Hydrodesulfurization of Petroleum Feedstocks with a New Type of Nonsulfide Hydrotreating Catalyst. Journal of Catalysis (2002), 209(1), 1-5. cited by applicant . Oyama, S. Ted; Lee, Yong-Kul. Mechanism of Hydrodenitrogenation on Phosphides and Sulfides. Journal of Physical Chemistry B (2005), 109(6), 2109-2119. cited by applicant . Rao et al., Synthesis of Inorganic Solids Using Microwaves, Chemistry of Materials, 1999, 11(4), 882-895. cited by applicant . Shipley HJ, Yean S, Kan AT, Tomson MB, Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature, Environmental Toxicology and Chemistry (2009), 28(3), 509-515. cited by applicant . Vaclavikova M, Gallios GP, Hredzak S, Jakabsky S, Removal of arsenic from water streams: an overview of available techniques, Clean Technologies and Environmental Policy (2008), 10(1), 89-95. cited by applicant . Vivas, N.; Bourgeois, G.; Vitry, C.; Glories, Y.; de Freitas, V., "Determination of the composition of commercial tannin extracts by liquid secondary ion mass spectrometry" J. Sci. Food Agric., 1996, 72, 309-317. cited by applicant . Walkiewicz et al., Microwave heating characteristics of selected minerals and compounds, Minerals & Metallurgical Processing, 1988, 5(1), 39-42. cited by applicant . Wang, Xinjun; Han, Kun; Gao, Youjun; Wan, Fuquan; Jiang, Kai. Fabrication of novel copper phosphide (Cu3P) hollow spheres by a simple solvothermal method. Journal of Crystal Growth (2007), 307(1), 126-130. cited by applicant . Wei Liu et al., A Novel Carbothermal Method for the Preparation of Nano-sized WC on High Surface Area Carbon, Chemistry Letters, 2006, 1148-1149, vol. 35, No. 10, The Chemical Society of Japan, Tsukuba, Japan. cited by applicant . Xie, Songhai; Qiao, Minghua; Zhou, Wuzong; Luo, Ge; He, Heyong; Fan, Kangnian; Zhao, Tiejun; Yuan, Weikang. Controlled synthesis, characterization, and crystallization of Ni-P nanospheres. Journal of Physical Chemistry B (2005), 109(51), 24361-24368. cited by applicant . Xu et al., Preparation and characterization of NiO nanorods by thermal decomposition of NiC2O4 precursor, Journal of Materials Science, 2003, 38(4), 779-782. cited by applicant . Yu et al., Microwaved-assisted synthesis and in-situ self-assembly of coaxial Ag/C nanotubes, Chemical Communications, Cambridge, United Kingdom, 2005, 21, 2704-2706. cited by applicant . Zhang et al., Microwave synthesis of nanocarbons from conducting polymers, Chemical Communications, Cambridge, United Kingdom, 2006, (23), 2477-2479. cited by applicant . Zhu et al., Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires, Chemical Physics Letters, 2006, 419(4-6), 458-463. cited by applicant. |