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[57] ABSTRACT

A minimum-spanning gradient filter used to suppress clutter
in a target detection and tracking system. The minimum-
spanning gradient filter uses subspace projection clutter
suppression techniques, but does not require eigenanalysis.
Model frames of data from a sensor array are stored in a
memory in which the model frames do not include targets
that are being detected. At start-up, a Gram-Schmidt system
generates a series of unit vectors that define a clutter
subspace where most of the clutter in the model frames will
reside. Current frames of data from the sensor array and unit
vectors from the Gram-Schmidt system are applied to a
subspace projection system that removes the clutter sub-
space from the current frames of data. Once the original
clutter subspace has been generated, a plane smoothing
system updates the clutter subspace as new frames of data
are added to the model frames. Current frames of data sent
to the subspace projection system are centered. Additionally,
a standard deviation for the pixel intensities in each frame of
data is applied to a standard deviation threshold to prevent
pixels that fall below the threshold from being updated in the
clutter subspace. A glint threshold detector is provided to
eliminate pixels above a predetermined glint threshold so
that they do not contribute to the updated clutter subspace.

25 Claims, 7 Drawing Sheets
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OBJECT DETECTION SYSTEM WITH
MINIMUM-SPANNING GRADIENT FILTER
FOR SCENE CLUTTER SUPPRESSION

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to a clutter suppression
technique for suppressing clutter in an object detection and
tracking system and, more particularly, to an object detec-
tion system that includes a clutter suppression technique for
suppressing line-of-sight jitter induced clutter noise where
the technique incorporates subspace projection, but does not
require eigenanalysis.

2. Discussion of the Related Art

Strategic and tactical target detection systems which
detect targets of interest and then track their courses are
known in the art. These detection and tracking systems
include ground-based and air-based systems that detect and
track strategic objects such as aircraft, missiles, motor
vehicles and the like. One such detection and tracking
system is disclosed in U.S. Pat. No. 5,300,780 issued to
Denney et al., titled MISSILE SURVEILLANCE METHOD
AND APPARATUS and assigned to the Assignee of the
instant invention, herein incorporated by reference. This
patent discloses a missile launch detection and tracking
system that performs missile detection and tracking from a
satellite orbiting the earth. The detection and tracking sys-
tem incorporates an infrared sensor which detects infrared
radiation being emitted from the earth’s surface and from
target objects and clutter. The sensor includes a series of
detectors where each detector absorbs energy from a par-
ticular area or scene of the earth’s surface. The detectors will
absorb energy of differing intensities for each wavelength
within the frequency range of the sensor from the emissions
of the objects in the scene. The different background clutter
objects, such as clouds, and the objects of interest, such as
missiles, will emit infrared energy intensities at the different
wavelengths within the frequency range being sensed.
Detector outputs are sampled and converted into picture
elements (pixels).

The radiation received by the sensor is sent through a
series of color filters before the radiation impinges the
detectors. In one possible implementation, the color filters
separate the frequency range into a series of frequency bands
where each band is a continuum of wavelengths. The filters
are incorporated on a wheel such that as the wheel turns,
each filter will receive the impinging radiation. The rota-
tional speed and operation of the wheel is selected such that
each filter receives the radiation for a predetermined period
of time in order to set an integration time for each frequency
band. In a single-band sensor, only one such filter is
employed, without a wheel.

Target detection and tracking systems of the type dis-
cussed above must have a high degree of reliability in that
the signal-to-noise ratio (SNR) must be of such a degree to
significantly reduce or eliminate the number of missed target
detections and false target detections. In other words, in
order to be effective, the system must have a high probability
of detecting a target when one is present, and preventing an
indication of a target when none is present. Therefore, all
target detection and tracking systems incorporate some type
of clutter suppression technique or techniques to remove
background clutter and noise that degrades the systems
ability to isolate and detect the target or targets. For
example, in the system described above, one background
clutter suppression technique involves selecting the color
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2

filters and their corresponding integration times accordingly
to increase the SNR between the background radiation
received and the radiation received from the targets of
interest.

The most prevalent form of background clutter, especially
for satellite based staring sensors, is caused by line-of-sight
(LOS) motion. LOS clutter noise typically occurs as a result
of motion imperfections in the LOS control sensing system,
and the drift of the satellite itself. Because the sensor is
mounted on a movable platform, certain phenomena such as
the natural resonance of solar panels associated with the
satellite, thermal expansion and contraction of different
components associated with the satellite, and, in some cases,
inertial spinning masses that maintain the satellite’s attitude
cause the sensor position to fluctuate in a jittering manner.
Motion of the sensor causes brightness gradients, from
bright/dark boundaries on the surface of the earth, clouds,
etc., to move across the sensor pixels, and thus make the
image brightness vary in a manner similar to a true target.
Consequently, images that are generated by the tracking
system contain spurious signal variations, causing an
increase in the noise of the system.

One known type of clutter suppression technique which
attempts to eliminate the effects of jitter and drift is referred
to as subspace projection. Subspace projection is a clutter
suppression technique in which most of the noise of the
system is mathematically defined within a clutter subspace
and the clutter subspace is then separated from the frames of
data detected by the sensor. To generate the clutter subspace
in subspace projection clutter suppression, a model of the
pixel outputs is developed depicting the clutter signal from
the sensor, and the clutter subspace which contains this
signal is determined so as to mathematically delete it from
new images being sensed. Known subspace projection tech-
niques utilize eigenanalysis procedures in order to generate
the clutter subspace. One reference that sets out a subspace
projection clutter suppression technique of this type can be
found in the article J. D. Hulsmann and P. E. Barry, “An
Eigenvector Procedure for Eliminating Line-of-sight Jitter
Induced Noise from Staring Mosaic Sensors”, 19th Annual
Asilomar Conference on Circuits, Systems and Computers,
Pacific Grove, Calif., Nov. 6-8, 1985.

Although the known subspace projection techniques that
use eigenanalysis have been successful in eliminating LOS
induced clutter noise, eigenanalysis requires a considerable
amount of processing load and memory. Therefore, robust
signal processing techniques must be implemented to pro-
vide the necessary processing to perform the eigenanalysis
that significantly adds to the cost and calculation time of the
system. What is needed is a clutter suppression technique
which uses a subspace projection clutter suppressor, but
which does not require eigenanalysis and has a natural
recursive method for controlling responsiveness. It is there-
fore an object of the present invention to provide such a
clutter suppression technique.

SUMMARY OF THE INVENTION

In accordance with the teachings of the present invention,
a minimum-spanning gradient filter is disclosed which uses
subspace projection clutter suppression, but does not use
eigenanalysis. Model frames of data from a focal plane
sensor array that do not include targets that are being
detected are stored in a first-in first-out buffer memory. At
start-up, the model frames of data are applied to a Gram-
Schmidt system that generates a series of unit vectors that
define a clutter subspace where most of the clutter in the
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model frames will reside. Current frames of data from the
sensor array and the unit vectors from the Gram-Schmidt
system are applied to a subspace projection system that
removes the clutter subspace from the current frames of data
so as to remove the clutter. Once the original clutter sub-
space has been generated, a recursive plane smoothing
system receives the output from the subspace projection
system and current frames of data from the sensor array to
generate updated clutter subspaces during operation of the
filter. The frames of data having the subspace removed are
then sent to a target detection system to detect targets of
interest.

