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Algorithms for Estimating the Complete Group of
Polarization Invariants of the Scattering Matrix (SM)

Based on Measuring All SM Elements
Vladimir Karnychev, Valery A. Khlusov, Leo P. Ligthart, Fellow, IEEE, and German Sharygin

Abstract—The procedure for estimating polarization invariants
of the backscattering matrix in horizontal–vertical basis is con-
sidered for radar observation of arbitrary nonreciprocal objects.
Two polarization invariants are added to the well-known six
Huynen–Euler invariants. These new invariants (nonreciprocity
angle and difference in absolute phases of the symmetric and
antisymmetric parts of the scattering matrix) describe the non-
reciprocal properties of the object itself. With the simultaneous
measurement of all eight quadratures of the scattering matrix
elements, the closed-form expressions for calculating the eight
polarization invariants are given. The derived expressions are
the starting point for complete estimation of the polarization
properties of arbitrary radar objects with a nonsymmetric scat-
tering matrix. The given approach can be used to study various
polarization effects in remote radar sensing of artificial and
natural objects, and also to simulate polarization measurement
processes and estimation errors caused by the measurements of
scattering matrix elements at different instants.

Index Terms—Asymmetric backscattering matrix,
Huynen–Euler parameters, horizontal–vertical basis,
nonreciprocal object, nonreciprocity parameters, polarization
invariants, radar polarimetry, scattering matrix elements
quadratures.

I. INTRODUCTION

THERE EXITS Western literature in which the research on
principles of radar polarimetry and optimization proce-

dures [11], au: [11] is IEEE Symposium? optimum polariza-
tions finding [8]–[10], au: issue no. and/or month of [8]? and
research of null polarizations of radar objects [12] are extended
to bistatic cases or to monostatic radar, for measuring nonre-
ciprocal objects. Papers of Russian polarimetrists also discuss
results of investigations in the field of monostatic radar of non-
reciprocal objects. With respect to the different aspects of op-
timum parametrization of asymmetrical scattering matrices for
monostatic radar, an analysis of such a polarization character-
istic of an arbitrary radar object (medium) as “nonreciprocity
factor” was considered in Russia by Khlusov [13], [14]. The
physical aspects of a backscattering mechanism by partly non-
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reciprocal objects were analyzed in [15] au: publisher of [15]?
and [16]. In particular, an experimental testbed that simulates
the radar channel with arbitrary polarization properties was de-
scribed in [15]. In this paper, the application capabilities of
a controllable radar reflector with partly nonreciprocal prop-
erties were also estimated. The analysis of bistatic radar po-
larimetry was made, and two new Euler angles, which determine
the bistatic scattering matrix, were introduced in [19].

Evidently, the paper of Boerner et al. [1] should be consid-
ered as one of the first mentioning the scattering matrix (SM)
measurement of a radar object with nonreciprocal polarization
properties. The inequality of the measured off-axis scattering
matrix elements for some regions in an electric storm has been
explained by the presence of particle formation. Another exper-
imental confirmation of the existence of nonreciprocal objects
has been considered in [15], in which the design of an abso-
lutely nonreciprocal reflector was described for the first time.
Moreover, this paper includes the analysis of possible remote
detection of spatial regions or ground surface areas where mag-
netic field and/or para- or ferromagnetics are present.

It is known that a polarimetric analysis of radar objects having
arbitrary polarization properties can be made by means of co-
herent decomposition theorems. The Pauli spin matrices , ,

, and approach for decomposition of an asymmetrical scat-
tering matrix is widely used (see [11]). In this case, the backscat-
tering matrix can be presented in the form

(1)

where , , , and are all complex values.
The investigation of radar objects in relation to possible

backscattering mechanisms allows one to connect these values
with four elementary deterministic point targets. In such a case,

, , , and correspond to a sphere or plane surface, a diplane,
a diplane rotated over 45 , and a scatterer that transforms every
incident polarization into its orthogonal state, correspondingly.

In the Cameron approach [18], the scattering matrix is also
decomposed using the Pauli matrices. In this case, the matrix is
first decomposed into reciprocal and nonreciprocal components,
and then the reciprocal component is decomposed into two fur-
ther components, both of which have linear eigenpolarizations.

