OO

US005331328A

United States Patent ps) [1] Patent Number: 5,331,328
Pender [45) Date of Patent: Jul. 19, 1994
[54] METHOD OF PHASED MAGNITUDE 4,584,579 4/1986 Frost et al.ceccvernicernnenns 342/189
CORRELATION USING BINARY 4,698,827 10/1987 Kretschmer 3427201 X
CES 4,833,479 5/1989 Carlson ...cocnininnnnninans 342/194
SEQUEN 5,070,337 12/1991 Chen et al. ...covisiiiiicannne. 342/201
[75] Inventor: Michael Pender, Lancaster, Calif. 5,189,428 2/1993 Bouvet et al. ..ciricannenne 342/132
[73] Assignee: The United States of America as Primary Examiner—John B. Sotomayor
represented by the Secretary of the Artorney, Agent, or Firm—David S. Kalmbaugh; Melvin
Navy, Washington, D.C. J. Sliwka; John L. Forrest, Jr.
[21] Appl No.: 153,864 [57] ABSTRACT _
[22] Filed: Nov. 15, 1993 A method for allowing a correlation function to be
applied to binary codes of length 3 to length 128. A user
Related U.S. Application Data may specify the desired length of the binary codes for
o : correlation processing; whether the binary code is to
[63] Continuation-in-part of Ser. No. 23,440, Feb. 26, 1993, use a phase sidelobe level as the threshold or a sidelobe
Pat. No. 5,283,586. amplitude as the threshold. The user will also be asked
[51] IRt CLS oo GO1S 7/292 tospecify the threshold as well as an in phase coefficient
[52] US.CL oo 342/189; 342/378; referred to as alpha and an out of phase coefficient
342/379; 342/145 referred to as a beta. The user may also specify that the
[58] Field of Search 342/189, 132, 134, 135, codes be expanded which results in correlated com-
342/145, 202, 203, 378, 379 pounds having a length twice that of the specified
length being displayed to the user. When the user has
[56] References Cited

U.S. PATENT DOCUMENTS

H484 6/1988
4,259,650 3/1981
4,353,067 10/1982
4,513,288 4/1985
4,566,010 1/1986
4,580,139 4/1986

Holliday
Donahue ...

.. 342/189 X

specified the parameters for correlation processing of
the binary code length selected by the user, the program
of the present invention will process the binary codes
eliminating allomorphic and symmetrical forms of the
codes from correlation and then display the results to
the user.

9 Claims, 8 Drawing Sheets

121

PEAK LODE"
SIDELOBE

YES (113
Jd

107

ADD BETA TO
SIDELOBE

129;

PEAK ENERGY
* $IDELOBE
MASNITUDE

| D

131

137

RETURN PEAK ENERGY

139

U.S. Patent July 19, 1994 Sheet 1 of 8 5,331,328

t:} IO R BT /\v/\v/\w/\vmvvflme/
AN

Fig. |

i (EVALUATE COMPOUND i71

t =1 *

_ mcnemsc%L :gupouuo | 227
I o 1
il o . ' 23|
°Fig.2a.
b -b =2 COMPOUND
CORRELATES

ACCEPT COUNT
/ !

PRINT CODE

I o i
I o 1 | INCREMENT COMPOUND |— 233
oo

| 235

231

EXPAND
CODES

| 239

) \iME—Y SHOW SIDELOBES
Fig. 2b @

Fig 3h.

U.S. Patent July 19, 1994 Sheet 2 of 8 5,331,328

INITIALIZE COUNTERs | —I°

1

GET VALUE OF ALPHA 15
FROM USER ol

1

GET VALUE OF BETA 1?7
FROM USER L~

1

GET LENGTH OF ELEMENT 19
FROM USER _~

Y

ASK USER WHETHER TO _f_(-al
USE PHASE THRESHOLDS

Y

ASK USER WHETHER TO
USE AMPLITUDE LEVEL |—— 2°

Y

ASK USER WHETHERTO | —25
‘SHOW ALL CODES EVALUATED

27 Jf 29

ASK USER WHETHER TO
SHOW USABLE CODES

SHOW ALL
EVALUATED
COEES

/33

ASK USER WHETHER TO
EXPAND CODES

-~ 35
INITIALIZE THE CODE

Fig. 3a.

TO FIG. 3b.

U.S. Patent July 19, 1994

FROM FIG. 3a.

i

IS
ELEMENT
LENGTH 00D
?

IS THE
ELEMENT A
MIXED OR EVEN

DOVBLET

Sheet 3 of 8

5,331,328

EVALUATE THE ELEMENT |—f 37

41

IS THE
ELEMENTA
PALIN.?ROME

j43

SET THE MIDDLE
BIT

INVERT THE LOW ORDER BITS

1

EVALUATE THE ELEMENT

1

INCREMENT THE ELEMENT VALUE

ot

HAS
A CARRY
OCCU;"‘RED

NO

SHOW THE CODE COUNTERS

Y

REPORT SUMMARY OF
ACCEPTABLE ELEMENTS

Y

CREATE COMPOUNDS

Y

REPORT SUMMARY OF
ACCEPTABLE COMPOUNDS

1
_ G:xn TO oos)’” 63

-6l

Fig. 3b.

U.S. Patent

EVALUATE
ELEMENT SuB

July 19, 1994 Sheet 4 of 8 5,331,328
R CORRELATE
N Elements restes - [Cevement

k37

EXPAND EXPAND SHOW THE SHOW
ELEMENT ELEMENTS CURRENT ELEMENT) ALL gooss
L5 73 N7

Ses

/89

SIDELOBE
EXCEEDS
THREgHOLD

PHASED
SIDELOBE LEVEL
THREgHOLD

SIDELOBE
EXCEEDS
THRESHOLD

USE
AMPLITUDE
THREgHOLD

USE
AMPLITUDE
THRESHOLD

IS
SHOW THE ELEMENT
CURRENT ELEMENT SHOWN
/Ql
PLACE ELEMENT
ON STACK
95
"~ INCREMENT SIDELOBE
: COUNT INDEXED BY
AMPLITUDE
o7
s INCREMENT SIDELOBE
t— COUNT INDEXED BY
99 PHASED SIDELOBE
v/

INCREMENT COUNT OF |
ACCEPTABLE ELEMENTS

8l

Fig. 3c.

US Patent

July 19, 1994

CORRELATE 67
ELEMENT SuB

\

PEAK ENERGY=0 _~101
pEAK LoBE=0 |03
i= _,.IOS
=

4
SIDELOBE=0 |_~107

\
i=0 | _~109

DO
ELEMENT
SUBPULSES
MATCH

?

YES
/

113

{IIS

ADD BETA TO
SIDELOBE

ADD ALPHATO
SIDELOBE

y

INCREMENT j

AT

NO

e

Sheet 5 of 8

5,331,328

IZI'\

Lose [i} =sioeLoBE

SIDELOBE >
PEAK?LOBE

IZ.'?

PEAK LOBE*=
SIDELOBE

127

SIDELOBE
MAGNITUDE >
PEAK ENERGY

YES

IZ?

PEAK ENERGY
= SIDELOBE
MAGNITUDE
incrementi 2!
135
NO
YES

/)—137

RETURN PEAK ENERGY

I
EXIT

Fig. 3d.

U.S. Patent July 19, 1994 Sheet 6 of 8 5,331,328

CREATE 61
COMPOUNDS SUB

143
PNTR I->FIRST

ELEMENTS ON
ST%CK

YES

' 149
LENGTH=PNTR | ->LENGTHI

1

151
LEN=2* LENGTH |

153 | /I55 147

COMPOUND

LENGTH MAX

LENGTH
4

REPORT COMPOUND
IS TOO LARGE

ANY
ELEMENTS
ON S.;TACK

YES /'59

COMPOUND PREFIX=PNTR 1 ->CODE

IS
ELEMENT A
PALINDROME

/IGS

SHORTCUT = YES

l

FROM FIG. 3f. TO FIG. 3f. F I'g. 36

IS
ELEMENT A
LEAP CODE

U.S. Patent

TO FI16. 3¢

July 19, 1994

FROM FIG. 3e.
/169

COMPOUND SUFFIX=

PNTR 1->CODE

1 /ITI

EVALUATE COMPOUND

Y o173

COMPOUND SUFEIX=
COMPLEMENT (PNTR 1~>CODE)

-~ COMPOUND SUFFIX=INVERSE (PNTR 1~>CODE)

Y 17

EVALUATE COMPOUND

175

NO

YES
/IB?

PNTR2=PNTRI->NEXT
ELEMENT

Lo

{ /|89

COMPOUND SUFFIX =

PNTR2->CODE

! /191’

COMPOUND SUFFIX=
PNTR1->CODE

/l?l

EVALUATE COMPOUND

‘ 193

5,331,328

Sheet 7 of 8

[
COMPOUND

EVALUATE

I797\ \

COMPOUND SUFFIX=
INVERSE COMPLEMENT (PNTR 1->CODE)

171
EVALUATE COMPOUND

IBI\ ”

COMPOUND PREFIX=INVERSE (PNTR1->CODE)

|83'\ Y
COMPOUND SUFFIX=PNTR 1->CODE

7
\ EVALUATE

IBS-S \

COMPQUND SUFFIX =
COMPLEMENT (PNTR 1->CODE)

4

COMPOUND

!
EVALUATE COMPOUND

—>= COMPOUND PREFIX=INVERSE(PNTR1~>CODE

COMPOUND PREFIX~

COMPLEMENT (PNTR !->CODE)|

1 /'ITI

EVALUATE COMPOUND

FROM F1G. 3g.

