Патент США № | 10131446 |
---|---|
Автор(ы) | Stambler и др. |
Дата выдачи | 20 ноября 2018 г. |
An apparatus comprises a time-of-flight ranging sensor that scans in two or more directions relative to the apparatus over a series of scanning cycles. A processor computes, and to communicates to the time-of-flight ranging sensor, a pulse repetition rate (PRR) for the time-of-flight ranging sensor for each of the two or more directions based on information about surrounding terrain of the apparatus and a sensor pointing schedule for the time-of-flight ranging sensor that indicates directions that the time-of-flight ranging sensor is scheduled to point at time during the scanning cycles. In addition or lieu of computing the PRR, the processor(s) matches returns from pulses of the time-of-flight ranging sensor to the pulses probabilistically based on a current map of the vehicle's surroundings and scan coherence analysis for shapes in the returns. The current map can then be updated based on the matched returns for the next iteration.
Авторы: | Adam Stambler (Pittsburgh, PA), Lyle J. Chamberlain (Pittsburgh, PA), Sebastian Scherer (Pittsburgh, PA) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | NEAR EARTH AUTONOMY, INC. (Pittsburgh, PA) |
||||||||||
ID семейства патентов | 64176613 | ||||||||||
Номер заявки: | 15/211,382 | ||||||||||
Дата регистрации: | 15 июля 2016 г. |
Application Number | Filing Date | Patent Number | Issue Date | ||
---|---|---|---|---|---|
62193344 | Jul 16, 2015 | ||||
Класс патентной классификации США: | 1/1 |
Класс совместной патентной классификации: | G05D 1/101 (20130101); G01S 13/22 (20130101); G01S 17/10 (20130101); G01S 13/12 (20130101); G01S 13/9303 (20130101); G01C 21/005 (20130101); G01S 17/89 (20130101); G01S 17/933 (20130101) |
Класс международной патентной классификации (МПК): | B64D 45/00 (20060101); G01S 17/93 (20060101); G05D 1/10 (20060101); B64D 47/08 (20060101); G01C 21/16 (20060101); G01S 13/12 (20060101); G01S 17/89 (20060101); G01S 13/93 (20060101); H04B 1/3822 (20150101); G01S 17/10 (20060101); G01S 13/22 (20060101) |
3680086 | July 1972 | Valstar |
5034751 | July 1991 | Miller, Jr. |
9128190 | September 2015 | Ulrich |
2006/0197936 | September 2006 | Liebman |
2008/0272955 | November 2008 | Yonak |
2014/0297116 | October 2014 | Anderson |
2017/0219364 | August 2017 | Lathrop |
104297743 | Jan 2015 | CN | |||
Lu; Machine translation of CN-104297743-A; Jan. 2015; espacenet.com (Year: 2015). cited by examiner . Rieger; Resolving range ambiguities in high-repetition rate airborne light detection and ranging applications; Jul. 2012; SPIE--Jornal of applied remote sensing; vol. 6; p. 1-16; https://www.spiedigitallibrary.org (Year: 2012). cited by examiner . Rieger; Range ambiguity resolution technique applying pulse position modulation in time-of-flight scanning lidar application; Jun. 2014; SPIE--Optical Engineering Journal; vol. 52(6); p. 1-12; https://www.spiedigitallibrary.org (Year: 2014). cited by examiner . Arora, Sankalp, et al. "PASP: Policy Based Approach for Sensor Planning," 2015 IEEE International Conference on Robotics and Automation, May 2015. cited by applicant . Lu, Hao, et al., "An Automatic Range Ambiguity Solution in High-Repetition-Rate Airborne Laser Scanner Using Priori Terrain Prediction," IEEE Geoscience and remote Sensing letters, vol. 12, No. 11, Nov. 2015. cited by applicant. |