Khlusov [14] decomposes an arbitrary scattering matrix with
the use of the Pauli matrices, reducing the matrix into the sum of
a symmetrical matrix and an antisymmetric matrix weighted by
a complex factor. With this approach, a radar object is described
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by a set of invariant parameters ( , , , ), which characterize
the symmetrical component, as well as by the so-called polar-
ization nonreciprocity factor that describes the nonreciprocal
properties of the objects. The modulus of is considered to be
the ratio between the radar cross section (RCS) of the nonre-
ciprocal part and the RCS of the whole object, while is
interpreted as a spatial diversity of the reciprocal and nonrecip-
rocal parts of the scattering matrix (SM).

From the results of theoretical studies and experimental mea-
surements of the SM, one can conclude that the SM elements

depend on many factors not connected with the scattering
properties of observed radar objects.

1) choice of polarization basis (linear, circular, elliptical) re-
alized in the radar system;

2) mutual orientation of radar and object;
3) spatial diversity between radar system and object, etc.
For this reason, the measurement and investigation of polar-

ization invariants of the scattering matrix is fundamental to the
theory and practice of radar polarimetry. These invariants are
measurable values that characterize the polarization properties
of radar objects themselves and do not depend on the polariza-
tion basis implemented in the radar system. Some polarization
invariants measured in Russia and in the West have proven to
contain much information about various radar targets.

In this paper, we consider the estimation of polarization in-
variants for the general case of an asymmetric scattering matrix
supposing that all quadratures of the SM elements are known. In
Section II we give a short review of the traditional polarization
invariants. Then, we analyze the asymmetric matrix case in Sec-
tion III. In Section IV we present the nonreciprocity parameters
supplementing the Huynen–Euler invariants group. Section V is
devoted to the derivation of the closed-form expressions for the
complete group of eight invariants of the scattering matrix.

II. HUYNEN–EULER POLARIZATION INVARIANTS

As they describe the polarization properties of reciprocal
radar objects and media (within the framework of the Sinclair
scattering matrix concept), the Huynen–Euler group invariants
(e.g., see [6]) au: please cite [7] where applicable are widely
used. Their main advantage is that the given invariants group
may be used not only for the estimation of the polarization
properties of stable targets, but also for time-fluctuating random
objects. In the latter case, it is quite acceptable to assume that
the time correlation of the SM elements of fluctuating objects
is much longer than the carrier period of the radiated signal.
This allows us to speak about an opportunity of
reduction of the scattering matrix to a diagonal form [3].

It should be noted that the given problem could be solved for
the more general case of mixed bases, when TX and RX polar-
izations are different. Without loss of generality, we assume that
the measuring polarization basis of the radar system is linear.
Besides, the radar coordinate system coincides with Cartesian
coordinates XOY. The scattering matrix of a radar object can
then be written in the radar’s polarization basis as

(2)

where

(3)

is the radar object’s scattering matrix in the eigenpolarization
basis; , are complex eigenvalues of the scattering matrix

(4)

are transformation matrices from the object’s eigenbasis in the
linear basis of the radar [4]; superscript denotes the transpo-
sition of a matrix.

The scattering matrix can be written as [6]

(5)

so that the complex eigenvalues take the form

(6)

Therefore, the symmetric scattering matrix can be described by
six independent Huynen–Euler parameters:

maximum polarization: this value is the largest possible
response from the radar target, and this response is re-
ceived under transmission of the optimum polarization
connected with the largest eigenvalue, i.e., the “ ” value
is equal to modulus of the first eigenvalue;
absolute phase of the scattering matrix

;
orientation angle of the eigenbasis of the object relative
to the radar coordinate system ;
ellipticity angle of the eigenbasis of the object

;
skip angle ;

. Note that when the response from the object is
caused by scattering mechanisms with an even number of
reflections (bounces), the parameter is equal to 45 . In
Russian literature on polarimetry, the “phase shift” value

(equal to the argument differ-
ence of the complex eigenvalues) is used instead of the

parameter;
characteristic angle or the “polariz-
ability” angle; radar targets with do not change
the polarization of the transmitted signal, whereas targets
with will completely determine the polarization
state of the reflected signal.