An averaging system is provided to average pixel inten-
sities in each model frame of data in order to center the pixel
intensities in the frames applied to the subspace projection
system. A standard deviation for the pixel intensities in each
model frame of data is determined and applied to a standard
deviation threshold based on expected sensor and electronic
noise to prevent the pixels that fall below the threshold from
being updated in the clutter subspace in order to decrease
processing load. A glint threshold detector can be provided
so that if a pixel in the frames of data exceeds a predeter-
mined glint threshold, that pixel also does not contribute to
an updated clutter subspace.

Additional objects, advantages, and features of the present
invention will become apparent from the following descrip-
tion and appended claims, taken in conjunction with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a graphical depiction of a clutter component
from a single pixel of a sensor associated with an object
detection system;

FIG. 2 is a depiction of a clutter subspace of an image
vector;

FIG. 3(a)-3(b) shows a graphical depiction of pixel
vectors;

FIG. 4(a)—4(c) shows a graphical depiction of a spanning
vector formation according to a preferred embodiment of the
present invention;

FIG. 5 is an example of a particular clutter plane;

FIG. 6 is a noise model depiction;

FIG. 7 is a graphical depiction of a density function;

FIG. 8 is a graphical depiction of the jitter component of
a density function;

FIG. 9 is a graphical depiction of a weighting function;

FIG. 10 is a graphical depiction of a centered model;

FIG. 11 is a target energy lost model;

FIG. 12 is a schematic block diagram depicting a mini-
mum spanning gradient filter used for scene clutter suppres-
sion according to an embodiment of the present invention;

FIG. 13 is a series of time line diagrams depicting the
separation of model window frames and detection window
frames for the minimum spanning gradient filter of FIG. 12;
and

FIG. 14 is a model of pixel and time-spanning.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The following description of the preferred embodiments
concerning a subspace projection clutter suppression tech-
nique for use in an object detection and tracking system is
merely exemplary in nature and is in no way intended to
limit the invention or its applications or uses.

10

15

20

25

30

35

40

45

50

55

60

65

4

DEFINING A CLUTTER MODEL FOR A
TARGET DETECTION SYSTEM

Subspace projection clutter suppression requires that a
model of the clutter signals in each pixel output be gener-
ated. For a small number of sample times, LOS motion in the
focal plane of a sensor array (not shown) for those pixels in
the sensor array that have a large spatial scene brightness
gradient can be described by a first-order Taylor series
approximation to the integrated detector output (target-free),
incorporating two-dimensional jitter and drift noise compo-
nents for a pixel 1 at a sampling time j, by:

st) =sy~By;+ Vi D;+my = oY)

By + VT + M) + V(T + M) + M = 11N, j=1: &,

where,
B, is the background from s;,, B
V,v, B, =B,

B, is an initial brightness for pixel i,

V, is the spatial brightness gradient vector,

D; is the LOS motion vector due to jitter and drift of the

Sensor,

V. V,; are x and y components of V,

V..V, are x and y components of LOS drift velocity,

T is the sampling period,

MN.;» M,; are x and y components of LOS jitter motion

displacement from an initial position of zero,

m;; represents all other random electronic noise sources,

k is a sample time, and

N is the number of pixels.

The approximation of equation (1) applies only to mea-
surements of N pixels made simultaneously. If, for example,
the wavelength bands are sampled consecutively, equation
(1) applies only to pixels in one frequency band. Therefore,
the use of equation (1) for all N cluttered pixels represents
one integration time “snapshot” of the cluttered image. The
N pixels might be a small part of the entire image. This
assumes that the motion is translational over the set of pixels
being processed. However, the method extends to any linear
model of clutter, including a rotational model. By modeling
gradients as constant for each pixel during a sample time k,
it can be assumed that the pixels will not change radically at
the next (k+1) sample time of the same band. Also, while
real motion during integration can be complicated, the net
effect is represented by the vector D; in all of the pixels in
each cluttered image. It is further assumed that the clutter
signal in the pixels is large as compared to m ;. Although the
clutter as a result of the slowly-varying brightness difference
between pixels due to drift and the noisy signal due to jitter
vibration of the LOS is shown separately in equation (1), the
following discussion will use the term clutter for both since
the process put forward can suppress each type of clutter
using the same mechanism.

FIG. 1 shows the key components of s; during the
sampling period T as modeled by equation (1). The signal s;
is the output of a particular signal from the sensor as shown
in the vertical axis and time as shown in the horizontal axis.
An enlarged area of the output signal is shown to more
clearly depict the clutter components as a result of drift and
jitter over three sampling periods. The short term accuracy
of a linear model is dependent on many factors such as blur
circle size, pixel size, drift rate and scene structure.
Generally, for optical resolution matched to detector size,
the assumption should get better as the factor of pixel
size/drift speed gets larger. Also, brightness gradients, hence

=B, +V, v, T+

-1
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jitter noise, are smallest where they change most rapidly,
offsetting the effect of LOS and cloud drift on a linear model.

GEOMETRIC INTERPRETATION OF THE
CLUTTER MODEL

By ignoring the electronic noise term m,; of equation (1)
for the moment, the ideal linear (fixed gradient) clutter
model may be recognized as a parametric equation in the
parameter time, i.e., each pixel output is linear in the two
independent parameters m,; and m,,. Simplifying equation
(1) to show this fact by letting 1,,=x(T)=x(0), n,,=y(t), and
substituting the previous j—1 B terms provides:

ST =sO=BAV [yt BV [ty (O]=BA+V p(0+V,4(0, (D)

where p(t) and q(t) are time parameters.

All of the pixels have the same time parameters p(t) and
g(t) for the same sample time k. Therefore, the effect of ideal
linear clutter due only to translational motion is to disperse
the pixel outputs into a 2-dimensional plane, referred to as
the clutter subspace plane (CP), in the dimension N
cluttered-image space. This can also be shown by consid-
ering the set of computations from equation (2) that results
for all of the pixels, then solving for and eliminating the time
parameters p(t) and q(t) common to all of the pixels using
any two pixel outputs. This result is a set of equations having
the form:

s=as,+bs,, +c;

©)

where, a, b and ¢ are constants.

Equation (3) results in a set of equations of the clutter
plane CP which do not pass through the origin. If the data is
first centered or averaged, the clutter plane CP will pass
through the origin, and the constants a and b will determine
the orientation of the clutter plane CP as functions of only
the fixed brightness gradients of the pixels. This is a two-
dimensional plane in dimension N hyperspace, where theo-
retically the value of any one pixel is algebraically depen-
dent only on any other two pixels. This subspace is spanned
by the linear combinations of any pair of non-colinear
vectors contained in the subspace. The planar property of
clutter can be expressed in a vector form. For example, the

clutter vector §]- can be depicted as follows:
FEL;‘ " @
S;=
Sy
L

§j is an Nx1 vector representing the set of “centered”
cluttered pixel values at the sample time k of a clutter image.
In this example, centered means subtracting the k time
average of each pixel from the individual pixel values. Of

course, other types of weighted averages, such as nth-order

filtering, could be used. §]- is contained in a vector space R%.
If S=[S,S, . . . S.] is an Nxk matrix of the last k cluttered
images, then:
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6
r 1r ! 5
Vi Vi )  qt) ®
Vi Va || pe) at)
5=[VVllpaF=| - - S -
Vv Vv || P@)  a(ty
r r " I 4 by Py
Vn vyl vx].
sz vyz vxz
p(ty) +q(t) | - r@) | - +
Vi Vv Vv
b . dp b d p b vy 4 4 L
Vyl vxl vyl
Vyz sz vyZ
q(t2) - p(t) +q(te)
Vyw Vaw Vv
L 4 s d L d d

This set of vectors is formed by multiplying a pair of fixed
gradient vectors by k pairs of different motion scalars. All of
the resulting target-free cluttered image vectors will lie in
the clutter plane CP formed by the two fixed gradient vectors
V, and V , as will the future or past images. Equation (5)
is columnspace oriented, and will be referred to as the pixel
or gradient-spanning representation because the pixel out-
puts are represented by linear combinations of the gradient
vectors.