195
NO

IST\

Y

EVALUATE

171 ~_|

ISS-H

COMPOUND PREFIX=INVERSE
COMPLEMENT (PNTR 1~>CODE)

Fig.3f
iy g

COMPOUND

YES
TO FIG. 3g.

EVALUATE COMPOUND

U.S. Patent July 19, 1994
TO F1G. 3¢. FROM FiG. 3¢.
P

tH

Sheet 8 of 8 5,331,328

203
A

COMPOUND SUFFIX*INVERSE (PNTR2->CODE)

205'\.\

1

PNTRIsPNTRI=>NEXT

1 /22[

FREE ELEMENT MEMORY

223

ANY MORE
ELEMENTS FOR
PNTR1

225

COMPOUND PREF IX=PNTR1->CODE

71~
207~ {

A
EVALUATE COMPOUND

COMPOUND PREFIX=
COMPLEMENT (PNTR1->CODE)

ITI-\._

Y
EVALUATE COMPOUND

209
YES

2II\

] HOB}TCUT

COMPOUND PREFIXsINVERSE (PNTR 1->CODE)

|7|-H~
23 Y

A
EVALUATE COMPOUND

COMPOUND PREFIX = INVERSE
COMPLEMENT (PNTR 1->CODE)

Y { P

‘ Y
EVALUATE COMPOUND

Fig. 3g.

5,331,328

1

METHOD OF PHASED MAGNITUDE
CORRELATION USING BINARY SEQUENCES

This application is a continuation-in-part of U.S. pa-
tent application Ser. No. 08/023,440, filed Feb. 26, 1993
now U.S. Pat. No. 5,283,586.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to pulse com-
pression methods and, in particular, to a method which
utilizes binary sequences for maximum sidelobe sup-
pression in a pulse compression radar system or the like.

2. Description of the Prior Art

Pulse compression involves the transmission of a long
coded pulse and the processing of the received echo to
obtain a relatively narrow pulse. The increased detec-
tion capability of a long pulse radar system is achieved
while retaining the range resolution capability of a nar-
row pulse system. .

Several distinct advantages are obtained utilizing
pulse compression radar systems. For example, trans-
mission of long pulses permits a more efficient use of the
average power capability of the radar system. The aver-
age power of the radar system may be increased with-
out increasing the pulse repetition frequency and,
hence, decreasing the radar system’s unambiguous
range. Further, pulse compression radar systems are less
vulnerable to interfering signals that differ from the
coded transmitted signal. The use of long pulses also
provides an increased system resolving capability.

A problem that has limited the utility of pulse com-
pression and correlation receivers in radar systems has
been the existence of temporal/range sidelobes in the
correlation function of the radar waveform. These side-
lobes allow out-of range gate returns, such as clutter, to
compete with a target in a particular range gate.

A number of research efforts have addressed this
probiem in the past and several waveform designs have
resulted in the potential reduction or elimination of the
range sidelobe problem.

For example, in pulse compression radar systems, the
Barker code (also known as perfect binary words) is one
of the most commonly used Binary phase coded wave-
forms, because it has a relatively high ratio between its
mainlobe and sidelobes. However, the length of the
Barker code is relatively short with the maximum
length of the Barker code being thirteen binary bits for
a minimum sidelobe peak of one.

Several properties of binary coded waveforms are
desirable if they are to be used in implementing pulse
compression in pulse compression radar and tracking
systems such as the target sensor component of a missile
or a fire control system. These properties include very
low or zero temporal sidelobes in the correlation func-
tion and very low or zero cross-correlation with other
binary codes that may be implemented in sensors de-
ployed nearby. These properties would ensure that
there would be little or no degradation in sensor system
performance due to out of range gate clutter returns,
multiple target sidelobes or from mutual interference
between deployed sensors using different codes.

SUMMARY OF THE INVENTION

Accordingly it is a principal object of the present
invention to provide a new method for using correla-
tion techniques to substantially reduce or eliminate

5

10

15

20

25

30

35

40

45

50

55

65

2
temporal/range sidelobes in the correlation function of
a radar waveform.

It is another object of the present invention to pro-
vide an improved pulse compression technique wherein
range sidelobe control is provided with no loss in reso-
lution in the mainiocbe.

It is yet another object of the present invention to
provide a method whereby long binary codes of length
up to 128 bits may be utilized in the correlation function
to insure a relatively high ratio between the mainlobe
and sidelobes of binary phase coded waveforms.

It is yet a further object of the present invention to
provide a method whereby the optimum number of
binary codes of length up to 128 bits may be selected for
correlation in a relatively short time period.

In order to achieve the above mentioned and other
objects of the present invention a method is imple-
mented using a computer program which allows a cor-
relation function to be applied to binary codes of length
3 to length 128. A user may specify the desired length of
the binary codes for correlation processing; whether the
binary code is to use a phase sidelobe level as the thresh-
old or a sidelobe amplitude as the threshold. The user
will also be asked to specify the threshold as well as an
in phase coefficient referred to as alpha and an out of
phase coefficient referred to as a beta. The user may
also specify that the codes be expanded which results in
correlated compounds having a length twice that of the
specified length being displayed to the user. When the
user has specified the parameters for correlation pro-
cessing of the binary code length selected by the user,
the program of the present invention will process the
binary codes eliminating allomorphic and symmetrical
forms of the codes from the correlation process and
then display the results to the user.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1illustrates a binary phase coded signal utilizing
plus ones and minus ones as the phase code;

FIGS. 2a and 2b is an example illustrating the correla-
tion function for a received binary phase-coded wave-
form of length three utilizing the method of the present
invention wherein the sign is retained during correla-
tion of the waveform; and

FIGS. 3q, 3b, 3¢, 3d, 3¢, 37 3g and 3k illustrate a flow
chart for the computer software program of Appendix
A which constitutes the preferred embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Phase-coded waveforms divide the pulse/carrier sig-
nal to be transmitted into a number of subpulses of equal
duration with each subpulse having a particular phase.
The phase of each subpulse is selected in accordance
with a given code sequence. The most widely used
phase-coded waveform employs two phases and is re-
ferred to as binary coding or biphase coding. Typically,
the binary code consist of a sequence of either zeros and
ones or plus ones and minus ones. The phase of the
transmitted signal alternates between 0° and 180° in
accordance with the sequence of elements, either zeros
and ones, or plus ones and minus ones in the phase code
as shown in FIG. 1. As is best illustrated by FIG. 1 the
coded signal is generally discontinuous at the phase
reversal points (transition from +1to —lor —1to +1)
since the transmitted frequency is not usually a multiple
of the reciprocal of the subpulise width. Upon receiving

5,331,328

3
the echo or return signal of the binary phase coded
signal from a target, the compressed pulse may be ob-
tained by well known techniques such as filtering or
correlation processing.

Binary codes whose autocorrelation function or zero
doppler response exhibit the minimum possible side-
lobes for a given code length of N are very desirable for
binary sequences. FIGS. 2a and 25 illustrate a correla-

5

tion function for a code length of 3 and a binary bit -

pattern of 1,0,1 which utilizes the following lookup
table where in phase pairs are represented by weighting
coefficient of one and out-of-phase pairs are represented
by a weighting coefficient of minus one:

TABLE 1
Binary code length = N
0X0=1 IXx1=1 O0xX1=-—1 1 X0=—1

In the correlation process illustrated in FIGS. 2(a)
and 2(b) the computer software program set forth in.
Appendix A allows negative numbers to be considered
when using the correlation method of the present inven-
tion to obtain the mainfobe and sidelobes of the received
signal. For the three bit received signal of FIGS. 2(a)
and 2(b), the first correlation with the transmitted signal
will result in one; the second correlation will result in
minus two and the third correlation will result in plus
three. FIG. 2(4) shows the received signal wherein the
sign of each correlation of the subpulses is retained in
order to provide a significant gain in mainlobe to side-
lobe ratio that leads to better discrimination of the tar-
get in pulse compression radar systems. The correlation
technique illustrated by FIGS. 2z and 2b is in contrast
to prior art correlation techniques wherein a target
becomes indistinguishable from sidelobes for some bi-
nary sequences whenever the absolute value of the
correlation function is used during processing of the
received signal.

In binary phase-coded waveforms, it is desired to use
the *“optimal binary sequence” as the long coded pulse
in a pulse compression radar system because of the ease
with such codes may be generated and the desirability
of the corresponding correlation functions of echo or
received. Such long coded pulses are useful in provid-
ing reduced range sidelobes in the echo or received
signal as well as achieving range sidelobe control with
little or no loss in resolution in the mainlobe.

