Патент США № | 10686523 |
---|---|
Автор(ы) | Gleason и др. |
Дата выдачи | 16 июня 2020 г. |
A photonic integrated circuit (PIC) provides a common architecture to feed both optical and RF phased arrays to produce steerable co-boresighted optical and RF beams from a single chip. The PIC may be used for guidance, mobile data links, autonomous vehicles and 5G cellular communications. A plurality of switches are monolithically fabricated on the PIC with the optical feed network to switch the optical power of the phase-modulated optical channel signals between the integrated optical antennas and the RF antennas to produce steerable optical and RF beams. The photo-detectors and RF antennas may be discrete components or integrated with the optical feed network. To ensure that the optical and RF beams are co-boresighted (within a specified angular tolerance) for the same steering commands, the PIC is positioned within the RF antenna array footprint.
Автор(ы): | Benn Gleason (Tucson, AZ), Sean D. Keller (Tucson, AZ), Gerald P. Uyeno (Tucson, AZ) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Заявитель: |
|
||||||||||
Патентообладатель: | Raytheon Company (Waltham, MA) |
||||||||||
Идентификатор семейства: | 71074943 | ||||||||||
Номер заявки: | 16/419,739 | ||||||||||
Приоритет: | 22 мая 2019 г. |
Действующий класс US: | 1/1 |
Действующий класс СПК: | H01Q21/293; H01Q3/34; H01Q21/065; H04B10/25752; H01Q3/2658; H04B10/1129; H01Q21/29; G01S13/02; G02F1/292; G01S13/865; G01S13/931; H01Q3/2676; H01Q5/22; G01S7/028; H04B10/112; G01S7/006; H04B10/11; G01S2013/0254 |
Действующий класс МПК: | H04B10/112; H01Q21/29; H04B10/2575; G02F1/29; H01Q3/26; H01Q3/34; H04B10/11 |
Область поиска: | ;398/115,116 |
5333000 | July 1994 | Hietala et al. |
6574021 | June 2003 | Green |
9270372 | February 2016 | Miniscalco |
9614280 | April 2017 | Shi |
9719924 | August 2017 | Stratis |
9997831 | June 2018 | Stratis |
10141624 | November 2018 | Stratis |
2002/0075183 | June 2002 | Stephens |
2003/0080899 | May 2003 | Lee |
2004/0062469 | April 2004 | Ionov |
2012/0068880 | March 2012 | Kullstam |
2012/0177376 | July 2012 | Chang |
2014/0270749 | September 2014 | Miniscalco |
2014/0376914 | December 2014 | Miniscalco |
2016/0036529 | February 2016 | Griffith |
2017/0214134 | July 2017 | Stratis |
2017/0301991 | October 2017 | Stratis |
2017/0358836 | December 2017 | Stratis |
Stulemeijer, J., "Photonic Integrated Beamformer for a Phased Array Antenna," ECOC '98, Sep. 20-24, 1998, Madrid Spain. cited by applicant . Behrooz et al., "A 21-D Heterodyne Lens-Free Optical Phased Array Camera with Reference Phase Shifting," ILLL Photonics Journal, vol. 10, No. 5, Sep. 2018. cited by applicant . Fatemi et al., "A Low Power PWM Optical Phased Array Transmitter with 16.degree. Field-of-View and 0.8.degree. Beamwidth," 2018 IEEE Radio Frequency Integrated Circuit Symposium. cited by applicant . Fatemi et al., "A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive," 2019 IEEE, IEEE Journal of Solid State Circuits. cited by applicant . Analog Photonics, "APSUNY Process Development Kit Full-Build Component Library Documentation," Sponsored by AIM Photonics Institute, copyright 2017. cited by applicant . Kohno et al., "Ghost imaging using a large-scale silicon photonic phased array chip," Optics Express 3817, vol. 27, No. 3, Feb. 4, 2019. cited by applicant . Jung et al., "High efficiency low threshold current 1.3 .mu.m InAs quantum dot lasers on on-axis (001) GaP/Si," Applied Physics Letters III, 122107 (2017). cited by applicant. |