Another interpretation can be put forward. Common
motion for all pixels over the sample time k forms a pair of
dimension-k fixed motion vectors p and q which can be
multiplied by N different gradient scalar pairs to form a
cluttered image. This interpretation is row-space oriented,
and will be referred to as the time or motion-spanning
representation. The matrices generated by equation (5) can
be manipulated to emphasize the difference between the two
interpretations of the same cluttered images. The second
interpretation is given as follows:

r "

Vi Vi (©)
Vo Vi
S [pm)p(tz) P ] )
- . q@)a(t) - . . q(te)
VY
h ‘ Tvn [o(ep(e) - - - p(w)] 1
+
Va [q(t0q(t2) . . - q(t)]
Va [penp(t2) - - - p(to)]
+
Va [q(tn)q(t2) - - - q(t)]
Y lpep(e - - p(w)
+
Vi lqt)q(t2) - . - q(tw)]

Of course, jitter effects in a real detector signal will not
faithfully obey these mathematical abstractions. The clutter
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plane CP will not remain two dimensional and will grow into
something resembling a wobbling, “fuzzy pancake” having
more than two dimensions in pixel space as a result of noise,
gradient changes, gradient nonlinearity, LOS and cloud drift,
etc. In the case where the detector array is a line or strip,
such as in a scanner, jitter might be most predominant in one
direction, thus allowing a model which uses only the x or y
component of motion. In this case, the ideal clutter plane CP
is a one dimensional line in N-space which will expand into
a twisting figure representing a “fuzzy hot dog” of more than
one dimension. In either of these cases, the clutter energy
distribution should tend to be confined to a subspace of small
dimension relative to the total number of cluttered pixels
over a reasonably short period of time (seconds). This fact
allows the subspace to be deleted from the measurement for
each clutter image. Since, to a first order, the subspace is
planar for a two dimensional focal plane, the term “plane”
is used even though the subspace model could be of higher
dimensions to capture the real effects.

SUBSPACE PROJECTION

Next, the pixel-spanning representation of equation (5)
will be used to explain subspace projection. Subspace pro-
jection is an effective approach to clutter suppression in that
it attempts to isolate and remove the correlated energy
caused by clutter through exploitation of the underlying
correlation structure. For example, suppose that k images are
used to model the clutter plane CP described above as more
formally defined to be the surface of the smallest dimension
containing all of the clutter energy. The projection of the
next, uncorrected (but centered) Nx1 image vector S, , ; onto
the complement of the clutter subspace plane CP within the
N-dimension image space is defined to be its corrected
value. The corrected image is that part of the next cluttered
image which does not fit the current clutter model. Since the
clutter subspace plane CP is orthogonal to its complement,
this corrected value also happens to be the residual of the
least-squares fit of the model to the uncorrected vector. This
is shown as follows:

< oM
S kr1=Skr1S ke

&)

where,

§k+1 is the corrected image,

Sr.a™ is the model fit to Sy, 4,

and S, 1S, M.

FIG. 2 shows a depiction of the above described relation-
ship. Here the clutter subspace plane CP can be any dimen-
sion m subspace of pixel space, subject only to m=k-1 for
the centered data. The clutter subspace plane for the model
is referred to as CP(m). Any sample time k can be corrected
by this method. For example, S, or later could be corrected
by the same model, as long as the gradients have not
changed significantly. As a practical matter, however,
sample times used in the model would not be corrected, as
it is assumed that model images contain only clutter, and not
information such as targets or glint which might bias the
estimate of the clutter plane CP. Further if m is close to k-1,
model images will be almost completely spanned by the
subspace, making it morg likely that target energy will not
show up as the residual S, ;.

Since correlated clutter energy should be concentrated
into a small subspace, it is natural to consider eigenanalysis
as the basis for setting up the model. It is well understood
that the eigenvectors E, i=1:m corresponding to the m
largest eigenvalues of a data set’s covariance matrix
(rankZm) form unit basis vectors for a dimension m sub-
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space which contains the greatest data variance. Also, this
subspace is a least-squares solution or fit to data in the model
over all subspaces of this dimension. In other words, the
model surface so defined is as close as possible to the data
set used to define the surface. From this, an Nxk matrix of
the last k centered clutter images is given as S. N is assumed
to be greater than k. It is then possible to compute the
eigenvectors of S S7 having the NxN spatial sample
covariance, without the factor 1/N, corresponding to the
m=(k-1) largest eigenvalues. However, these column-space
eigenvectors can be determined more efficiently from an
eigenvalue weighted singular value decomposition transfor-
mation of the row-space eigenvectors for the kxk sample
time covariance S7 S. Since these vectors span the entire
clutter plane CP(m), the subspace projection equation (7)
becomes:

®

S _ m —_
Skr1 =Skat — ,21 EfE Sw),m S k-1,
i=

where E,; is the eigenvector for the ith largest eigenvalue
using centered data. In other words, the summation is the
clutter plane model least-squares estimates S, ,™ of the
uncorrected pixel vector.

For example, consider a simple case of no drift with jitter
in the x dimension only. Such an example leads to a clutter
plane CP that is a line. FIGS. 3(a) and 3(b) show a cluster
of centered data pairs over k=9 sample times for two pixels,
where random noise has been added to an even larger clutter
variation. The dotted diagonal line represents the best model
fit of a one dimensional subspace to the data. The slope of
the line represented is the best fit of the brightness gradient
of the second pixel divided by the first pixel. The two
components of the gradient vector in equation (5) are shown.
If the next, uncorrected pixel vector from the same band falls
as shown after centering, the corrected value will be the
residual vector perpendicular to the model line, here N=2.
Since this residual is really a vector bound to the origin, the
corrected value for the two pixels is (8,,5,). In this example,
the eigenvector corresponding to the largest eigenvalue of
the sample covariance matrix of data pairs is effectively used
to span the clutter subspace plane. This eigenvector is
colinear with the model line as shown in FIGS. 3(a) and
3(b). Note that one dimension for the model is used that is
much smaller than k—1=8. This operation can be shown as
follows:

S k+l=Sk+1_Pm§k+1=(I_Pm)§k+lB (9)

where,

m
Pn= X EEf=[E\Fy...Enl[E\E:. .. Ey...J = EFL.
=

The operator P,, is the unique orthogonal projection matrix

for any vector in the dimension N vector space % onto the
clutter plane CP(m). The range of (I-P,,) is the dimension

N-m orthogonal complement of CP(m) within %", CP(m).L.
The uniqueness of P,, establishes that if any Nxm set of
vectors [U,]=U (i.e., matrix of the U;) form an orthonormal
basis for CP(m), then UU?=P,,.