While Barker codes are limited to a maximum code
length of thirteen for a minimum peak sidelobe magni-
tude of one, the method of the present invention may be
used to obtain code lengths greater than thirteen having
a sidelobe whose magnitude is either zero (the desired
“perfect range correlation property) or one which is
well within acceptable limits for sidelobes wherein the
code length is greater than thirteen.

A binary code may be represented in any one of four
allomorphic forms with all four codes having the same
correlation characteristics. These codes are the code
itself, the inverted code (the coded written in reverse
order), the complement of the code (ones are changed
to zeros and zeros are changed to ones) and the inverted
complemented code. For example, for the 7 bit Barker
code 1110010; the inverted code is 0100111; the comple-
ment of the code is 0001101 and the inverted comple-
mented code is 1011000. The software program of Ap-
pendix A utilizes these properties of binary coded
waveforms when correlating binary sequences for a
given code length N, eliminating codes from the corre-

10

15

25

30

35

45

55

65

4
lation process which are “allomorphic forms” of an-
other code within the binary sequence for the given
code length N.
Binary codes of code length four, which is an even
code length, are set forth in the folowing Table:

TABLE Il
Bi code len, =4
0000 0100 1000 1100
0001 0101 1001 1101
0010 0110 1010 1110
0011 o111 1011 1111

The binary code 1111 has only one allomorphic form
0000 which is its complement. Binary code 1000 has
three allomorphic forms, its inverted form 0001, its
complement 0111 and its inverted complemented form
1110.

After the most significant bit of each four bit code is
set to a logic one, the program of Appendix A examines
the codes in numerical order beginning with 1000 to
1111 and eliminates identical codes (0000 through
0111), that is the program of Appendix A eliminates the
inverted form of any binary code.

For even length codes the program of Appendix A
next looks for even length doublets and mixed doublets.
For an even length code sequence the program of Ap-
pendix A compares the bits on the left side of the code
sequence with the bits on the right side of the code
sequence. Whenever the bits on the left side are identi-
cal to the bits on the right side of the code sequence
(1010, 1111) or whenever the compliment of the bits on
the right side is identical to the bits on the left side of the
code sequence (1001, 1100) the program of Appendix A
looks for the next sequential even length doublet or
mixed doublet, skipping the correlation process for all
codes between a sequential doublet/mixed doublet. For
the binary sequence of Table II, the program of Appen-
dix A skips the correlation process for codes between
1100 and 1111 since 1100 is a mixed doublet and 1111 is
a doublet. The program of Appendix A correlates only

.the codes 1000, 1001, 1010, 1011, 1100 and 1111 having

eliminating the allomorphic forms of these codes. For
example, for the binary code 1000, the program of Ap-
pendix A eliminates the code written in reverse order
0001, its compliment code 0111 and its inverted comple-
mented code 1110. It should be noted that the code 1101
is the complement of the code 0010, while the code 1110
is the complement of the code 0001.

Binary codes of code length five, which is an even
code length, are set forth in the following Table:

TABLE III
Binary code length = §
00000 01000 10000 11000
00001 01001 10001 11001
00010 01010 10010 11010
00011 01011 10011 11011
00100 01100 10100 11100
00101 01101 10101 11101
00110 01110 10110 11110
00111 01111 10111 11111

After the most significant bit of each five bit code is
set to a logic one, the program of Appendix A examines
the codes in numerical order beginning with 10000 to
11111 and eliminates identical codes (00000 through
01111), that is the program of Appendix A eliminates
the inverted form of any binary code.

5,331,328

5

For odd length codes the program of Appendix A
next looks for odd length palindromes, that is the pro-
gram upon finding a code such as 10001 sets the middle
bit to a logic one and then skips to 10101 eliminating the
codes 10010, 10011 and 10100 from correlation process-
ing. The program of Appendix A then proceeds to the
next sequential palindrome 11011, sets the middle bit to
one and eliminates codes 11100, 11101 and 11110 from
correlation processing.

The program of Appendix A correlates only the
codes 10000, 10001, 10101, 10110, 10111, 11000, 11001,
11010, 11011 and 11111 having eliminated the allomor-
phic forms of these codes. For example, for the binary
code 10000, the program of Appendix A eliminates the
code written in reverse order 00001, its compiement
code 01111 and its inverted complemented code 11110,
To illustrate a second example from Table II, for the
binary code 10110, the program of Appendix A elimi-
nates the code written in reverse order 01101, its com-
plement code 01001 and its inverted complemented
code 10010.

For odd length binary codes a binary sequence A, of
length N is a palindrome if for n=0 to N—1)/2, A,
=ApnN-n—1. For even length binary codes a binary se-
quence A, of length N is a doublet if for n=0 to
(N/2)—1, Ap=An4Ny2. Similarly, for even length bi-
nary codes a binary sequence A, of length N is a mixed
doublet if for n==0 to (N/2)—1, Ap=~A, 1 N/2.

The method of the present invention, that is the com-
puter software of Appendix A also makes use of the
following Tables and their correlation processing rules
(indicated in parenthesis) to further reduce the number
of binary codes of a given length N which will be corre-
lation processed.

TABLE IV
Binary code length = N
AA ArA(l) A A AlCcA
A AKD ATA] AcAy AICAf
AAc ArAdD AcAc ArcAc
A A1) ArAic AcAjc AIcArC

The program of Appendix A does not evaluate, that
is the program of Appendix A does not correlate, the
following compounds of Table IV: AcA; AjcA; AJAf,
AcAr AicAr, AcAg AicAc ArAic AcArcand
AjcArcwhere Ayis the inverse of the code A, Acis the
complement of the code A and Ajcis the inverse com-
plement of the code A.

TABLE V
Binary code iength = N
AB ArB(l) AcB ArcB(I)
A B ArBA3) AcBy2) AcBK3)
A Bc ArBc AcBc ArcBe
A B/ ArBrc AcBic AjcBjc

The program of Appendix A does not evaluate, that
is the program of Appendix A does not correlate, the
following compounds of Table V: A B¢, A;Bg ACBG
A;cBc A Bic; ArBrc; AcBicand AjcBjic where Ajis
the inverse of the code A, Acis the complement of the
code A, Ajcis the inverse complement of the code A,
Bris the inverse of the code B, B¢ is the complement of
the code B, and Bjc is the inverse complement of the
code B.

The following rules apply (shown in parenthesis)
when the program of Appendix A evaluates the com-
pounds of TABLE IV and TABLE V for correlation:

10

15

20

25

30

35

45

55

65

6

(1) If A is a palindrome, doublet, or mixed doublet the
compound (binary code) is not evaluated, that is the
compound is not correlated.

(2) If B is symmetric, the compound (binary code) is
not evaluated, that is the compound is not correlated.

(3) If A is a palindrome, doublet, or mixed doublet, or
if B is symmetric, the compound is not evaluated, that is
the compound is not correlated.

With respect to Rule (2), symmetry for an even
length bit pattern of length 2A may be defined as A and
its inverse Ay, while an odd length bit pattern is sym-
metrical about its center bit. For example, the bit pat-
tern 101 is symmetrical about zero, while the bit pattern
1001 is symmetrical since A which is 10 is equivalent to
Arwhich is 01. :

The following example illustrates the operation of the
program of Appendix A with respect to the evaluation
of compounds of length N=6 for correlation in accor-
dance the procedures set forth in TABLE IV and
TABLE V.

After the allomorphic forms of the codes of length
three are eliminated by the program of Appendix A, the
following codes of length are processed by the program
of appendix A according to the rules of TABLES IV

and V: 111, 101, 100. The program of Appendix A will
first evaluate A A (111111) using TABLE IV; next
evaluate A B (111101) using TABLE V; then evaluate
A B (111100) using TABLE V; evaluate A A (101101)
using TABLE IV; evaluate A B (101100) using TABLE
V and lastly evaluate A A (100100) using TABLE IV.

A which is the prefix and suffix of the compound is
first set to 111 and then evaluated in the following man-
ner.

