Патент США № | 10656496 |
---|---|
Автор(ы) | Hashemi и др. |
Дата выдачи | 19 мая 2020 г. |
An optical device includes a row of optical units, each of the optical units comprising an antenna element and an associated phase shifting element, a first optical power splitter optically coupled to a first optical input/output element, and a first plurality of boundary adjustment elements. In the optical phased array, each of the first plurality of boundary adjustment units optically couples the first optical power splitter to different sub-rows of the row of optical units, and each of the plurality of boundary adjustment elements include a sub-row amplitude adjustment element and a sub-row phase adjustment element.
Автор(ы): | Hossein Hashemi (Pacific Palisades, CA), SungWon Chung (Los Angeles, CA), Hooman Abediasl (Pasadena, CA) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Заявитель: |
|
||||||||||
Патентообладатель: | University of Southern California (Los Angeles, CA) |
||||||||||
Идентификатор семейства: | 61069357 | ||||||||||
Номер заявки: | 15/667,536 | ||||||||||
Приоритет: | 02 августа 2017 г. |
Идентификатор патента | Дата публикации | |
---|---|---|
US 20180039154 A1 | Feb 8, 2018 | |
Номер заявки | Дата подачи заявки | Номер патента | Дата публикации | ||
---|---|---|---|---|---|
62370131 | Aug 2, 2016 | ||||
Действующий класс US: | 1/1 |
Действующий класс СПК: | G02F1/2955; G02F1/292; G02B5/008; G02B6/1226; G02F2203/50; G02F2201/06; H01Q21/06 |
Действующий класс МПК: | G02F1/29; G02F1/295; H01Q21/06 |
Область поиска: | ;385/4,8,14 ;398/115,188 |
8467641 | June 2013 | Krill |
8988754 | March 2015 | Sun |
2013/0322892 | December 2013 | Aflatouni |
2015/0346340 | December 2015 | Yaacobi |
2016/0218429 | July 2016 | Klemes |
2017/0131615 | May 2017 | Park |
2017/0207545 | July 2017 | Miraftab |
2018/0039153 | February 2018 | Hashemi et al. |
Abediasl et al., Monolithic Optical Phased-Array Transceiver in a Standard SO CMOS Process, Optics Express, 2015, vol. 23(5), pp. 6509-6519. cited by applicant . Adar et al., Phase Coherence of Optical Waveguides, Journal of lightwave technology, 1994, vol. 12(4), pp. 603-606. cited by applicant . Aflatouni et al., Nanophotonic Projection System, Optics Express, 2015, vol. 23(16). pp. 21012-21022. cited by applicant . Apostolidou et al., A 65nm CMOS 30 dBm class-E RF Power Amplifier with 60% PAE and 40% PAE at 16 dB back-Off, IEEE Journal of Solid-State Circuits, 2009, vol. 44(5), pp. 1372-1379. cited by applicant . Chan et al., Optical Beamsteering Using an 8 x 8 MEMS Phased Array with Closed-Loop Interferometric Phase Control, Optics Express, 2013, vol. 21(3), p. 2807. cited by applicant . Cherchi et al., Dramatic Size Reduction of Waveguide Bends on a Micron-Scale Silicon Photonic Platform, Optics Express, 2013, vol. 21(15), p. 17814. cited by applicant . Chorostowski et al., Impact of Fabrication Non-Uniformity on Chip-Scale Silicon Photonic Integrated Circuits, Proc. Optical Fiber Communication Conference, 2014, pp. 1-3. cited by applicant . Chrostowski et al., Silicon Photonics Design, Cambridge University Press, 2015. cited by applicant . Doylend et al., Two-Dimensional Free-Space Beam Steering with an Optical Phased Array on Silicon-on-Insulator, Optics Express, 2011, vol. 19(22). cited by applicant . Feced et al., Effects of Random Phase and Amplitude Errors in Optical Fiber Bragg Gratings, Journal of Lightwave Technology, 2000, vol. 18(1), pp. 90-101. cited by applicant . Godoy et al., A 2.4-GHz, 27-dBm Asymmetric Multilevel Outphasing Power Amplifier in 65-nm CMOS, IEEE Journal of Solid-State Circuits, 2012, vol. 47(10), pp. 2372-2384. cited by applicant . Guan et al., A Fully Integrated 24 GHz 8-Path Phased-Array Receiver in Silicon, IEEE International Solid-State Circuits Conf. Tech. Dig. Papers, 2004, vol. 39(12), pp. 390-391. cited by applicant . Guo et al., Two-Dimensional Optical Beam Steering with InP-Based Photonic Integrated Circuits, IEEE Journal of Selected Topics in Quantum Electronics, 2013, vol. 19(4). cited by applicant . Harris et al., Efficient, Compact and Low Loss Thermo-Optic Phase Shifter in Silicon, Optics Express, 2014, vol. 22 (9), p. 10487. cited by applicant . Henry, C., Theory of the Linewidth of Semiconductor Lasers, IEEE Journal of Quantum Electronics, 1982. vol. 18(2), pp. 259-264. cited by applicant . Hulme et al., Fully Integrated Hybrid Silicon Two Dimensional Beam Scanner, Optics Express, 2015, vol. 23(5), p. 5861. cited by applicant . Hutchison et al., High-Resolution Aliasing-Free Optical Beam Steering, Optica, 2016, vol. 3(8), p. 887. cited by applicant . Kinget et al., A Programmable Analog Cellular Neural Network CMOS Chip for High Speed Image Processing, IEEE Journal of Solid-State Circuits, 1995, vol. 30(3), pp. 235-243. cited by applicant . Krasavin et al., Silicon-Based Plasmonic Waveguides, Opt. Express 18, 2010, pp. 11791-11799. cited by applicant . Krisfinamoorthy et al., Exploiting CMOS Manufacturing to Reduce Tuning Requirements for Resonant Optical Devices, IEEE Photonics Journal, 2011, vol. 3(3), pp. 567-579. cited by applicant . Kwong et al., 1 .times. 