The angles and determine the ellipticity and orientation
of the larger axis of the polarization ellipse of the electromag-
netic wave. If a radar object is irradiated by the wave with such
parameters, then the signal power received in a single-channel
radar will be maximal. This means that the reflection factors
for the transmission case of two orthogonal waves with the el-
lipticity angles and and orientation angles and ,
respectively, will be proportional (to a precision of phase factor)
to the eigenvalues , of the object’s scattering matrix.
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III. ASYMMETRIC MATRIX CASE

For monostatic radar, the backscattering matrix is considered
to be symmetric and gives equality of its off-diagonal elements

. As a rule, the asymmetry of the scattering matrix
becomes apparent in bistatic configurations. However, there are
experimental data that prove that the scattering matrix may be
asymmetric in the monostatic case too [1]. In par-
ticular, this may occur in cases in which strong magnetic or elec-
tric field strengths caused by exterior energy sources are present
in a bounded spatial volume.

The possibility of the existence of real objects, whose polar-
ization properties are described by asymmetric
scattering matrices in the monostatic radar sensing case or in a
bistatic configuration, allows us to widen the mentioned group
of Huynen–Euler parameters by additional independent polar-
ization invariants.

It is known that an asymmetric scattering matrix cannot be
diagonalized by the following congruent transformation:

(7)

which is typical for symmetric SMs. Here the matrix

(8)

is the unitary unimodular transformation matrix [5] according
to Takagi factorization.

In order to set up the complete group of polarization invari-
ants, we start from the consideration that the scattering matrix
of an arbitrary radar object in the Cartesian basis is known and
presented by four complex values

(9)

In this case, the inequality is considered as the man-
ifestation of the object’s nonreciprocal properties.

We now decompose by using the orthogonal system of Pauli
matrices

(10)

so that the matrix (9) takes the form

(11)

where

(12)

The scattering matrix can be represented as

(13)

The first three terms of the decomposition (13) describe the sym-
metric component

(14)

and the fourth term the skew-symmetric component

(15)

where

(16)

As a result, the original matrix is written as

(17)

Since the “ ” factor in (15) is not important in our further anal-
ysis, it will be omitted hereinafter.

The scattering matrix (9) in the polarization basis with pa-
rameters , becomes

(18)

with the transformation matrix

(19)

Substituting (17) in (18), we obtain

(20)
and

One can show that for any unitary transformation matrix (19)
the following equality exists:

(21)

Therefore, (20) may be rewritten in the general form as

(22)

Since the ellipticity and orientation angles are chosen arbi-
trarily, it is possible to conclude that the second item in (22)
with the proportional factor will not de-
pend on , parameters in the transformation matrix . With
reference to the Pauli matrices (10), one can say that this result
is the consequence of the fact that is invariant to congruent
unitary transformations. This also secures the condition that in
backscatter when the matrix is symmetric in one base, it is
symmetric in all bases (reciprocity theorem). In other words,
the difference of the off-diagonal elements of the scattering ma-
trix will be invariant to the radar polarization basis. Therefore,
the parameter will only be determined by the nonreciprocal
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properties of radar object and can be considered as an objective
characteristic of this object.

IV. NONRECIPROCITY PARAMETERS

Suppose that the unitary matrix and the given
values of the ellipticity angle and orientation angle coin-
cide with the eigenpolarization basis ( , ) parameters of the
symmetric part of the scattering matrix. In this case, the
matrix is diagonalized into

(23)

and the initial (asymmetric) scattering matrix in this basis can
be presented as

(24)
Let unit vectors and denote the polarization states of the

receiving and transmitting antennas, respectively, with
. Then, the received signal voltage at the receive an-

tenna is written as

(25)

In a monostatic radar, the same antenna is used for radiation
and reception of radar signals. Expression (25) can be rewritten
into

(26)

In this case, the normalized power transfer equation in a single-
channel monostatic system becomes

(27)

Vector is represented as

(28)

with transformation matrix

The signal scattered by a nonreciprocal object with scattering
matrix (9) and received in the single-channel system becomes

. By taking
(15) into consideration, we derive

(29)

For the last term in (29), it can easily be shown that for any
, values

(30)