Prefix Suffix

A=11
AA 11 111
AAy)33} 111 Not evaluated rule 1
AAc 111 000
A Ajc 111 000 Not evaluated rule 1
ArA 11 111 Not evaluated rule 1
AjAc 111 000 Not evaluated rute 1
A=111B =101
AB 111 101
A Bj 111 101 Not evaluated rule 2
ArB 111 101 Not evaluated rule 1
ArB; m 101 Not evaluated rule 3
AcB 000 101
AcBy 000 101 Not evaluated rule 2
ArcB 000 101 Not evaluated rule 1
ArcBr 000 101 Not evaluated rule 3
A=1LB=100
AB 111 100
A By m 001
ArB 111 100 Not evaluated rule 1
ArB; m 001 Not evaluated rule 3
AcB 000 100
AcB; 000 001
ArcB 000 100 Not evaluated rule 1
ArcBy 000 001 Not evaluated rule 3
A =101
AA 101 101
AAr 101 101 Not evaluated rule 1
AAc 101 010
A Ac 101 010 Not evaluated rule 1
ArA 101 101 Not evaluated rule 1
ArAc 101 010 Not evaluated rule 1
A =10, B = 100
AB 101 100
A By 101 001
ArB 101 100 Not evaluated rule 1
ArB; 101 001 Not evaluated rule 3
AcB 010 100

5,331,328

7 8
-continued -continued
Prefix Suffix 101 1 =2 3 [2]
i1 1 2 3 [2) [2]
AcBy 010 001
AICB 010 100 Not evaluated rule 1 5 0-->1 t=-> 2-->1
AjcB; 010 001 Not evaluated rule 3
A =100 :
2: ;g ég? 3 candidates for length 3. 3 judged acceptable.
! :
A Ac 100 110 Creating compounds . . .
AAic 100 011 10
ArA 00t 100
111101 1 0o 1 2 1 6 [@
ALhc L 000101 -1 0 -1 2 -1 62 [
000100 1 2 1 0 1 6 {2} [2]
Referring now to FIGS. 34-34, there is shown a flow 111001 : g -i —g { g m [
chart for the computer software program of Appendix 15 é?é:% 1 0 -1 T2 3 ¢ {g ' g}
A which constitutes the preferred embodiment of the 101001 1 -3 1 0 -3 6 M B
present invention. Program step 13 initializes counters, 010001 -1 2 -1 0 -1 6 RE 2
while program steps 15 and 17 respectively require the 100011 1 6 -3 -2 1 6 [_
: 100001 1 -2 -1 0 1 6 (1] [2)
user of the computer software program of Appendix A 00110 -1 2 1 -4 -1 6@ 4
to provide the out of phase and in phase modifiers, that 20 go1100 1 2 -1 —4 1 6 21 M
is the value for Alpha and the value of Beta for the code 001011 ~1 -2 i o -1 6 [1] [
of length N under evaluation. Program step 19 requires
the user to provide the code length of the element with 0 : f h 6. 13 judged tabl
the program of Appendix A being able to process code %r:gaﬁdgxﬁs or length 6. 13 judged acceptable.
compounds of length of between 3 and 128. Program 25

step 21 requires the user to specify whether the phased
sidelobe level will be used as the threshold, that is,
during the correlation process the program of Appendix
A considers the sign of each correlation as is best illus-
trated by FIG. 2(b). If the answer to program step 21 is
*“yes” the user is next asked to specify phased sidelobe
threshold, that is the maximum value of a sidelobe
which the user considers acceptable during the correla-
tion process.

Program step 23 requires the user to specify whether
sidelobe amplitude level will be used as the threshold,
that is, during the correlation process the program of
Appendix A considers only the absolute value of each
correlation. If the answer to program step 23 is “yes”,
the user is next asked to specify the sidelobe amplitude
threshold, that is the maximum value of a sidelobe
which the user considers acceptable during the correla-
tion process. Program steps 25-31 ask the user whether
all codes which meet the criteria for correlation pro-
cessing are to be displayed for viewing on a monitor by
the user. Program step 33 asks the user of the software
whether the codes should be expanded, that is should
the display illustrate sidelobes.

The following example illustrates the questions the
user observes on a monitor and then answers (program
steps 13-33) to correlate all binary codes for a code
length of 3 and an expanded code of length 6.

This program computes pulse compression codes for

30

35

45

50

use with a modified correlation sequence of arbitrary s

coefficients (Alpha, Beta)

Alpha? —1

Beta? 1

Generate codes of what length? (<128) 3

Use phased sidelobe level as threshhold? (Y/N) Y

Phased sidelobe threshhold? 2

Restrict selection by sidelobe amplitude level? (Y/N)
N

Show all evaluated codes? (Y/N) N

Show usable codes? (Y/N) Y

Expand codes? (Y/N) Y

001 -1 0 3 [0] m

60

65

The following example illustrates the questions the
user observes on a monitor and then answers (program
steps 13-33) to correlate all binary codes for a code
length of 4 and an expanded code length of 8.

This program computes pulse compression codes for
use with a modified correlation sequence of arbitrary
coefficients (Alpha Beta)

Alpha? —1

Beta? 1 .

Generate codes of what length? (< 128) 4

Use phased sidelobe level as threshhold? (Y/N) Y

Phased sidelcbe threshhold? 3

Restrict selection by sidelobe amplitude level? (Y/N)
N

Show all evaluated codes? (Y/N) N

Show usable codes? (Y/N) Y

Expand codes? (Y/N) Y
0001 -1 0 1 4 (1] {11
1001 i -2 -1 4 [1] [
0101 —t 2 -3 4 2] 3
1101 1 0 -1 4 1 {1}
0011 -1 -2 1 4 1} 7]
1111 1 2 3 4 13] B3]
0—=>0 1—=-=>4 2-_->1 3I——>1

6 candidates for length 4. 6 judged acceptable.
Creating compounds . . .

00001100 1 2 1 0 —1 -2 38 [3]
11110011 I 2 1 0 -1 -2 38 B
1111011 1 2 1 2 3 2 38p B
00001011 —1 -2 —f -2 1 2 18[] [9
00001101 -1 0 -1 -2 1 © 18f{1] 2
11111001 1 0 -1 ©o 1 0 38p B
00001001 -1 O 1 © 3 0 18[3 B
00010060 1 2 3 2 1 2 383 3
11110001 1 0 -1 -2 -3 0 38[B
11000011 1 2 -1 -4 -3 -2 38[M
11001011 1 2 -1 =2 1 =2 -—t18p [
00111011 -1 -2 1 2 -1 -2 18[] 2
11001101 1 0 -1 2 1 -4 -18[] [4
o010 —~1 0 1 -2 —1 o6 18] [
1100100 -1 0 1 0 -1 0 -38[] [3
00111010 1 0 -1 0 -3 0 -18[] B
11000101 1 0 -1 0 -3 0 -180[] [3]

5,331,328

9
-continued
00110101 -1 0 1 0 -1 0 =381 B3
11001001 1 0 -3 0 3 —4 —18[3 M
00111001 —1 0 3 0 -3 -4 18 3] [4
11001000 -1 -2 -1 2 1 =2 182 2]
00111000 1 2 1 -2 -5 =2 383 [5
11000001 1 0 -3 -2 1 0 38 [3] 3]
00110001 —1 0 3 2 -3 —4 18 (3 [
10110100 -1 0 1 —4 3 0 -—38p3] M4
10111101 1 =2 3 0 1 2 -—18] Bl
10110010 -1 2 -3 0 3 -2 380 Bl
11010100 -1 -2 1 0 ~1 2 3812 (3]
10111010 -1 2 -3 2 -1 2 —38[3
01001010 1 -2 3 -2 1 2 —58QB]I[s
1011010 -1 0 1 =2 3 0 380113
10110101 1 =2 3 -2 1 2 5813 [5
01000101 -1 2 -3 2 -1 2 380 B3
00100101 -1 0 1 =2 3 0 -38[3] 3
10111001 1 -2 1 2 -1 -2 -18[2
11011001 1 0 -3 2 3 4 —18[3 [4
00101001 -1 0 3 =2 1 0 3833
10111000 —1 0 -1 0 -3] 1801 3
01001000 1 0 1 0 3 0 —-18[] 3
1011000 -1 -2 -1 0 1 -2 1801 2
00101000 1 2 1 0 -1 2 -18[2 [2
10110001 1 -2 1 0 -1 -2 -—18{1] 2
01000001 —1 2 -1 0 1 2 181(2 |2
11010001 1 0 -3 0 -1 o —-18[] 3
00100001 —1 0 3 0 1 0 18] B
10100101 1 -2 3 -4 t 2 —58[3] [5
10101001 1 =2 1 0 -t 2 5805
01011001 1 2 -1 0 I —2 -38[3
01011000 1 0 1 -2 -1 0 —18[] |2
10100001 1 -2 1 -2 -1 2 —18[)- 2
01010001 —1 2 =1 2 -3 2 -3 8[B
10010110 1 2 1 —4 3 -2 -38[3] 4
10011000 ~1 0 1 2 -1 —4 182 M
01101000 1 0 -1 -2 1 0 —18[1] [
10010001 1 -2 -1 2 1 -2 —18[] P
01100001 1 2 1 -2 -1 -2 1821 2
10000111 1 0 -1 —4 -3 0 38[3 [4
10000001 1 -2 -1 0 1 2 38[3) 3
10001110 -1 2 1 0 -5 -2 18102 [5
00011000 I 2 3 0 -3 -2 380] 3
00010111 -1 2 —3 0 -1 2 182 [3]

82 candidates for length 8. 61 judged acceptable.

Program Ends

During program step 35, the software of Appendix A
sets the Most Significant Bit of each code to a logic one.
This allows each binary code which has as its' Most
Significant Bit a logic zero to be eliminated from the
correlation process of program steps illustrated in the
flow chart of FIG. 34.

Referring now to FIG. 3b and 3¢, the software of
Appendix A evaluates/correlates the first binary code
in sequence. The correlation process, which is illus-
trated by the flowchart of FIG. 3d (program steps
67-139), first correlates the binary code 100 for code
length three, then correlates the binary code 101 fol-
lowed by correlation of the binary code 111 for code
length three.