DESCRIPTION OF A MINIMUM-SPANNING
GRADIENT FILTER FOR CLUTTER
SUPPRESSION

Armed with the above described analysis, the following
discussion will be directed to a minimum-spanning gradient
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filter (MSGF), according to an embodiment of the present
invention. There are three key concepts to the proposed
MSGF approach. First, if a dimension k-1 clutter subspace
model based on k centered clutter image vectors is used, the
k vectors automatically determine the subspace. That is, k
centered samples define a dimension k-1 surface in N-space,
i.e., CP(k-1). Second, any set of orthonormalized vectors
which span this subspace can be used to perform subspace
projection. In particular, a Gram-Schmidt or equivalent QR
procedure using any k-1 size selection of the k image factors
can be executed to provide this set. As is understood to those
skilled in the art, a Gram-Schmidt process is an effective
way of finding unit vectors that are mutually orthogonal. In
this type of process, eigenvalues and eigenvectors do not
need to be computed, since these eigenvectors must span the
identical subspace. Therefore, the same information will be
deleted from the uncorrected clutter image vector by these
two different sets of spanning vectors. Note, however, that
the model dimension m must be equal to the k-1 centered
data or k for uncentered data for this equivalence to hold.
And third, the angle which this subspace will rotate after
inclusion of a new sample in the model can be calculated
with a simple technique and smoothed. That is, a filter
function can be applied to the rate of model correction as the
window of k vectors is shifted in time in order to control and
balance responsiveness to noise and gradient changes.

One form of an MSGF according to the invention can be
constructed as follows with reference to FIGS. 4(a)-4(c).
First, form a unit vector by normalizing any one of the k
centered image vectors. Then, a Gram-Schmidt procedure
produces the set of unit vectors as follows:

- iil = (10)
) El Si _j=1 CH{CISy)
[

= = i—1
lIsi - X C{Csol
j=1

From equation (8), the correction for the next image to
remove the clutter subspace from the image is given by:

= - k1 - (11)
Skel = Seel — _21 Ci(CilSke1)
i=

The speed and processing advantages of the MSGF pro-
cess comes from avoiding several operations. First, it is not
necessary to calculate the covariance eigenvectors. This
saves multiplications by avoiding formation of the time
covariance matrix and construction of the spatial covariance
eigenvectors. A rough estimate of the ratio of multiplications
for N>>k> is about 5 for k=3, and about 4 for k=4, excluding
equations (8) and (11). Also, equation (8) requires about
twice the number of square roots. As long as care is taken in
forming the vectors using the Gram-Schmidt procedure
using numerical techniques familiar to those skilled in the
art of matrix computations, the spanning vectors in the
MSGF should have better precision and orthogonality than
those of equation (8) because they do not depend on con-
vergence criteria associated with eigenvalue/eigenvector
calculations.

Since the Nx(k-1) set [ C;] forms an orthonormal basis for
CP(k-1), the resulting orthogonal projection operator P,_; is
identical to one formed from the Nx(k—1) set of eigenvectors
[E;]. That is:
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12)

C CT =Pyy= E ET
k-1k-1 k-1k-1

Plane Smoothing

The MSGF can be implemented as a moving window of
k samples by dropping the first (oldest) sample and adding
the k+1 sample to the model. Since this model update
preserves the dimension of the clutter plane CP, the effect of

the update is to rotate the clutter plane CP within ®Y. This
rotation amounts to tilting the plane about the k-2 previous
centered images in the direction of the update image. Since
noise will tend to “bounce™ this subspace around the true
value of the gradient slopes, it is possible to add inertia
determined by the data. The following tradeoff then occurs.
If it is desirable to filter heavy clutter by opening up the
subspace to more dimensions, the extra time required to
collect more data can reduce the accuracy of the model as
the clutter plane CP changes. On the other hand, a clutter
model of two dimensions is accurate only for two dimen-
sional LLOS motion and linear gradients. The right approach
is to balance the subspace size and responsiveness to change.

There are many ways to smooth the rotation of the
subspace CP(m) during updating. One of those approaches
is the “fO” approach, which acts like a recursive filter.
Rather than use the previous k—1 centered image vectors, the
spanning set [C;] will be used as shown in FIG. 5. After the
k+1 correction, the Gram-Schmidt procedure is run starting
with the model fit C'=S,, * to the uncorrected image. Any
k-2 spanning vectors can be used to complete the procedure.
This rotates the spanning vectors CP(m) until one vector is
colinear with the model fit. In the CP(2) example shown in
FIG. 5, the result is C' and C,". Now the angle between C'
and the update vector is computed and C' is rotated by a
fraction § of the angle ® between CP(2) and the update
vector S,,;. Since C," is orthogonal to both C' and the
direction of rotation, this rotation does not affect it. In fact,
no matter what the size of m is, only the vector C' needs to
be rotated towards the update since all the other C" are
orthogonal to both C' and the subspace into which C' is being
rotated. All of these operations are straightforward, as model
fit is a byproduct of each correction, and the implied
arctangent calculation can use coarse numerical approxima-
tions. The effect of this procedure is the same as smoothing
a random vector normal to CP(k-1) in k space.

The distribution of the angle from the clutter plane CP to
the new image S,,, provides some additional insight into
good smoothing functions. For convenience, an example
will be developed using motion in one direction only giving
a line CP(1) as the model, 2 pixels, and independent zero
mean normal distributions N(0,07) for all jitter and noise
components. FIG. 6 shows this model and its update with
jitter excursion about 1.5 times its standard deviation and
random noise excursion about twice its standard deviation.
The probability density function of the angle ® can be
derived by calculating the angle distribution of jitter and
noise along the true model line, then adding ¢ as a constant,
as follows. Since the random/electronic noise component is
assumed to have the same variance in both dimensions, its
projection onto the true clutter plane CP has the same
standard deviation as its projection onto CP(1). Therefore,
the problem of finding the distribution of ® can be worked
with respect to a coordinate system aligned to the true clutter
plane CP by adding the random noise component “x” (not
shown) along the clutter plane CP to the jitter component,

then taking the random noise component “y” normal to CP
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as the height of the desired right triangle for ®. Therefore,

® is given as follows:

v ~NO.02) (13

6 = arctan % +2,{ x~N(0,02)
z~N(0, 0.2)

where 0,% and o,_* are noise and jitter variances.

The distribution of S,,, can be shown to be bivariate
normal with diagonalized covariance having entries o>+
0., and 0%, and a semi-major axis colinear with the true
clutter plane CP. The distribution of © can be found by
modifying a derivation of the Cauchy distribution, well
known to those skilled in the art. This distribution is defined

as:

PYOSRI EET a=odo. )
e 271 + a2sinZ0) - <0 <.

FIG. 7 shows a graph of the fg(8) density function. The
distribution of © is conditioned on the value of the jitter
component and provides some feel for the influence on © of
the amount of the jitter signal. Here, ® is defined by equation
(13) with z replaced by a constant representing the given
jitter amplitude as follows:

»~NO, 0.2 (42
y ~N(©, o).
A =00,

0 =arctan

y
x+A 7

Equation (15) may be recognized as the phase part of a
Rician distribution, known to those skilled in the art. The
phase part is less well known than the amplitude part that is
used extensively in the theory of both envelope detection
and fading communication channels. The distribution of the
length of the observation will be that of the Rician ampli-
tude. The phase calculation is only extended to 2m as:

2

e—"T (16)
fo(Oley) = = +
—o%sin%e .
acosO acosO a = jitterA/Co

—-m<B® <m

ZG SICE =) il

where erf is a mathematical error function. FIG. 8 shows a
graph of the density function f(8) for equation (16).

The shapes of the conditional and unconditional densities
are similar in the vicinity of zero degrees. These densities
emphasize that the greatest improvement using subspace
projection occurs when jitter is large relative to other noise
sources. A useful result would be the density function
fo(6+0[S,.,™). However, this presumes some distribution for
¢. Since this angle depends on both the algorithm and the
brightness gradient changes, it seems practical to assume
that the true clutter plane CP is close to the model, and
influence the update according to the approximation A=~
S...|. This suggests a class of heuristic “influence” func-
tions with the shape as shown in FIG. 9. In this example, a
full correction up to the recursion factor f§ is used when the
measured length of the modeled image is large relative to the
estimated standard deviation of random noise. An exponen-
tial form of weighting seems natural due to the noise
distribution. Therefore, experimenting with § and r to find an
operating point would be required. Note that noise excur-
sions larger than m/2 will not be detected, and hence not
corrected, since the measured angle is taken to be the
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smallest clutter plane CP. Another approach might be to let
B be a simple function of [S,,,*|//o.,.