It implies that the term in decomposition (11) describes
a target that orthogonalizes all incident polarizations (e.g., see
[17]). Such target (by definition) will not take part in copolar
RCS investigations. That means that the signal scattered by a
nonreciprocal object and received in a single-channel system
will depend only on the part of the object’s
scattering matrix

(31)

The value will give maximum values (in power) only when
the polarization state of the transmitting–receiving antenna co-
incides with the eigenpolarizations of the symmetric part ,

where

(32)

and , are the ellipticity and orientation angles of the eigen-
basis of the matrix , respectively. In other words, the polar-
ization invariants , , , (i.e., six Huynen–Euler invari-
ants) will play the same role in the description of a nonreciprocal
object as in that of a general reciprocal case.

For the description of the nonreciprocal properties of radar
objects with an asymmetric scattering matrix, Khlusov [14] in-
troduced the complex nonreciprocity factor

(33)

where is the Euclidean norm of the scattering matrix (9)
. Since the difference of the

off-diagonal elements and does not depend on the po-
larization basis, the value is also polarization invariant and will
be only determined by the nonreciprocal properties of the radar
object.

It is not difficult to show that the following equality follows
from expression (21):

(34)

where

We now define the squared norm ratio of the antisymmetric part
and the same value for the matrix itself, as

(35)
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With , expression (35) can be rewritten
in the form, , and we
learn that

(36)

The physical meaning of the nonreciprocity factor is that the
squared modulus of this value contains information on the ratio
between the RCS of the nonreciprocal part and the full RCS
of the radar object. It is obvious that for all reciprocal objects

, while for partially nonreciprocal objects .
In the general case, the nonreciprocity factor value is com-

plex. One possible interpretation of is given in [14]. The
author considers this value as the difference between the abso-
lute phases of the symmetric and antisymmetric parts of the scat-
tering matrix. This value can be represented as a spatial diver-
sity of “reciprocal” and “nonreciprocal” parts of the scattering
matrix, just as of the symmetric scattering
matrix can be treated as spatial diversity of orthogonal dipoles
along the line of sight in so called “two-dipole model” [2] of a
radar object.

Since the complex factor contains full information con-
cerning the nonreciprocal properties of arbitrary radar objects,
the group of six Huynen–Euler invariants may be supplemented
by two additional polarization invariants, both having an angular
dimension.

nonreciprocity angle is equal to the
arctangent of the modulus; the value describes
the radar sensing of reciprocal objects with a symmetric
scattering matrix, whereas the value describes
objects that are completely nonreciprocal;
the difference in absolute phases of the symmetric and
antisymmetric parts of the scattering matrix

.
Thus, the nonreciprocity factor can be represented as

(37)

From the above we note that the suggested complete group
of eight polarization invariants describes the polarization prop-
erties of arbitrary radar objects in an optimum way. This group
of invariants consists of

(38)

V. COMPLETE INVARIANTS GROUP

We assume that the radar polarization basis is linear and that
its coordinates system coincides with the Cartesian system XOY.
In this basis, the scattering matrix of a nonreciprocal radar object
is written as

(39)

where .

We assume that all eight quadratures of the SM elements were
simultaneously measured by the radar, meaning that

(40)

where is the in-phase component, and are the quadra-
ture components of the corresponding ele-
ments. In such a case, we may find analytic forms for the com-
plete invariants group (38). Therefore, we present the initial
scattering matrix as the sum of the symmetric and antisym-
metric matrices

(41)

where the corresponding elements of and are written
as

(42)

(43)

We first focus our attention to the analytic forms for the po-
larization invariants describing the properties of the symmetric
part of the scattering matrix. Toward this end, we denote the
matrix quadratures as

(44)

To find the solution, we need to present the elements of the
symmetric part of the scattering matrix as functions of the
Huynen–Euler invariants. In the expression

(45)

we substitute the symmetric part of the scattering matrix in the
eigenbasis of the object

for the transformation matrices

and for the complex eigenvalues

where , .
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After these substitutions, the resultant expressions for the ma-
trix elements have a quite complicated form. To simplify
the expressions, we introduce the following:

We now can write for the in-phase and quadrature components

This set of six equations can be reduced to a more conve-
nient form, in order to derive expressions for the invariants.
For this purpose, we must find sums and differences of the real
and imaginary parts of the diagonal elements, and also the dou-
bled real and imaginary parts of the off-diagonal element of the
symmetric matrix. After simple transformations, this new set of
equations takes the form

(46)
The main calculations for deriving the scattering matrix in-

variants as functions of the quadratures of the SM elements pri-
marily use this set of equations and are given in the Appendix.
Below we present only final expressions for eight polarization
invariants.