For example, when the user requests an evaluation of
codes of length three (itlustrated by FIG. 2) the code
101 is one of the codes processed by the correlation
process of FIG. 34. Specifically, program step 111 com-
pares the code element subpulses and when the code
element subpulses match, that is the codes are in phase,
the in phase element Beta is added to the sidelobe (pro-
gram step 113). In a like manner, when the code element
subpulses do not match, the out of phase element Alpha
is added to the sidelobe (program step 115). The corre-
lation subroutine continues this process until “i* equals
the element length (program step 135) which is the
absolute value of the peak magnitude of the mainlobe.

15

25

30

35

45

55

65

The program of Appendix A then exits the correlation _

10
subroutine (program step 139) for the particular binary
code under evaluation proceeding to program step 69.
For the code 101 the correlation process will provide
the waveform illustrated in FIG. 2(b) when alpha is —1
and beta is 1.

Upon completing of the element evaluation subrou-
tine of FIG. 3¢ the program of Appendix A returns
(program step 81) to program step 53 and then ask
whether the last code element for codes of the specified
length has been evaluated, that is has a carry bit oc-
curred. For example, when the code is of length four a
carry bit will occur at 10000. The program of Appendix
A then proceeds to program step 55. If, however, the
answer is “no” the program of Appendix A evaluates
the next sequential binary code element.

The software of Appendix A also eliminates allomor-
phic forms of a particular element from correlation
processing beginning at program step 39. Program step
39 ask whether the code is an odd length element. If the
answer is yes, that is the binary element under evalua-
tion is an odd length element, then the program pro-
ceeds to program step 41.

Program step 41 ask whether the element being eval-
uated is a palindrome. If the answer is “no” the program
proceeds to program step 51. If the answer is “yes” than
the program proceeds to program step 43 setting the
middle bit of the code to a logic one. For example,
referring to Table III, the program of Appendix A will
set the middle bit of the binary code 10001 to a logic one
allowing the program of Appendix A to skip the corre-
lation process for codes between 10001 and 10101. In a
like manner, the program of Appendix A will set the
middle bit of the binary 11011 to a logic one allowing
the program to skip the correlation process for codes
between 11011 and 11111. The program next proceeds
to the evaluation subroutine of program step 37.

If the binary element under evaluation is an even
length element such as the codes in Table II, the pro-
gram of Appendix A proceeds to program step 47. Pro-
gram step 47 asks whether the element under evaluation
is an even doublet or mixed doublet. If the answer is
“no” then the program proceeds to program step 51. If
the answer is yes then the program of Appendix A
inverts the low order bits (program step 49). For exam-
ple, referring to Table II, the program of Appendix A
will set the low order bits (two least significant bits) of
the binary code 1100 (mixed doublet) to logic ones
allowing the program of Appendix A to skip the corre-
Iation process for codes between 1100 and 1111 (dou-
blet). The program next proceeds to the evaluation
subroutine of program step 37.

Referring again to FIG. 3¢, during program step 65
an internal program counter is incremented for all bi-
nary codes previously correlated by the program of
Appendix A. Thus, for example, when the last binary
code correlated is 100, the counter is incremented to 101
which is the next sequential code of length three for
correlation. Further, when the last binary code of
length three correlated is 101, the counter is incre-
mented to 111 which is the next sequential binary code
for correlation.

The program of Appendix A next proceeds to the
correlation subroutine (program step 47) for the binary
code under evaluation. The correlation process then
correlates the binary code under evaluation. For exam-
ple, the code 101 of length three illustrated by FIG. 2 is
processed by the correlation process of steps 101-139.

5,331,328

11
The program of Appendix A then exits the correlation
subroutine for the particular binary code under evalua-
tion proceeding to program step 69.

Referring to FIG. 3¢, when the user request that all
binary codes being evaluated for correlation by the
program of Appendix A be shown on a monitor, the
program proceeds to program step 71. This step allows
the user to view the element on the monitor irregardless
of the elements acceptability to the user.

If the elements are expanded (program steps 73 and
785), the computer software of Appendix A proceeds to
program steps 77 and 79 which for the binary code
being evaluated determines whether the phase sidelobe
level is being used as the threshold. For example, the
user will observe the following on the monitor when
the user uses the program of Appendix A to evaluate
binary codes of length 3 and specifies that the phased
sidelobe threshold be set at 2.

This program computes pulse compression codes for
use with a modified correlation sequence of arbitrary
coefficients (Alpha, Beta)

Alpha? —1

Beta? 1

Generate codes of what length? (< 128) 3

Use phased sidelobe level as threshhold? (Y/N) Y

Phased sidelobe threshhold? 2

Restrict selection by sidelobe amplitude level? (Y/N)
N

Show all evaluated codes? (Y/N) N

Show usable codes? (Y/N) Y

Expand codes? (Y/N) Y

001 -1) 3 [0 i
101 1 =2 31 [2]
m 1 2 3 (2]
0——>1 1——> 2—=—>1

1

3 candidates for length 3. 3 judged acceptable.
Creating compounds . . .

111101 1 0o 1 2 1 6 [[
000101 —1 0 -1 2 -1 6 21 [l
000100 1 2 1 0o 1 6 [2
111001 1 0 -1 -2 1 6 11 2
101100 —1 o 1 -2 -1 6 [1] [
010100 1 0 -1 2 -3 6 [2] [
101001 1 -2 1 6 -3 6 [11 3
010001 —1 2 -1 6 -1 6 [2 2
100011 1 0 -3 -2 1t 6 [B3]
100001 1 -2 -1 0 1 6N [
100110 1 2 1 -4 -1 6] M
001100 1 2 -1 -4 1 6 2] U
001011 —1 -2 1 0 -1 6 M 2
20 candidates for length 6. 13 judged acceptable.

Program Ends

If the phase sidelobe level is not being used to process
the codes under evaluation (program step 77) or if the
sidelobe for the binary code being evaluated does not

5

10

15

20

25

3

[=]

45

55

exceed the threshold set by the user than the program of 60

Appendix A proceeds to program step 83. When the
user answers the question *yes” with respect to pro-
gram step 83, the following will appear on the monitor:

This program computes pulse compression codes for
use with a modified correlation sequence of arbitrary
coefficients (Alpha, Beta)

Alpha? —1

Beta? 1

65

12

Generate codes of what length? (< 128) 3

Use phased sidelobe level as threshhold? (Y/N) N

Restrict selection by sidelobe amplitude level? (Y/N)
Y

Sidelobe amplitude threshhold? 2

Show all evaluated codes? (Y/N) N

Show usable codes? (Y/N) Y

Expand codes? (Y/N) Y

001 -1 0 3
101 1 -2 3
11 1 2 3
0—->0 1——->

1

[0]
[1]
{21
2——>2

3]
2]
2]

3 candidates for length 3. 3 judged acceptable.
Creating compounds . . .

111101 1
000101 -1
000100 1
111001 1
101100 —~1
01000t -1
100001 1
001011 -1

| |
cooMMOMN

NMNNOONOO

11 i |
—— s
| 11 I
Gk fud pad bk ok ot Gk b
EY-Y-X-X- - Y-

—
=
=

20 candidates for length 6. 8 judged acceptable.

Program Ends

It should be noted that whenever the sidelobe of a
binary code under evaluation exceeds the phased side-
lobe level threshold specified by the user (program step
79) or the sidelobe amplitude threshold specified by the
user (program step 81), the program exits the evaluation
subroutine via program step 81.

The program next proceeds to program steps 87 and
89 which provides that the only binary codes which
will be shown to the user are those codes which meet,
for example, the phased sidelobe threshold specified by
the user in program step 21.

The program of Appendix A proceeds to program
step 93, determines whether the amplitude threshold is
being used for correlation (program step 69). If the
answer is “no” the program increments the count of
binary codes indexed/correlated by the phased sidelobe
level specified by the user as the threshold. If the an-
swer is “yes” the program increments the count of bi-
nary codes indexed/correlated by the sidelobe ampli-
tude threshold specified by the user. Program step 99
then increments the count of binary codes which meet
the phase sidelobe level or sidelobe amplitude thresh-
olds specified by the user.

Upon completing the evaluation subroutine of pro-
gram step 25 the program of Appendix A returns (pro-
gram step 81) to program step 53, ask whether the last
code has been evaluated and if the answer is “no” evalu-
ates the next sequential binary code. If, however, the
answer is *“yes” then the program of Appendix A re-
ports a summary of acceptable elements (program step
57) and then proceeds to create compounds of the ele-
ments in the manner set forth in TABLES IV and V
(program steps 143-255).

Referring to FIG. 3e the program of Appendix A first
identifies pointer one (program step 143) which, for
example, for a code of length three is 111 and is identi-
fied as A in TABLE IV. At this time, it should be noted
that a code of length three will be used to iflustrate the

5,331,328

13
operation of the create compound subroutine of FIGS.
3e-3h.

The program of Appendix A then asks if there are
any clements left on the stack (program step 145). For
the code of length three, the answer is “yes”, that is
elements 111, 101 and 100. The length of the subpulse
pointed to by A of TABLE 1V is set at three (program
step 149), and len (which is equivalent to the compound
length) is set equal to twice the length of A (program
step 151).

