Патент США № | 10749270 |
---|---|
Автор(ы) | Behdad и др. |
Дата выдачи | 18 августа 2020 г. |
A phase shifter includes a first dielectric layer, a switch mounted to the first dielectric layer, a conductive layer mounted to the first dielectric layer, a second dielectric layer mounted to the conductive layer, a conducting pattern layer mounted to the second dielectric layer, and a plurality of vias. The switch is switchable between a first conducting position and a second conducting position. Each via is connected between a first or a second throw arm of the switch and a conductor of the conducting pattern layer. When an electromagnetic wave incident on the phase shifter is reflected, an electric polarization of the reflected electromagnetic wave is rotated by .+-.90 degrees compared to an electric polarization of the incident electromagnetic wave based on a conducting position of the switch. The phase shifter can be used as one-bit spatial phase shifter to provide either 0.degree. or 180.degree. phase shift over wide bandwidths.
Автор(ы): | Nader Behdad (Oregon, WI), Zhe Yang (Madison, WI), John H. Booske (McFarland, WI), Hung Thanh Luyen (Madison, WI) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Заявитель: |
|
||||||||||
Патентообладатель: | Wisconsin Alumni Research Foundation (Madison, WI) |
||||||||||
Идентификатор семейства: | 68464255 | ||||||||||
Номер заявки: | 15/977,130 | ||||||||||
Приоритет: | 11 мая 2018 г. |
Идентификатор патента | Дата публикации | |
---|---|---|
US 20190348768 A1 | Nov 14, 2019 | |
Действующий класс US: | 1/1 |
Действующий класс СПК: | H01Q15/14; H01Q3/36; H01Q15/248; H01Q21/0006; H01Q3/46; H01Q19/10; H01Q21/22 |
Действующий класс МПК: | H01Q21/22; H01Q21/00; H01Q3/36; H01Q15/14 |
Область поиска: | ;342/368 |
4381509 | April 1983 | Rotman et al. |
4588994 | May 1986 | Tang et al. |
4684952 | August 1987 | Munson et al. |
5389939 | February 1995 | Tang et al. |
5821908 | October 1998 | Sreenivas |
6388616 | May 2002 | Zhou |
6531989 | March 2003 | Barker et al. |
6911941 | June 2005 | Tebbe et al. |
6987591 | January 2006 | Shaker et al. |
7113131 | September 2006 | Burke |
7298555 | November 2007 | Capps |
7898480 | March 2011 | Ebling et al. |
8134511 | March 2012 | Koh et al. |
8811511 | August 2014 | Sayeed et al. |
8941540 | January 2015 | Harper et al. |
9368879 | June 2016 | Manry, Jr. |
9425512 | August 2016 | Maruyama et al. |
9640867 | May 2017 | Behdad et al. |
2003/0020173 | January 2003 | Huff |
2004/0017331 | January 2004 | Crawford et al. |
2004/0104860 | June 2004 | Durham et al. |
2006/0028386 | February 2006 | Ebling et al. |
2006/0044199 | March 2006 | Furuhi et al. |
2008/0030413 | February 2008 | Lee |
2008/0030420 | February 2008 | Lee |
2008/0055175 | March 2008 | Rebeiz et al. |
2008/0088525 | April 2008 | Jonathan |
2008/0284668 | November 2008 | Justice et al. |
2009/0273527 | November 2009 | Behdad |
2010/0033389 | February 2010 | Yonak et al. |
2010/0103049 | April 2010 | Tabakovic |
2010/0194663 | August 2010 | Rothwell et al. |
2010/0207833 | August 2010 | Toso et al. |
2010/0220035 | September 2010 | Lee et al. |
2010/0225562 | September 2010 | Smith |
2010/0283695 | November 2010 | Geterud |
2011/0025432 | February 2011 | Gagnon et al. |
2011/0025571 | February 2011 | Adada |
2011/0175780 | July 2011 | Gatti et al. |
2011/0210903 | September 2011 | Sarabandi et al. |
2012/0033618 | February 2012 | Wallace et al. |
2012/0056787 | March 2012 | Tatarnikov et al. |
2012/0088459 | April 2012 | Neto et al. |
2013/0322495 | December 2013 | Behdad et al. |
2017/0179596 | June 2017 | Diaz |
2019/0372199 | December 2019 | Haridas |
2182582 | May 2010 | EP | |||
2221919 | Aug 2010 | EP | |||
WO 2007/127955 | Nov 2007 | WO | |||
WO 2008/061107 | May 2008 | WO | |||
Ongareau et al., "Radar cross-section reduction by polarization rotation", Microw. Opt. Techn. Let., vol. 8, No. 6, pp. 316-318, (1995). cited by applicant . Liu et al., "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces," IEEE Trans Antennas Propag., vol. 64, No. 1, pp. 326-331, Jan. 2016. cited by applicant . Jia et al., "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans Antennas Propag., vol. 64, No. 1, pp. 179-188, Jan. 2016. cited by applicant . Chen et al., "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," J. Appl. Phys., vol. 115, No. 15, p. 154504, (2014). cited by applicant . Zhou et al., "A polarization-rotating SIW reflective surface with two sharp band edges," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 130-134, May 13, 2015. cited by applicant . Rao et al., Measurement Results of an Affordable Hybrid Phased Array Using a Radant Lens, Naval Research Laboratory Memo Report No. 5320--00-8439, May 15, 2000, Washington, D.C. cited by