12 Unequally Spaced Waveguide Array for Actively Tuned Optical Phased Array on a Silicon Nanomembrane, Applied Physics Letters, 2011, vol. 99. cited by applicant . Kwong et al., On-chip Silicon Optical Phased Array for Two-Dimensional Beam Steering, Optics Letters, 2014, vol. 39(4), pp. 941-944. cited by applicant . Liu et al., Ultra-Low-Loss CMOS-Compatible Waveguide Crossing Arrays Based on Multimode Bloch Waves and Imaginary Coupling, Optics Letters, 2014, vol. 39(2). cited by applicant . McManamon et al., Optical Phased Array Technology, Proceedings of the IEEE, 1996, vol. 84, No. 2, pp. 268-298. cited by applicant . Michael et al., Statistical Modeling of Device Mismatch for Analog MOS Integrated Circuits, IEEE Journal of Solid-State Circuits, 1992, vol. 27(2), pp. 154-166. cited by applicant . Poulton et al., Frequency-Modulated Continuous-Wave LIDAR Module in Silicon Photonics, Proc. Optical Fiber Communication Conference, 2016, pp. 1-3. cited by applicant . Poulton et al., Optical Phased Array with Small Spot Aize, High Steering Range and Grouped Cascaded Phase Shifters, Proc. Advanced Photonics Congress, 2016, pp. 1-3. cited by applicant . Poulton et al., Large-Scale Silicon Nitride Nanophotonic Phased Arrays at Infrared and Visible Wavelengths, Optics Letters, 2017, vol. 42(1), p. 21. cited by applicant . Schwarz, B., LIDAR: Mapping the World in 3-D, Nature Photonics, 2010, vol. 4(7), pp. 429-430. cited by applicant . Simard et al., Characterization and Reduction of Spectral Distortions in Silicon-on-Insulator Integrated Bragg Gratings, Optics Express, 2013, vol. 21(20), p. 23145. cited by applicant . Smalley et al., Anisotropic Leaky-Mode Modulator for Holographic Video Displays, Nature, 2013, vol. 498(7454), pp. 313-317. cited by applicant . Sun et al., Large-Scale Nanophotonic Phased Array, Nature, 2013, vol. 493, pp. 195-199. cited by applicant . Sun et al., Single-Chip Microprocessor that Communicates Directly using Light, Nature, 2015, vol. 528, pp. 534-538. cited by applicant . Sun et al., A 45nm CMOS-SOI Monolithic Photonics Platform with Bit-Statistics-Based Resonant Microring Thermal Tuning, IEEE Journal of Solid-State Circuits, 2016, vol. 51(4), pp. 893-907. cited by applicant . Van Acoleyen et al., Off-Chip Beam Steering with a One-Dimensional Optical Phased Array on Silicon-on-Insulator, Optics Letters, 2009, vol. 34(9), p. 1477. cited by applicant . Van Acoleyen et al., Two-Dimensional Optical Phased Array Antenna on Silicon-on-Insulator, Optics Express, 2010, vol. 18(13). cited by applicant . Vasey et al., Spatial Optical Beam Steering with an AlGaAs Integrated Phased Array, Applied Optics, 1993, vol. 32 (18), pp. 3220-3232. cited by applicant . Wang et al., Modeling and design of an optimized liquid-crystal optical phased array, Journal of Applied Physics, 2005, vol. 98(7), p. 073101. cited by applicant . Wang et al., Micromirror Based Optical Phased Array for Wide-Angle Beamsteering, IEEE International Conference on Micro Electro Mechanical Systems, 2017, pp. 897-900. cited by applicant . Xiong et al., Integrated GaN Photonic Circuits on Silicon (100) for Second Harmonic Generation, Optics Express, 2011, vol. 19(11), pp. 10 462-10 470. cited by applicant . Yaacobi et al., Integrated Phased Array for Wide-Angle Beam Steering, Optics Letters, 2014, vol. 39(15), pp. 4575. cited by applicant . Yang et al., Phase Coherence Length in Silicon Photonic Platform, Optics Express, 2015, vol. 23(13), p. 16890. cited by applicant . Yaras et al., State of the Art in Holographic Displays: A Survey, Journal of Display Technology, 2010, vol. 6(10), pp. 443-454. cited by applicant . Yariv, A., Coupled-Mode Theory for Guided-Wave Optics, IEEE Journal of Quantum Electronics, 1973, vol. 9(9), pp. 919-933. cited by applicant . Yariv et al., Photonics: Optical Electronics in Modem Communications, Oxford University Press, 2007. cited by applicant . Ye et al., A 2-D resonant MEMS Scanner with an Ultra-Compact Wedge-like Multiplied Angle Amplification for Miniature LIDAR Application, IEEE Sensors, 2016, pp. 1-3. cited by applicant . Zortman et al., Silicon Photonics Manufacturing, Optics express, 2010, vol. 18(23), pp. 23 598-23 607. cited by applicant . 360-Degree 3-D LIDAR M8-1 Sensor, Sunnyvale, CA, USA:, 2015. cited by applicant . Velodyne's HDL-64e: A High-Definition LIDAR Sensor for 3-D Applications, Morgan Hill, CA, USA:, 2007. cited by applicant. |