Program step 153 ask whether the compound length
is greater than the maximum allowable length of 128
and if the answer is “yes” the program of Appendix will
not process the code specified by the user.

During program step 157, the program of Appendix
A again ask if there are any elements left on the stack.
For the code of length three the elements 111, 101, 100
remain on the stack.

During program step 159, the compound prefix is set

5

10

15

equal to pointer one which is first set at A equals 111 for 20

the code of length three. Program step 161 if the code
length is odd and if the answer is “yes”, program step
163 ask whether the element being evaluated is a palin-
drome. Since the element 111 is a palindrome (that is the
element 111 is equivalent to its inverse) the program of
Appendix A proceeds to program step 165 which al-
lows for a shortcut, that is the program of Appendix A
first sets the evaluates the compound A A (111111) for
correlation, but does not evaluate the compound A A;
(111111).

At this time it should be noted that the leap code of
program step 167 is defined as a doublet or mixed dou-
blet of an even length code.

Program step 169 sets the compound suffix equal to
the compound prefix so that the compound 100100 may
be evaluated for correlation. The program of Appendix
A next enters the evaluation subroutine of FIG. 3k
(program step 171), incrementing the compound count
(program step 227) followed the correlation of the com-
pound using a correlate compound subroutine which is
identical to the correlate element subroutine of FIG. 3d.
When the compound is correlated (program step 229)
the program of Appendix A increments the compound
accept count (program step 233), prints the code (pro-
gram step 237) and if the user answers the question “yes
that the codes are to be expanded (program step 237)
prints the sidelobes (program step 239) for view by the
user.

The program of Appendix A exits the evaluate com-
pound subroutine (program step 231) proceeding to
program step 173 which sets the compound suffix equal
to the complement of the compound prefix resulting in
the compound 111000 be correlated by the program of
Appendix A. Since the prefix is a palindrome, the pro-
gram-of Appendix A utilizes the shortcut procedure of
program step 175 skipping program steps 177-185 and
then proceeding to program step 187. This, in turn,
climinates the compounds A Ay (111111); A A]c
(111000); ArA (111111) and A;Ac(111000)

During program step 187 pointer two is set to 101
while pointer one remains 111. The compound suffix is
then set equal to pointer two (program step 189) while
the compound prefix is set equal to pointer one (pro-
gram step 191) resulting in the compound 111101 being
correlated by the program of Appendix A.

During program step 193 the compound prefix is set
to the complement of pointer one which is 000 and the
compound 000101 is correlated by the program of Ap-

25

30

35

40

45

55

60

65

14
pendix A. The program of Appendix A next uses the
shortcut procedure of program step 195 and skips pro-
gram steps 197 and 199. This results in the program of
Appendix A not correlating the compounds A; B
(111101) and A;c B (000101).

The program of Appendix A next proceeds to pro-
gram step 201. Since pointer two which is now 101 is
symmetric the program of Appendxx A skips program
steps 203-213. This results in the program of Appendix
A not correlating the compounds A By (111101), A;By
(111101); Ac B;(000101) and A;c Br(000101).

During program step 2185 pointer two is set at 100, the
program of Appendix A ask if there are more elements
for pointer two (program step 217) and since the answer
is “yes”, the program of Appendix A evaluates the
following compounds of length six for correlation pro-
cessing with the prefix (pointer one) being 111 and the
suffix (pointer two) being 100.

Prefix Suffix
A = 11}, B = 100
AB m 100
A By 111 001
ArB 111 100
ArB; 111 001
AcB 000 100
AcB; 000 001
AicB 000 100
AcBy 000 001

The program of Appendix A next uses the create
compound subroutine of FIGS. 3¢, 3f and 3g to elimi-
nate the compounds A7B (111100); A;B;(111001); A;c
B (000100) and Ajc By (000001) from correlation pro-
cessing while correlating the compounds A B (111100);
A Bs(111001); AcB (000001) and A ¢ B;(000001) using
the evaluate compound subroutine of FIG. 3k This
evaluation process for a compound of length six by the
program of Appendix A continues with the last evalua-
tion occurring when the prefix and suffix are set at 100.
The program of Appendix A then evaluates each of the
following compounds in accordance with the rules of
TABLE 1V for correlation.

Prefix Suffix

A =100

AA 100 100
AAr 100 001
A Ac - 100 110
AArc 100 011
ArA 001 100
AjAc 001 011

The program of Appendix A then correlates each of
these compounds where pointer one is 100.

-The following example illustrates that which a user
would observe on 2 monitor during an evaluation of -
codes of length three (compounds of length six)
wherein the user specifies an Alpha of minus one, a beta
of one and a Phased sidelobe threshold of six.

This program computes pulse compression codes for
use with a modified correlation sequence of arbitrary
coeflicients (Alpha, Beta)

Alpha? —1

Beta? 1

Generate codes of what length? (<128) 3

Use phased sidelobe level as threshhold? (Y/N) Y

Phased sidelobe threshhold? 6

Restrict selection by sidelobe amplitude level? (Y/N)

N

15

Show all evaluated codes? (Y/N) N
Show usable codes? (Y/N) Y
Expand codes? (Y /N) Y

5,331,328

001
101
m

-1 0 3 [0] {1}
1 -2 3 1] 2i
1 2 3 12 2]

0——>1 1——> 2-->1

1

3 candidates for le;xgth 3. 3 judged acceptable.
Creating compounds . . .

1 1

o
—

16
20 candidates for length 6. 20 judged acceptable.

Program Ends

It should be noted that method of the present inven-
tion may be used in many applications such pulse com-
pression radar systems to provide for maximum sidelobe

~ suppression and digital communication systems to in-

10

crease transmission range, noise rejection and the reli-
ability of such systems. For example, it is possible to
provide a mainlobe to sidelobe ratio of 4096:0 using the
method of the present invention. The only practical
limitation on system performance would be signal to.

2 4 5 6 [5
- -2 - 15 . . .
}}};‘?,? } (2, ? ‘2’ i g ; 3} noise ratio. Thus a pulse compression system utilizing
?1]?:35 :: _‘2’ :} (2, _; g § g the method of the present invention could obtain an
000100 1 2 1 0 1 6 [2 2 improvement in signal to noise ratio of about 4096:1
&%ggi _{ g _} _g ; 2 ; g 20 (72.2 dB) over prior art signal pulse techniques and an
101101 1 -2 3 0o -3 6 [3 3 improvement factor of about 292 (49.3 dB) over prior
101010 -1 2 -3 4 -5 6 [4 s] .
101100 1 0 1 -2 -1 6 ft 2 art pulse compression techniques.
010100 1 0 -1 2 -3 6 3
::?%: _} 'g _: 8 :i g g ; ’s ‘While the present invention has been illustrated in
:%‘l’fl’ —: g g —; -: g ? g accordance with the preferred embodiment, it is recog-
100001 1 -2 -1 0 1 6 [1 2 nized that variations and changes may be made therein
100110 -1 2 1 —4 -1 6 [2] MM
001100 1 2 1 -4 1 6 [MW without departing from the invention as set forth in the
001011 —1 -2 1 0 -1 6 [(2 30 claims.
Navy Case No. 75381
APPENDIX A

//

l/ Modified Pulse compression simulator created for inclusion

1/ with patent request.

/1]

/1

/]

/1

#include <conio.h>

#include <stdio.h>

#include <stdlib.h>

*‘#finclude <string.h>

#fdefine MAX LENGTH 128

#define energy(parm)
#define toggle(parm) ((parm) ? O

(((parm) > 0)1;? (parm) : =(parm))

const unsigned int max_length = MAX_LENGTH;

. typedef struct pulse_code_st {
unsigned int length;~
char pulse_code[MAX LENGTH];

struct pulse code_ st *next;

} PCODE;

PCODE *stack, *current;

_long unsigned int element_accept =

0;

5,331,328
17 18
long unsigned int compound_accept = 0;
int alpha;
int beta;
char code[MAX_ LENGTH];
int index;
long uns;gned int element_count = 0;
long unsigned int compound count = 0O;
char done = 0;
unsigned int len;
char morph_form;
char lobe[MAx _LENGTH) ;
long int lobe _count [MAX LENGTH];
int peak_energy;
int peak lobe;
int phase_threshhold;
int energy_ threshhold;
int expand_codes;
int use_phase_threshhold;
int use_energy_threshhold;
int show _all codes,
int show_usable _codes = 'Y!';

int correlate(void);

int correlate_compounds(void);

void create compounds(PCODE *);

void delete _item(PCODE *);

char eval(void);

void evaluate compound(vo;d),

void expnd(void);

int getyn(void);

char incr(void);

void 1n1t(vold),

void insert_item(PCODE *);

char leap(void);

unsigned char leap _element (unsigned int);
char palindrome(void);

unszgned char palindrome element(un51gned int);
void print_code(void);

void show_lobe_count(void);

main()

clrser();

puts("\nThis program computes pulse compression codes");
puts("for use with a modified correlation sequence");
puts("of arbitrary coefficients (Alpha, Beta)");

printf("Alpha? ");
scanf ("$d", &alpha);

printf ("Beta? ");
scanf ("%d", &beta);

printf("Generate codes of what length? (<%d) ", max _length);
scanf("%d" &len);

prlntf("\nUse phased sidelobe level as threshhold? (¥/N) ");
use_phase_threshhold = getyn(),

if (use_phase_threshhold == 1Y!')