applicant . Romisch et al., Multi-Beam Discrete Lens Arrays with Amplitude-Controlled Steering, 2003 IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, Jun. 2003, pp. 1669-1672. cited by applicant . Romisch et al., Multibeam Planar Discrete Millimeter-Wave Lens for Fixed-Formation Satellites, 2002 URSI General Assembly Digest, Maastricht, The Netherlands, Aug. 2002. cited by applicant . Abbaspour-Tamijani et al., A planar filter-lens array for millimeter-wave applications, Proceedings of the IEEE International Antennas and Propagation Society International Symposium, vol. 1, Monterey, CA, Jun. 20-25, 2004, pp. 675-678. cited by applicant . International Search Report and Written Opinion received in PCT/US2011/045911, dated Jan. 19, 2012. cited by applicant . Lee et al., Multi-Beam Phased Array Antennas, Jan. 1, 2002, http://www.archive.org/details/nasa_techdoc_20030020930. cited by applicant . Hong et al., Spatial Processing With Lens Antenna Arrays for Direction-of-Arrival Estimation, Proceedings from "International Union of Radio Science" 27.sup.th General Assembly, Aug. 17-24, 2002, Maastricht, the Netherlands, http://www.ursi.org/Proceedings/ProcGA02/ursiga02.pdf. cited by applicant . Schoenberg et al., Two-level power combining using a lens amplifier, IEEE Trans. Microwave Theory Techn., Dec. 1994, vol. 42, No. 12, pp. 2480-2485. cited by applicant . Shiroma et al., A quasi-optical receiver with angle diversity, Proceedings of the IEEE International Microwave Symposium, San Francisco, 1996, pp. 1131-1134. cited by applicant . McGrath, Planar three-dimensional constrained lenses, IEEE Trans. Antennas Propagat., Jan. 1986, vol. 34, No. 1, pp. 46-50. cited by applicant . Hollung et al., A bi-directional quasi-optical lens amplifier, IEEE Trans. Microwave Theory Techn., Dec. 1997, vol. 45, No. 12, pp. 2352-2357. cited by applicant . Popovic et al., Quasi-optical transmit/receive front ends, IEEE Trans. Microwave Theory Techn., Nov. 1998, vol. 48, No. 11, pp. 1964-1975. cited by applicant . Pozar, Flat lens antenna concept using aperture coupled microstrip patches, Electronics Letters, Nov. 7, 1996, vol. 32, No. 23, pp. 2109-2111. cited by applicant . Sauleau et al., Quasi axis-symmetric integrated lens antennas: design rules and experimental/manufacturing trade-offs at millimeter-wave frequencies, Microwave and Optical Technology Letters, Jan. 2006, vol. 48, No. 1, pp. 20-29. cited by applicant . Al-Joumayly et al., Slide presentation of "Design of conformal, high-resolution microwave lenses using sub wavelength periodic structures", 2010 IEEE Antennas and Propagation Society/URSI Symposium, Toronto, ON, Jul. 11-17, 2010. cited by applicant . Al-Joumayly et al., Abstract of "Design of conformal, high-resolution microwave lenses using sub wavelength periodic structures", 2010 IEEE Antennas and Propagation Society/URSI Symposium, Toronto, ON, Jul. 11, 2010. cited by applicant . Al-Joumayly et al., Power Point Presentation "Wideband True-Time-Delay Microwave Lenses Using Low-Profile, Sub-Wavelength Periodic Structures", Jul. 2011. cited by applicant . Notice of Allowance issued in U.S. Appl. No. 12/891,887, dated Apr. 25, 2014. cited by applicant . Abadi et al., Harmonic-Suppressed Miniaturized-Element Frequency Selective Surfaces With Higher Order Bandpass Responses, IEEE Transactions on Antennas and Propagation, vol. 62, No. 5, Jan. 30, 2014, pp. 2562-25781. cited by applicant . Li et al., Wideband True-Time-Delay Microwave Lenses Based on Metallo-Dielectric and All-Dielectric Lowpass Frequency Selective Surfaces, IEEE Transactions on Antennas and Propagation, vol. 61, No. 8, May 17, 2013, pp. 4109-4119. cited by applicant . Li et al., Frequency Selective Surfaces for Pulsed High-Power Microwave Applications, IEEE Transactions on Antennas and Propagation, vol. 61, No. 2, Oct. 18, 2012, pp. 677-687. cited by applicant . Li et al., All-Dielectric, True-Time-Delay, Planar Microwave Lenses, Antennas and Propagation Society International Symposium, Jul. 7, 2013, Orlando, FL, IEEE, pp. 1172-1173. cited by applicant . Li et al., Broadband True-Time-Delay Microwave Lenses Based on Miniaturized Element Frequency Selective Surfaces, IEEE Transactions on Antennas and Propagation, vol. 61, No. 3, Nov. 16, 2012, pp. 1166-1179. cited by applicant . Abadi et al., Ultra-Wideband, True-Time-Delay Reflectarray Antennas Using Ground-Plane-Backed, Miniaturized-Element Frequency Selective Surfaces, IEEE Transactions on Antennas and Propagation, vol. 63, No. 2, Dec. 18, 2014, pp. 534-542. cited by applicant . Non-Final Office Action issued for U.S. Appl. No. 13/483,381, dated Jul. 2, 2015. cited by applicant . Final Office Action issued for U.S. Appl. No. 13/483,381, dated Jan. 14, 2016. cited by applicant. |