Maximum polarization

(47)

where

(48)

It should be noted that parameter “ ” (“maximal polarization”)
would unambiguously characterize the nonreciprocal object for
the monostatic case. However, this value cannot be considered
as the maximum response in the general case of a bistatic con-
figuration. Therefore, this parameter (“ ”) should be used with
care in the latter case. Orientation angle is

(49)
Ellipticity angle is

(50)
Skip angle (under the restriction that

is

(51)

where au: please add text to describe expressions and direct
reader (see equation at bottom of the next page). Characteristic
angle is

(52)

Absolute phase is

(53)

where

and

Nonreciprocity angle is

(54)
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Difference of absolute phases

(55)

It is possible to illustrate the results above with an example.
Let the scattering matrix of a radar target have the form

In this case, symmetric and a skew-symmetric components of
the scattering matrix are written as

Using (47)–(53), we find the following values of the
Huynen–Euler invariants, which characterize the SM sym-
metric component

Finally, we calculate [by (54) and (55)] the nonreciprocity angle
and difference of absolute phases, which describe nonreciprocal
properties of the radar target

Thus, we obtain a complete group of eight polarization invari-
ants describing an arbitrary radar target.

VI. CONCLUSIONS

It has been shown that the complete group of polarization in-
variants can be estimated by using the results of the eight simul-
taneously measured quadrature components of the scattering
matrix elements. The suggested group of parameters is based on
the Huynen–Euler invariants supplemented with two additional

invariants describing the nonreciprocal properties of an arbi-
trary radar object. The derived expressions (47) and (49)–(55)
form the algorithmic basis for estimating the complete group
of polarization invariants. It should be noted that seven invari-
ants have an angular dimension and, therefore, are very conve-
nient for the analysis and comparison of radar data. Unfortu-
nately, the authors could not present an example of using their
approach to real polarimetric measurements or SAR imagery.
The main reason is the absence of representative data of simul-
taneous measurement of all elements of the scattering matrix.
The authors intend to use this approach for investigating the po-
larization properties of radar objects in the framework of future
joint research between IRCTR TUDelft (The Netherlands) and
TUCSR (Russia). It is possible to apply the derived expressions
of polarization invariants in statistical simulation and also for
evaluating errors caused by nonsimultaneous measurement of
SM elements.

APPENDIX

A. Maximum Polarization

It is known (e.g., see [3]) that the sum of squared moduli of
the symmetric matrix elements

(A.1)
and the determinant modulus

(A.2)

are polarization invariants that do not depend on the radar basis.
Using these expressions, we find the maximum polarization

value as

(A.3)

where

(A.4)
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It is obvious that the “span” (A.1) and the squared modulus of
the determinant (A.2), which are used in “ ,” are functions of
the initial SM element quadratures via

(A.5)

(A.6)

Thus, the maximum polarization depends on all eight quadra-
tures of the SM elements, i.e.,

B. Orientation Angle

With (46) for the difference of the in-phase quadratures
, we write for the cosine of the doubled orientation angle in

the eigenpolarization basis

(A.7)

Accordingly, from the equation for we find

(A.8)

Substitution in (A.7) gives

(A.9)

We derive from the equation for

(A.10)

and from the equation for

(A.11)

and obtain for

(A.12)

With

(A.13)

which follows from the first two equations of (46), the expres-
sion for the ratio of (A.12) and (A.9) can be
represented as

. This expres-
sion includes the quadrature elements , of the sym-
metric part of the SM directly. Using the expressions in (44),
which connect these quadratures with the elements’ quadratures
of the initial matrix, we can rewrite the last equation into

(A.14)
Therefore, the orientation angle of the eigenpolarization basis
of an arbitrary radar object is written as

(A.15)
It is easy to see that the orientation angle also de-
pends on all eight quadratures of the SM elements, i.e.,

.