{

printf ("\nPhased sidelobe threshhold? ");
scanf ("$d", &phase_threshhold);

printf("\nRestrict selection by sidelobe amplitude level? (¥Y/R) ");
use_energy threshhold = getyn();

5,331,328
19 20

if (use_energy_threshhold == 'Y')

printf("\nSidelobe amplitude threshhold? ");
scanf ("$4", &energy_threshhold);

}
printf ("\nShow all evaluated codes? (Y/N) ");
show_all codes = getyn();

if (show_all_codes == 'N')-

printf("\nShow usable codes? (Y/N) ");
show_usable codes = getyn();

if (show_usable_codes == 'Y!')

printf ("\nExpand codes? (Y/N) ");
expand_codes = getyn();

}
printf("\n");

init();
while(!done)

If the code is of odd length we first evaluate it for possible
use, then invoke palindrome logic if necessary.

eval();
if(len & 1)

If the code is a palindrome we jump to the next palindrome
by setting the middle bit.

if (palindrome())
{

code[(len=1) >> 1] = 1;
eval();

}

else

{

When the length is even we must check to see if the code is a
leap code. If so we invoke leap logic.

if (leap())

for(index = 0; index < (len >> 1); index++)
code[index] *= 1;
eval();
}
}
done = incr();

show_lobe_count();
printf ("\n\ntd candidates for length", element_count);
printf(" td4. ", 1len):;
printf ("%d judged acceptable.\n", element_accept);
printf ("\nCreating compounds...\n");
create_compounds (stack) ;
if (wherex() > 1)

printf(Y"\n");
printf ("\nid candidates for length", compound_count);
printf(" %d4. ", 1len);

}

5,331,328
21

22

printf("%d judged acceptable.\n", compound_accept) ;

printf ("\nProgram Ends");

" int correlate(void)

{

1

register char i, j;
int sidelobe, sidelobe_energy;
peak_energy = 0;
peak lobe = 0;
for(i = 1; i < len; i++)
{
sidelobe = 0;
for(j = 0; j < i; j++)
sidelobe += (code[j] == code[len-i+j] ?
lobe[i] = sidelobe;
if (sidelobe > peak_lobe)
peak_lobe = sidelobe;
sidelobe_energy = energy(sidelobe);
if (sidelobe_energy > peak _energy)
peak_energy = sidelobe _energy;
}
return peak_energy;

int correlate_compounds(void)

{

. veoid

/*
,*
./*

/*

char i, j;
int sidelobe, sidelobe_energy;
peak_energy = 0;
peak_lobe = 0;
for(i = 1; i < len; i++)
{
sidelobe = 0;
for(j = 0; § < i; j++)
sidelobe += (code[j] == code[len-i+j] ?
lobe[l] = gsidelobe;
if (sidelobe > peak_lobe)
peak_lobe = sidelobe;
sidelobe_energy = energy(sidelobe);
if (sidelobe _energy > peak_energy)
peak_energy = sidelobe_energy;

}
if (use_phase_threshhold == 'Y!)

1f(peak lobe > phase_threshhold) return 0;
if (use_energy_threshhold == 'y!)

beta

beta

if (peak _energy > energy threshhold) return 0;

return 1;

Create_compounds (PCODE #*source)
PCODE *pntrl, #*pntr2;

index - loop variable */
register unsigned int index;

length - length of one element */
unsigned int length;

shortcut - test to skip certain groups if A' = Ac */

unsigned char shortecut;

shortcut2 ~ test to skip certain groups if B = Bc %/

unsigned char shortcut2;

alpha);

alpha);

5,331,328
23 24
pntrl = source =-> next;
if (pntrl == NULL)

printf ("No elements left.");
exit (EXIT_FAILURE) ;
}

length = pntrl -> length;
len = 2 * length;

if (len > MAX_LENGTH)

printf ("Compound size exceeds MAX LENGTH.");
exit (EXIT_FAILURE);

}
while(pntrl != NULL)
{
FA Generate A prefix %/
for (index = 0; index < length; index++)
code(index] = pntrl ~> pulse_code[index};

/* Perform shortcut test */

shortcut = (length & 1 ? palindrome_element(length) :
leap_element(length)); .

/* Generate case for AA */
for (index = 0; index < length; index++)
code[index + length) = pntrl -> pulse_code[index];
evaluate_compound() ;

/* Generate case for AAc */
for (index = 0; index < length; index++)
code[index + length] = toggle(pntrl -> pulse_code[index]);
evaluate_compound() ;

if (!shortcut)

% Generate case for AAi */
for (index = 0; index < length; index++)

code[index + length] = pntrl -> pulse_code[(length) -
1 - index]; ‘
) evaluate_compound() ;

/* Generate case for Ahic */
for {(index = 0; index < length; index++)
code[index + length] = toggle(pntrl ->
pulse_code[(length) « 1 -~ index]);
evaluate_compound() ;

/1* Generate Ai prefix */
for (index = 0; index < length; index++)
code[index] = pntrl -> pulse_code[length - 1 -
index];

1* Generate case for AiA */
for (index = 0; index < length; index++)
codefindex + length] = pntrl -> pulse_code(index];
evaluate_compound() ;
/* Generate case for AiAc */
for (index = 0; index < length; index++)
code[index + length] = toggle(pntrl ->
pulse_code(index});

evaluate_compound() ;
pntr2 = pntrl -> next;

while(pntr2 != NULL)

5,331,328
25 26

/* Generate B suffix */
for (index = 0; index < length; index++)
' code[index + length] = pntr2 -> pulse code[index];

/* Generate case for AB */
for (index = 0; index < length; index++)
code[index]) = pntri -> pulse_code[index];
evaluate_compound() ;

A Generate case for AcB */
for (index = 0; index < length; index++)

code[index) = toggle(pntrl =-> pulse_code[index]);
evaluate_compound() ; :

if (!shortcut)

/% Generate case for AiB */
for (index = 0; index < length; index++)
code{index] = pntri -> pulse_code{length - 1 -
index];
evaluate_compound();

A Generate case for AicB #/
for (index = 0; index < length; index++)
code[index] = toggle(pntri -> pulse_code[length
- 1 - index));
evaluate_compound();
}

shortcut2z = 1;
for (index = 0; index < (length >> 1); index++)
if ((pntr2 -> pulse_code[index]) != (pntr2 ->
pulse_code[length - 1 - index])))
{

shortcut2 = 0;
break;

}
if (!shortcut2)

/* Generate Bi suffix %/
for (index = 0; index < length; index+4)
code[index + length] = pntr2 ->
pulse_code[length - 1 - index];

/* Generate case for ABi */
: for (index = 0; index < length; index++)
code[index] = pntri -> pulse_code[index];
evaluate_ compound();

l* Generate case for AcBi */
for (index = 0; index < length; index++)
code{index] = toggle(pntrl ->
pulse_code[index]);
) evaluate_compound();

if (!shortcut)

{
/* Generate case for AiBi %/
X for (index = 0; index < length; index++)

codefindex) = pntri -» pulse_code[length -
1 - index];

evaluate_ compound() ;

/* Generate case for AicBi */ '
~ for (index = 0; index < length; index++)
. code[index] = toggle(pntrl ->

5,331,328

27 28

lse code[length - 1 - index]);
puise- [lengt evaluaée_compound();
}

-}
pntr2 = pntr2 -> next;

}
pntrl = pntrl -> next; :
delete_item(source); -

}
}
void delete_item(PCODE *head)
{
current = head -> next;
head => next = current -> next;
free (current);
}
char eval(void)
{
element_count++;
correlate();
if (show_all_codes == 'Y!')
print_code();
if (expand_codes == 'Y!')
) expnd() ;
if (use_phase_threshhold == 'y!')
if (peak_lobe > phase_threshhold) return 0;
if(use_energy_threshhold == 'y!')
if (peak_energy > energy_threshhold) return 0;
if(show_all_codes == 'N')
{
print_code();
if (expand_codes == 'Y')
expnd () ;
insert_item(stack);
if(use_energy_threshhold == ‘y'}) -
lobe_count[peak_energy]++;
else
lobe_count([peak_lobe]++;
element_accept++;
return 1;
}
void evaluate_compound(void)
{
compound_count++;
if (correlate_compounds())
{
compound_accept++;
print_code();
if (expand_codes == 'y')
{
printf ("\t");
expnd();
}
}
void expnd(void)
{

register unsigned int i;
for (i = 1; i < len; i++)

5,331,
2 331,328 30

printf("™ 33d", lobe[i]);
printf(" %34 [%d] [%d]\n", (beta * len), peak_lobe, peak_energy) ;

return;
}
int getyn(void)
{ char key;
Yhile(l)

key = getch();

switch(key) {

case 'y':

case 'Y':
printf("yY\n");
return 'Y!';

case 'n':

case 'N':
printf ("N\n");
return 'N';