Intuitively, the net effect of a good smoothing or influence
function should be to substitute the inertia inherent in a
sample covariance approach which spans a predetermined
number of sample times k, without doing the work associ-
ated with a covariance and eigenvector calculation. The idea
of functions of those shown in FIG. 9 is a weighting
according to the aposteriori probability that the corrected
update image belongs to the clutter model rather than to
random noise. In any case, the main point is to control the
clutter filter by controlling or filtering the model update,
much like the model update in a Kalman filter, well known
to those skilled in the art, allowing gradient changes to be
incorporated while damping the reaction to random noise.
Centering the Data

It is also important to center the pixel intensity data. The
spanning vectors formed from centered data are more effi-
cient in describing the clutter model. FIG. 10 shows a case
of modeling using uncentered (m=k=2) and centered data
(m=k-1=1). When the data is uncentered, the first eigen-
vector E, is used to describe the direction of the centroid of
the data cluster, which generally has no relationship to the
direction of clutter dispersion. The second eigenvector E,
must be normal to the first. Therefore, it generally will also
not be oriented along the line of dispersion either. The most
that can be said about E; and E, is that the plane they define
contains the efficient model. The same will be true for the
subspace of an MSGF approach using uncentered data. In
FIG. 10, the best clutter model is one dimensional.

For centered data, the spanning vector E; will point along
the direction of the model data dispersion. Since some kind
of average or background estimate is maintained for thresh-
old determination anyway, centering should add less of a
processing load than the inner products save by eliminating
one vector calculation.

The importance of a centered model is that it helps to
make the clutter subspace as small as possible by eliminat-
ing one dimension. For example, looking at FIG. 10, a wild
data point which landed a large perpendicular distance away
from the correct 1-dimensional model, but close to the plane
modeled by uncentered data, would be corrected to a small
value. In other words, an uncentered model has one extra,
unnecessary dimension which may reduce potential target
activity. Of course, the key to good centering is good
background estimation.

Target Eneray Loss

One disadvantage in using subspace projection to reduce
clutter is that some target energy (or any energy which is
projected onto the model) will be lost in the model, and some
will be “leaked” from the target pixel into other pixels.
Having a large number of pixels in the model suppresses the
latter effect. Since the leakage would generally be small, it
seems unlikely that it would cause a false alarm problem in
another pixel which is cluttered. Large false targets such as
glint can be detected and separated as shown below.

The target loss effect can be illustrated by considering an
example for CP(1), shown in FIG. 11, where the clutter
model is pointed at (1,1, . . . ,1)” in N-space. That is, the
pixels all have the same gradients. FIG. 11 shows the effect
of pixel correction on other pixels in the model for N=3 and
a target in pixel S; Most of the target energy in pixel S5 will
be retained by S; because its axis is the only one which is
coplanar with the model line and the cluttered sample. In the
case of N pixels, a geometric construction shows that if a
target value of T is added to pixel i under these conditions
with no electronic noise, the output of the filter can be given
by:
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T an

—_— )
N1

These terms might be considered figures of merit for general
performance. Target loss or leakage for an individual pixel
i can be computed by applying P to the unit vector [0,0, . .
.,0,1,0,. .. ,O]T, where 1 is the ith component and examining
the result. This is equivalent to applying the ith column of
I-P, which can be computed from the inner products of CC”
or EE” without computing P explicitly.
Target Threshold

Since the orthogonal projection P is a linear operator, the
corrected image spatial covariance can be given by:

T
Si=7 5 5=

K,_p=cov([I-P]S)=[I-Plcov(S$)[I-P"4I-P|K[I-P}=K-PK-KP+
PKP. (18)

If the x and y components of jitter and electronic noise are
independent, and drift is ignored, K, , can be approximated
as follows. First, assume that m=k-1=2. Then, let E be an
NxN matrix representing the orthonormal completion of the
CP(m) spanning eigenvectors E for the spatial covariance
S S7. To the extent that this sample covariance represents the
true covariance, the distribution of the correct pixels can be
estimated. Supposed there is no error in E as an estimate of
the eigenvectors of K. E can be partitioned into the CP(2)
spanning eigenvectors and their complement as

E- [ EE ] .
mn-—-m
Therefore, equation (18) becomes:

K, ~EE'K, EET=EE"(K-PK-KP+PKP)EE” (as EE"=I) (19)

For ideal clutter with no drift, E diagonalizes K into:

E'KE=2=diag(a0.*+0.%,a0.°+0.2,0.%,0.7, . . . ,0.7)=diag(0,%,0,%,
co 0N (20)

where,

a is a linear function of the square of each of 2N pixel
gradients as seen from equation (1),

0,2 is jitter variance (assumed to be the same in x and y);
and

0,” is the variance of electronic noise (variance ofn,; in
equation (1)).

The exact form of the first m terms of the diagonal
covariance are not as important in this derivation as the
effect of the projection. Then using the definition of P and
this diagonalization, equation (19) can be manipulated into
the desired form as:

K, p = E(E'KE - E"PKE — E'KPE + E"PKPE)ET 1)

_EH

P =Pm >
m m

K=ESET =
E [ E—ET(EET ) (EXEDE - ET(ESED) (EET )E+
mm mm
ET ( EET ) (ESET) ( EET ) E ] BT = E(S — Indo ST = ISl T +
mm mm
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-continued
I
ETE -1, = mxm L, =
m 0 J (N —m)xm,
I 0
= E(S — Sy — S + Sp)ET
0 0
Zn = diag(o,’, 0% ..., 0550,...,0) =
EE -2 )E" =E - diag0, . ..,0,07,...,0)E"

where the last expression has m zeros.

Because the spanning set C forms an identical P,,, the
corrected data covariance using C is the same. For the case
of general m, the noise distribution in the subspace may not
be of equal variance as it is in the example above.
Nevertheless, the orthogonal projection still deletes what-
ever energy is projected onto the clutter plane model CP(m)
from N-space and spreads the remainder back into N-space.
Since N is much larger than m, the power of uncorrelated
electronic noise in each pixel should not be significantly
affected by this operation. Equation (21) also implies that an
estimate of the electronic noise variance and target loss as
described above can be used to set a target detection
threshold in corrected pixels.

Drift

Drift in the linear model introduces a “stretching” of the
clutter dispersion on the clutter plane CP which should cause
a problem similar to that of an uncentered data if gradient
changes are significant. As the brightness gradients and
background change, an efficient model of clutter should
rotate in N-space along with the slope of the gradient ratios.
Uncompensated drift adds a growing term at each sample
time which is usually not averaged out by time averaging the
model data. Therefore drift compensation will help clutter
suppression and vice verse. As the ratio of pixel size/drift
speed gets smaller for optical resolution matched to pixel
size, target strength may become large enough to overcome
random jitter and electronic noise, but the increased rate of
background variation will complicate setting a threshold.
One approach is to increase the size of the subspace by
including more samples in the model at the expense of
deleting non-cluttered data. Another is to use the nth-order
difference filtering to estimate the background at the expense
of added noise.

If scene rotation and/or blooming is a problem, the focal
plane processing could be subdivided by operating on con-
tiguous data with concentric, segmented bands so that non-
translation motion over the focal plane is almost linear
within each segment.