C. Ellipticity Angle

From the first equation of (A.10), the expression

(A.16)

is substituted into the fourth and sixth equations of (46), i.e.,
in the equation for the difference of the imaginary parts of the
diagonal elements of the SM symmetric part and in the equation
for the doubled imaginary part of the off-diagonal elements. As
a result, these equations can be written as

(A.17)

(A.18)

With

(A.19)

and making a simple transformation, we get

(A.20)

Using (48), (A.20) will take its final form

(A.21)
and the ellipticity angle of the eigenpolarization basis of an ar-
bitrary radar object becomes

(A.22)
This function contains six quadratures of the initial scattering
matrix and the trigonometric functions of the doubled orienta-
tion angle , i.e., .
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D. Skip Angle

Since the arguments of the complex eigenvalues (where the
absolute phase is taken into consideration) are equal to

the parameter can be found as the difference of these
arguments

or

(A.23)

Supposing the orientation and ellipticity angles ( , ) are
known, we can make the following set of four equations:

(A.24)
To solve this equation set by the Kramer’s method, we must find
the determinant (see first equation at bottom of page). Determi-
nants , , , and , can be derived from by replacing
the corresponding columns by the column consisting of absolute
terms. For example, the determinant has the form shown in
the last equation at bottom of page.

After some transformations and simplifications, we present
the determinants in the final form of

(A.25)

where, by taking (44) into consideration, we have

(A.26)

If the determinant is not equal to zero, i.e.,

then then equation set given in (46) has the unique solution

The “preliminary” value of the skip angle can then be written as

or

(A.27)

With (49) and (50) and using some transformations, parameter
becomes

(A.28)

where au: add text to properly direct the reader (see equation
at bottom of the next page).

E. Characteristic Angle

Since the characteristic angle value is connected with the
eigenvalue moduli via
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and the modulus of the second complex eigenvalue can be
written as

this invariant is easily found from the equation

(A.31)

and is, therefore, also a function of all eight
quadratures of the initial scattering matrix, i.e.,

.

F. Absolute Phase

The determinant of the symmetric scattering matrix

(A.32)

is one of the SM invariants, i.e., it does not depend on the radar
polarization basis. In this respect, not only the determinant’s
modulus is an invariant value, but also its argument. With

it is easy to write for the determinant in the radar object’s eigen-
basis

(A.33)

Thus, the “preliminary” value of the absolute phase of the SM
symmetric part can be found from

(A.34)

(cf. [8 (see also comments by H. Mieras, pp. 1470–1471, and
author’s reply, pp. 1471–1473]) or

(A.35)

Since the argument of a complex number can only be found
unambiguously in the angular interval (0; ) or ( ; ), the

value (as a half of this angle) is reduced to the interval (0;
) or ( ; ). Suppose that is determined in the

interval (0; ), expression (A.35) only gives the true estimate

of the absolute phase for positive values. Therefore, to find the
correct value of the absolute phase in the interval ( ; ),
we must calculate the additional angle and check
which value is true. Such verification may be carried out as a
result of substitution of both values and in the
expression for the quadrature of the SM symmetric part, and
include a comparison of the calculated value with the initial one.
By choosing the in-phase quadrature , we can show that the
absolute phase may be found according to the rule

(A.36)

The values of and in (A.36) are equal to

(A.37)

and

(A.38)

where

G. Nonreciprocity Angle and Absolute Phases Difference

In this section we pay attention to the nonreciprocal aspects.
We summarize the analytic forms for the polarization invariants
describing properties of the antisymmetric part of the scattering
matrix. The polarization invariant describing the nonreciprocal
properties of an arbitrary radar object is written as

where is the nonreciprocity angle and is the absolute phase
difference of the symmetric and antisymmetric parts of the scat-
tering matrix. These invariants are found in the form

(A.39)

(A.29)

(A.30)
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Taking into consideration that the modulus of the nonre-
ciprocity factor equals

where and
, we

can write the expression for the nonreciprocity angle as

(A.40)

and the difference in absolute phases of the SM symmetric and
antisymmetric parts as

(A.41)
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