"}
char incr(void)

int index;
index = 0;
while(code[index] == 1)
code[index++] = 0;
if(index == 1len)
return 1;
code[index] = 1;
return 0;

void init(void)

int index;

for(index = 0; index < MAX LENGTH; index++)
code([index] = 0;

code [len-1] = 1;

for(index = 0; index < MAX LENGTH; index++)
lobe_count{index] = 0;

stack = (PCODE *) malloc(sizeof (PCODE)) ;

if (stack == NULL)
{
puts ("Sorry, out of menory.\n");
exit (EXIT_FAILURE);
}
strcpy(stack -> pulse_code, "Head of stack.");
stack => length = 0;
stack -> next = NULL;
return;)

void insert_item(PCODE *head)

current = (PCODE *) malloc(sizeof (PCODE));
if (current == NULL)
{

puts("Sorry, out of memory.\n");
exit (EXIT_FAILURE);

5,331,328 -
31 32

}
for (index = 0; index < len; index++)
current -> pulse_code[len - index - 1] = code[index];
current -> next = head -> next;
current -> length = len;
head =-> next = current;

}
char leap(void)
{
char i, j, flag;
i=o0;
j = len -~ 1;
flag = 1;
/* .
First we check to see if the code is an even palindrome.
*/
while(i < 3Jj)
if (code[i++] != code[j--])
flag = 0;
break;
}
if (flag)
return flag;
/*
Then we check to see if all the bits on one side were inverted,
if it were be an even palindrome.
*/
i=o0;
j = len - 1;
flag = 1;
while(i < 3j)
if (code{i++] == code([j-=])
return 0;
return 1;
}
unsigned char leap_element (unsigned int length)
{
char i, j, flag;
i=0;
3 = length - 1;
flag = 1;
/* ‘
First we check to see if the code is an even palindrome.
*/
while(i < j)
if(code{i++] != code[j--])
{
flag = 0;
break;
}
if (flag)
return flag;
n

Then we check to see if all the bits on one side were inverted,
if it were be an even palindrome.

*/

char

}

{

voiad

voiad

5,331,328

33 34
i=0;
j = length - 1;
flag = 1;

while(i < j) 7
if (code[i++] == code[j~--])
return 0;
return 1;

palindrome (void)

char i, 3;
i=0;
3 = len - 1;
while (i < jJ)
if (code[i++] != code[j--]) return 0;
return 1;

unsigned char palindrome_elemént(unsigned int length)

char i, j;
i=o0;
j = length - 1;
while (i < Jj)
if(code[i++]) != code[j--]) return 0;
return 1;

print_code(void)
register char index;

if (show_usable_codes == 'Y')
{ .
if ((wherex() + len) > 80)
printf("\n");
for(index = 0; index < len; index++)
putch(code[index] ? '1' : '0');
if (wherex() < 70)
printf("\t");
else
printf("\n");
}

return;

show_lobe_count (void)

char index;
char last_lobe = 0;
for(index = len; index > 0; index--)

if (lobe_count[index] != 0)

last_lobe = index;
break;

}

}

if(index > 0)
printf ("\n");

if (wherex() > 1)
printf("\n");

5,331,328

35

36

for(index = 0; index <= last_lobe; index++)

printf("sd --> %4
return;

}

What is claimed is:

1. A method for determining all binary codes of a
predetermined length N for sidelobe suppression in a
pulse compression radar system, said method compris-
ing:

10

selecting said binary codes of length N for correla-
tion, said binary codes having a length of at least
three;

cach of said binary codes of length N being one of js
four allomorphic forms, all allomorphic forms of
one of said binary codes having the same correla-
tion characteristics;

the allomorphic forms for each of said binary codes
of length N consisting of said binary code, an inver-
sion of said binary code, a complement of said
binary code and an inverted complement of said
binary code;

eliminating three of the four allomorphic forms of
each binary code of length N so as to reduce the
number of binary codes of length N for correlation;

selecting first and second arbitrary coefficients, said
first arbitrary coefficient being an out of phase
correlation element having a negative numerical
value of at least minus one and said second arbi-
trary coefficient being an in phase correlation ele-
ment having a positive numerical value of at least
one;

correlating each of the remaining binary codes of
length N after eliminating the allomorphic forms of 35
each of said binary codes of length N, said first and
second arbitrary coefficients effecting the correla-
tion of each of the remaining binary codes of length
N;

the remaining binary codes of length N after the
allomorphic forms thereof are eliminated forming a
sequential stack of binary elements of length N,
said sequential stack of binary elements having at
least three binary elements of length N:

creating at least first, second and third groupings of 45
binary compounds of length 2N from a binary
element A selected from said at least three binary
elements of length N, said binary element A being
a different one of said at least three binary elements
for each of said at least first, second and third
groupings of binary compounds;

said at least first, second and third groupings of bi-
nary compounds including a first binary compound
A A, a second binary compound A Aj, a third
binary compound A A, a fourth binary compound
A Ajc, a fifth binary compound A; A and a sixth
binary compound A;Acwherein Ayis an inversion
of said binary element A, Acis a complement of
said binary element A and Ajcis an inverted com-
plement of said binary element A;

creating at least fourth, fifth and sixth groupings of
binary compounds of length 2N from said binary
element A and another binary element B selected
from said at least first, second and third binary
elements of length N, said binary element A being 65
a different one of said at least three binary elements
for each of said at least fourth, fifth and sixth

groupings of binary compounds;

25

30

40

53

60

", index, lobe_count[index]);

said binary element B being a sequential binary ele-
ment after said binary element A for each of said at
least fourth, fifth and sixth groupings of com-
pounds;
said at least fourth, fifth and sixth groupings of binary
compounds including a seventh binary compound
A B, an eighth compound A By, a ninth binary
compound As B, a tenth binary compound Ay B;,
an eleventh binary compound Ac B, a twelfth bi-
nary compound Ac Bj, a thirteenth binary com-
pound Ajc B and a fourteenth binary compound
Ajc By wherein By is an inversion of said binary
element B;

evaluating each of said binary compounds of length
2N of said at least first, second, third, fourth, fifth
and sixth groupings of binary compounds for cor-
relation;

correlating at least said first binary compound A A

and said third binary compound A Acfrom said at
least first, second and third groupings of binary
compounds;

correlating at least said seventh binary compound A

B, and said eleventh binary compound A¢ B from
said at least fourth, fifth and sixth groupings of
binary compounds;

providing a visual image of the correlation of each

binary code of length N and the correlation of each
binary compound of lenigth 2N from said at least
first, second, third, fourth, fifth and sixth groupings
of binary compounds.

2. The method of claim 1 wherein the length N of said
binary codes selected for correlation is not greater than
one hundred twenty eight.

3. The method of claim 1 wherein said second binary
compound A Ay, said fourth binary compound A Ayc,
said fifth binary compound A7 A and said sixth binary
compound Ay Acof said at least first, second and third
groupings of binary compounds and said eighth binary
compound A By binary compound and said thirteenth
binary compound A ;¢ B of said at least fourth, fifth and
sixth groupings of binary compounds are not evaluated
for correlation whenever said binary element A is a
palindrome.

4. The method of claim 1 wherein said second binary
compound A Ay, said fourth binary compound A Ajc,
said fifth binary compound As A and said sixth binary
compound Ay Acof said at least first, second and third
groupings of binary compounds and said eighth binary
compound A By binary compound and said thirteenth
binary compound Ayc B of said at least fourth, fifth and
sixth groupings of binary compounds are not evaluated
for correlation whenever said binary element A is a
doublet.

§. The method of claim 1 wherein said second binary
compound A Ay, said fourth binary compound A Ayc,
said fifth binary compound Az A and said sixth binary
compound Ay Acof said at least first, second and third
groupings of binary compounds and said eighth binary
compound.A By binary compound and said thirteenth
binary compound Ajc B of said at least fourth, fifth and
sixth groupings of binary compounds are not evaluated

5,331,328

37

for correlation whenever said binary element A is a
mixed doublet. ’

6. The method of claim 1 wherein said eighth com-
pound A Brand said twelfth binary compound AcBjof

said at least, fourth, fifth and sixth groupings of binary 5

compounds are not evaluated for correlation whenever
said binary element B is symmetric.

7. The method of claim 1 wherein said tenth binary
compound Ay Byand said fourteenth binary compound

A1cBjof said at least fourth, fifth and sixth groupings of 10

binary compounds are not evaiuvated for correlation
whenever said binary element A is a palindrome.

15

25

30

35

45

55

65

38

8. The method of claim 1 wherein said tenth binary
compound A B;and said fourteenth binary compound
A jcByof said at least fourth, fifth and sixth groupings of
binary compounds are not evaluated for correlation
whenever said binary clement A is a doublet.

9. The method of claim 1 wherein said tenth binary
compound A;Brand said fourteenth binary compound
AjcBjof said at least fourth, fifth and sixth groupings of
binary compounds are not evaluated for correlation
whenever said binary element A is a mixed doublet.

* * 2 & 3