FIG. 12 shows a schematic block diagram of one imple-
mentation of a minimum-spanning gradient filter 10 for
suppressing clutter according to an embodiment of the
present invention. The filter 10 receives images as pixel
intensity data from a sensor array (not shown) sensing a
scene, such as an infrared focal plane sensor array, associ-
ated with a target detection and tracking system (not shown)
over a particular frequency band i. The operation of the filter
10 would be carried out prior to the images from the sensor
array being tested for the presence of a target. A separate
gradient filter would be provided for each band i of the
tracking system. For example, in the targeting system dis-
closed in U.S. Pat. No. 5,300,780 there are seven separate
frequency bands each requiring its own filter. The corre-
sponding notation of the filter 10 follows the analysis of a
minimum-spanning gradient filter according to the invention
as discussed above. Consequently, the discussion below of
the filter 10 can be found detailed above.

Focal plane scene data from the sensor array enter the
filter 10 from the upper left as scene frames S over the
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particular frequency band 1. A first-in first-out (FIFO) buffer
memory 12 stores a number of current successive frames or
images of the scene being sensed for objects of interest at
one frame per sample time. Each frame or image is repre-
sented by a plurality of pixels, represented here as individual
squares in the memory 12. In one known targeting system
there are 256x256 pixels per frame. A FIFO buffer memory
14 provides a delay of 1 number of frames over which
successive frames can be stored for reasons that will become
apparent from the discussion below. Additionally, a FIFO
buffer memory 16 stores successive frames of the scene as
model frames of data that will be used to determine clutter
subspaces. In this example, the k oldest frames in the buffer
memory 16 form the model frames, and the n newest or
current frames in the buffer memory 12 are tested for the
presence of a target by a target detection process (not shown)
to determine whether a target is present in the model frames
that would not be clutter. In one example, there are about
fifteen frames that form the model frames in the memory 16
and five frames that are tested for the presence of a target in
the memory 12. Any applicable target detection process
known in the art can be used to determine whether a target
is present in the frames of data stored in the buffer memory
12. The target detection process would be performed after
the filter 10 removed the clutter from the frame of data in the
manner that is being discussed. The time separation of the n
detect frames stored in the buffer memory 12 that are
detected for the presence of a target and the k model frames
stored in the buffer memory 16 allow the system 10 to
determine that there are no targets in the model frames that
would show up as clutter and corrupt the clutter model with
target data.

FIG. 13 shows a series of time lines that depict how the
filter 10 represented in FIG. 12 defines a series of model
frames stored in the memory 16 and a series of detect frames
stored in the memory 12. Time is represented along the
horizontal axis of each time line and a series of hash lines on
the horizontal axis separate consecutive frames of data. As
shown by a first time line, a clutter model window is being
generated as a series of frames produced at each sample
time. A second time line shows a model window being k
frames of data that are stored in the memory 16 and
represent the model frames to be used to determine the
clutter subspace model. Subsequent frames of data will then
be stored in the memory 12 as a detection window repre-
senting the n detect frames. Once the n detect frames are
generated as a detection window, the process for determin-
ing if a target is present can be performed on these frames
of data as corrected by the filter 10.

In one example, a test for determining whether a target is
present in each pixel is referred to an m-out-of-n rule test
where a predetermined number of frames m in the n frame
detection window must show a target for that pixel in order
for the system to determine that a target exists. For example,
if there are five frames of data in the detection window, then
three coincident pixels in those frames must show the target
is present. If less than m number of frames of data show a
target, the system 10 determines that a target is not present,
and the model window and the detection window are
updated by moving the most recent frame of data into the
detection window, moving the oldest frame of data from the
detection window into the model window, and discarding the
oldest frame of data in the model window as shown in the
fourth time line.

If, however, a target is detected in the detection window,
the memory 14 is incorporated to store successive frames
from the detect window so as to keep the model window
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constant while the target is present. This is shown in the fifth
time line where one frame of data is shown as a freeze frame
as a first frame of data stored in the memory 14. If the target
detection process continues to detect a target in the updated
detection window, more freeze frames will be added to the
delay memory 14 as shown by the sixth time line. As the
freeze frames increase in number, the model window
remains constant. Each time a new frame is introduced into
the detection window, the test for a target is repeated. At
some point, a maximum number of delay freeze frames in
the memory 16 will be achieved, where a target is still
detected in the detection window, but the model must be
updated. The maximum freeze frame window is 1 frames
shown in the sixth time line. At this time, the process is
shifted one frame such that the model window is updated,
but may include a target pixel as shown in the seventh time
line.

Returning to FIG. 12, each pixel for the band i is passed
through a series of operations on a frame-by-frame basis to
generate a clutter subspace. Particularly, each pixel from the
buffer memory 16 is applied to a summation junction 18 to
add the pixel intensities in each frame of data for averaging
purposes. The summation in the summation junction 18 of
all of the pixels for each frame from the buffer memory 16
is applied to a 1/k averaging system 20 to generate the
average intensity for that set of pixels for centering purposes
as will be discussed below. Averaged pixel intensities S,
for each frame S from the averaging system 20 are then
applied to subsequent detection operations (not shown) for
target detection that will be understood to one skilled in the
art.

Each pixel of the model frames in the buffer memory 16
are also applied to a standard deviation calculation system
22. The standard deviation calculation system 22 also
receives the average pixel intensity S, ., from the averaging
system 20. A clutter sniffer 24 takes a standard deviation a
of each pixel in the model frames in the buffer memory 16
over the modeling period. The average pixel intensity S,,.,,,
and the standard deviation o of the pixels are determined
over the modeling period using conventional statistical
formulae or adaptive techniques, such as Kalman filtering,
based on a model of the scene statistics. These quantities are
also useful for threshold settings and subsequent detection
operations (not shown) as would be understood to someone
skilled in the art. If the standard deviation o of a pixel is
below a predetermined threshold o, as determined by the
clutter sniffer 24, based on expected sensor and electronic
noise, this pixel is not corrected as determined by a do not
correct pixel system 26. The clutter sniffer 24 is provided to
prevent electronic and detector noise from altering the
clutter subspace model of the LOS jitter noise.

The frames of data S are also applied to a glint threshold
detector 28. The glint detector 28 determines if the absolute
intensity of each pixel in the frames S are above some glint
threshold value v, that may undesirably alter the subspace
model. If the intensity value applied to the detector 28 is
above the glint threshold vy,, this pixel is ignored in the
process so as to avoid large leakage into adjacent pixels as
a result of subspace deletion as described above. If a pixel
intensity exceeds the threshold value y,, then that pixel is
applied to a system 30 so as to replace the pixel having an
intensity above the glint threshold value v, with an average
intensity pixel and keep that excessively intense pixel from
updating the subspace model. An output of the system 30 is
applied to the system 26 so the system 10 does not correct
a pixel above the glint threshold vy,

The frames S are applied to a summation junction 40 to
be summed with a negative of the average pixel intensity
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S,.can. from the averaging system 20 so as to center the
frames of data S. Centering the pixel intensity data concen-
trates the variation of the data into as smallest subspace as
possible. Although the step of centering is not necessary to
perform the filtering of the invention, such a centering step
has known advantages. A more detailed discussion of cen-
tering of the pixel data can be found above with respect to
FIG. 10 and the corresponding discussion. Centered frame
data S from the summation junction 40 is then applied to a
subspace projection system 42. The subspace projection
system 42 performs the subspace projection technique on the
centered frame data S as discussed above with respect to
equation (11) so as to remove the clutter subspace in the
frames and output frame data
S having substantially all of the clutter removed.

The first set of subspace basis vectors that form the clutter
subspace model that most of the L.OS jitter noise resides are
determined using a Gram-Schmidt procedure as discussed
above with reference to FIGS. 4(a)-4(c), equation (10) and
the corresponding discussion. A negative of the average
pixel intensities S,,_,,, from the averaging system 20 is
applied to a series of summation junctions 32 to be summed
with a signal from the system 26 so as to remove the pixels
that are not to be corrected as discussed above. A summation
junction 32 is provided for each k frames of data in the
memory 16. Outputs of the summation junctions 32 are
applied to a series of Gram-Schmidt systems 34 that will
perform Gram-Schmidt calculations on the pixels to be
corrected for clutter in the model frames. The Gram-Schmidt
system 34 generate a series of unit vectors that define the
clutter subspace model by equation (10). The unit vectors
are defined as C,—C,_; to include all of the model frames in
the memory 16. The outputs from the Gram-Schmidt detec-
tor system 32 are applied to the subspace projection system
42 at initial start-up.

After the initial clutter subspace model has been gener-
ated by the Gram-Schmidt calculations, a plane smoothing
operation as depicted by a plane smoothing system 44 is
used to update pixel corrections in subsequent clutter sub-
space models. Plane smoothing is discussed above with
reference to FIGS. 5-9. As discussed above, the plane
smoothing process attempts to reduce the rotation of the
clutter subspace due to random noise during the clutter
subspace updating process as new frames are added to the
memory 16 so as to maintain the clutter subspace model
substantially close to the true clutter subspace. The plane
smoothing system 44 uses a 30 approach acting as a
recursive filter. In the plane smoothing operation, the cen-
tered frame data S and the C' model fit from the subspace
projection system 42 are applied to a first delay n+l-1
system 46 and a residual corrected frame data
S is applied to a second delay n+l-1 system 48 as shown.
The delay n+l-1 systems 46 and 48 synchronize the clutter
subspace updating with an output from the part of the image
frame which fits the subspace model, i.e., lease squares or
projection fit, and a residual in the current frame.

Other operations within the plane smoothing system 44
can be found detailed above. The delayed fit from the delay
systems 46 and 48 is compared to the corresponding
uncorrected, but centered frame data (which corresponds to
the next uncentered frame to be sent to the model window
in the buffer memory 16) to determined the angle 6 between
them. A unit vector C' is computed from the fit, while a result
of two factors, a user-adjusted recursion factor § and an
amplitude factor 1-e™™ , are applied to the angle to rotate the
unit vector in the direction of the next frame. 1-e™™ is
calculated from the magnitude of the residual of the frame
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vector fit, or alternately the length of the total centered frame
vector S relative to expected noise, o, and adjusted for effect
by a user selectable gain factor r. A Gram-Schmidt (GS)
system performs a Gram-Schmidt procedure on the remain-
ing basis vectors to rotate these vectors within the previous
clutter subspace to produce new subspace vectors ¢, to C,_;.

The Gram-Schmidt start-up process can be replaced with
other techniques for basis vector formation such as eigenan-
alysis. The subspace vectors C; and C, . . . C,_; that are
output from the plane smoothing system 44 are applied to
the subspace projection system 42 to update the clutter
subspace for each new frame entering the memory 16 after
the subspace vectors from the Gram-Schmidt systems 34
generate the original set of subspace vectors at start-up. The
plane smoothing update process could also be replaced by a
Gram-Schmidt procedure, in which case the plane smooth-
ing system 44 would be removed and the start-up Gram-
Schmidt systems 34 would be repeated for all frames.
Comparison of the MSGF with Other Subspace Projection
Techniques

The pixel spanning implementation of subspace projec-
tion in the MSGF used fixed gradients to construct subspace
spanning vectors in N-pixel space as shown in equation (5).
As long as these gradients do not change significantly, the
filter can correct future cluttered images of the same pixels
in the model. Another classic projection approach follows
equations (6) by spanning the clutter plane using motion
vectors. In this technique, cluttered images from different
pixels, that are not part of the model and are from the same
focal plane, but which are sampled at the same time as the
model can be corrected. Equation (6) is used to construct a
model of the clutter plane formed by the vectors p and q.
Here the projection operator for the clutter plane CP is
formed from the first m eigenvectors of S S. One general
comparison of time/motion-spanning subspace projection
with pixel/gradient spanning subspace projection is that if
one can perform operations row-wise with time spanning,
one can perform operations column-wise with pixel span-
ning. FIG. 14 shows a comparison of the relationship
between model and correction process over the image matri-
ces S for time spanning and pixel spanning. Note that the use
of eigenanalysis on all of the data links both approaches
together through the singular values of S. With these sin-
gular values, the SVD can be used to compute either
column-space eigenvectors or row-space eigenvectors, as
was pointed out above. In principle it should be possible to
switch back and forth in a sort of hybrid approach. This is
not true of the MSGF, as singular values are not available.

The foregoing discussion discloses and describes merely
exemplary embodiments of the present invention. One
skilled in the art will readily recognize from such discussion,
and from the accompanying drawings and claims, that
various changes, modifications and variations can be made
therein without departing from the spirit and scope of the
invention as defined in the following claims.

What is claimed is:

1. A clutter suppression system for suppressing clutter in
an object detection system, said object detection system
sensing a scene to determine if an object of interest is
present, said clutter suppression system comprising:

frame generation means for generating a series of frames

of data where the frames of data represent images of the
scene in which clutter is to be suppressed;

model storage means for storing model frames of the

scene based on the series of frames of data, wherein the
model frames of the scene are constructed when the
object of interest does not exist in the scene;
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clutter subspace means for generating a clutter subspace
of the scene at a predetermined time from the model
frames that defines substantially all of the clutter in the
scene; and

subspace projection means for generating frames of data

of the scene in which substantially all of the clutter has
been removed, said subspace projection means being
responsive to the series of frames of data and the clutter
subspace from the clutter subspace means, said sub-
space projection means measuring the clutter subspace
and removing the clutter from the frames of data to
generate substantially clutter free frames of data to be
detected for the presence of the object, said subspace
projection means being capable of removing clutter
from the frames of data both prior to and later than the
predetermined time the clutter subspace is generated by
the clutter subspace means.

2. The clutter suppression system according to claim 1
further comprising centering means for centering the model
frames of data, said centering means including pixel inten-
sity averaging means for averaging the intensities of the
pixels in the frames of data, said subspace projection means
being responsive to centered pixel intensities of the model
frames of data.

3. The clutter suppression system according to claim 1
wherein the clutter subspace means includes a Gram-
Schmidt processing system that determines a set of clutter
subspace unit vectors by a Gram-Schmidt procedure,
wherein the unit vectors define the clutter subspace in the
model frames.

4. The clutter suppression system according to claim 3
wherein the Gram-Schmidt processing system is responsive
to centered pixel intensities from a centering means for
centering pixel intensities of pixels in the model frames of
data.

5. The clutter suppression system according to claim 3
wherein the Gram-Schmidt processing system determines
the clutter subspace unit vectors by the relationship:

— il -
5 Si _j§1 & (&)

Ci=— ,Ci= 1
IS (SRR @]

J=1

where,
S, is a centered scene vector for time i in the model
frames;

C is a unit vector for the clutter subspace;

iis an index corresponding to a time sample;

j is a summation index; and

T is a transpose operation.

6. The clutter suppression system according to claim 1
wherein the clutter subspace means includes a plane smooth-
ing system that determines a set of clutter subspace unit
vectors, said plane smoothing being responsive to the frames
of data from the subspace projection means and the frames
of data from the frame generation means so as to generate
updated clutter subspace unit vectors in order to update the
clutter subspace.

7. The clutter suppression system according to claim 6
wherein the plane smoothing system smoothes the rotation
of the clutter subspace relative to an original clutter sub-
space as frames of data are added to the model frames by
using a recursive filter approach.

8. The clutter suppression system according to claim 1
further comprising clutter sniffer means for determining the
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standard deviation of pixels in the model frames of data, said
clutter sniffer means being responsive to pixel intensities in
the model frames so as to generate the standard deviation of
the model frames, wherein the standard deviation of each
pixel is applied to a pixel threshold so that if the standard
deviation of the pixel is below the pixel threshold the pixel
is removed from the clutter subspace.

9. The clutter suppression system according to claim 1
further comprising glint threshold means for determining if
pixels in the frames of data have an absolute intensity above
a predetermined glint threshold, wherein if the pixel inten-
sity is above the glint threshold the pixel is removed from
the clutter subspace.

10. The clutter suppression system according to claim 1
further comprising object detection storage means and delay
storage means, said object detection storage means storing
current frames of data to be tested for the present of an
object, said delay storage means storing past frames of data
that include a detected object of interest, wherein the model
storage means stores model frames of data that do not
include the object.

11. The clutter suppression system according to claim 1
wherein the subspace projection means generates frames of
data substantially free of clutter by the relationship:

Skeet = Skat — .21 Ci(CiT Skat)
=

where,

S is a centered scene vector in the model frames;

C is unit vector for the clutter subspace;

k is a time sample;

i is an index corresponding to a time sample; and

T is a transpose operation.

12. A clutter suppression system for suppressing clutter in
an object detection system, said object detection system
sensing a scene to determine if an object of interest is
present, said clutter suppression system comprising:

a model storage device that stores model frames of the
scene, wherein the model frames of the scene are
constructed when the object of interest does not exist in
the scene;

a Gram-Schmidt processing system being responsive to
the model frames of the scene, said Gram-Schmidt
processing system generating a set of clutter subspace
unit vectors directly from the model frames that define
a clutter subspace in the model frames where substan-
tially all of the clutter in the model frames resides; and

a subspace projection system that is responsive to frames
of data of the scene and the clutter subspace unit
vectors from the Gram-Schmidt processing system,
said subspace projection system measuring the clutter
subspace and then removing the clutter subspace from
the frames of data to remove the clutter in the current
frames of data.

13. The clutter suppression system according to claim 12

wherein the Gram-Schmidt processing system determines
the clutter subspace unit vectors by the relationship:

— -1 —

Si— X CACIS)

C1= ,Ci= i—11=1

l|s: - .21 cretsll
j=

where,



5,805,742

S, is a centered scene vector for time i in the model
frames;

C is a unit vector for the clutter subspace;
iis an index corresponding to a time sample;
J is a summation index; and

T is a transpose operation.

14. A clutter suppression system for suppressing clutter in
an object detection system, said clutter detection system
sensing a scene to determine if an object of interest is
present, said clutter suppression system comprising:

a model storage device that stores model frames of data of
the scene, wherein the model frames of the scene are
constructed when the object of interest does not exist in
the scene;

a plane smoothing system responsive to the model frames
of data from the model storage device, said plane
smoothing system determining a set of clutter subspace
unit vectors that define a clutter subspace in the model
frames, said plane smoothing system updating the
clutter subspace by rotating the clutter subspace in a
direction of a new model frame, said plane smoothing
system controlling the amount of rotation of the clutter
subspace to reduce the effects of random noise; and

a subspace projection system responsive to the model
frames of data and the clutter subspace unit vectors,
said subspace projection system measuring the clutter
subspace and then removing the clutter subspace from
the frames of data to remove the clutter in the current
frames of data.

15. The clutter suppression system according to claim 14
further comprising a Gram-Schmidt processing system that
determines an original set of clutter subspace unit vectors by
a Gram-Schmidt procedure.

16. The clutter suppression system according to claim 14
wherein the plane smoothing system controls the amount of
rotation of the clutter subspace by allowing the rotation to be
in proportion to the amplitude of the difference between the
new model frame and its projection onto the clutter sub-
space.

17. The clutter suppression system according to claim 14
wherein the plane smoothing system controls the amount of
rotation of the clutter subspace by allowing the rotation to be
a fraction of an angle between the new model frame and the
clutter subspace.

18. A method of suppressing clutter in an object detection
system, said object detection system sensing a scene to
determine if an object of interest is present, said method
comprising the steps of:

providing a series of frames of data representing images
of the scene in which clutter is to be suppressed;

using the frames of data to generate a series of model
frames of the scene, wherein the model frames of the
scene are constructed when the object of interest does
not exist in the scene;

using the model frames of the scene to generate a clutter
subspace at a predetermined time that defines substan-
tially all of the clutter in the scene; and

measuring the clutter subspace and removing the clutter
subspace from the frames of data so as to remove
substantially all of the clutter in the frames of data, said
step of removing the clutter subspace including the
capability of removing clutter from the frames of data
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both prior to and later than the predetermined time the
clutter subspace is generated.

19. The method according to claim 18 further comprising
the step of centering the model frames of data so as to
provide centered pixel intensities of the model frames of
data to be used by the subspace projection technique.

20. The method according to claim 18 wherein the step of
generating a clutter subspace includes using a Gram-
Schmidt process to determine a set of clutter subspace unit
vectors that define the clutter subspace.

21. The method according to claim 18 wherein the step of
generating a clutter subspace includes using a plane smooth-
ing technique that determines a set of clutter subspace unit
vectors that define the clutter subspace, said step of using a
plane smoothing technique including smoothing the rotation
of the clutter subspace as new frames are added to the model
frames of data.

22. The method according to claim 18 further comprising
the step of determining the standard deviation of the pixels
in the model frames of data and applying the standard
deviation to a clutter threshold to determine if the standard
deviation of the pixels is below the clutter threshold,
wherein if the standard deviation is below the clutter thresh-
old the pixel is removed from the clutter subspace.

23. The method according to claim 18 further comprising
the steps of determining if the pixels in the frames of data
have an absolute intensity above a predetermined glint
threshold, wherein if the pixel intensity is above the glint
threshold the pixel is removed from the clutter subspace.

24. The method according to claim 18 further comprising
the steps of testing current frames of data for a target and
delaying the frames of data that are to be added to the model
frames if a target is detected in the current frames of data.

25. A clutter suppression system for suppressing clutter in
an object detection system, said object detection system
sensing a scene to determine if an object of interest is
present, said clutter suppression system comprising:

a system that generates a series of frames of data that
represent images of the scene in which clutter is to be
suppressed, each frame of data including a fixed num-
ber of pixels that define the image;

a storage device that stores model frames of the scene
based on the series of frames of data where the model
frames of the scene are constructed when the object of
interest does not exist in the scene;

a system that generates a clutter subspace of the scene
from the model frames of the scene where the clutter
subspace defines substantially all of the clutter in the
scene; and

a subspace projection system that generates frames of data
of the scene in which substantially all of the clutter has
been removed, the subspace projection system being
responsive to the series of frames of data and the clutter
subspace from the clutter subspace system, said sub-
space projection system modelling the clutter subspace
and removing the clutter from the frames of data to
generate substantially clutter free frames of data to be
detected for the presence of the object, wherein the
clutter subspace is modelled as a set of gradient vectors
for each pixel, said gradient vectors being relatively
constant over a sequence of frames of data used to
generate the model frames.



