Патент США № | 10054678 |
---|---|
Автор(ы) | Mei и др. |
Дата выдачи | 21 августа 2018 г. |
Minimizing incorrect associations of sensor data for an autonomous vehicle are described. A driving environment of the autonomous vehicle includes a stationary object and a dynamic object. Such objects can be detected by radar sensors and/or lidar sensors. In one example, a history of radar observation can be used to minimize incorrect sensor data associations. In such case, the location of a stationary object in the driving environment can be determined. When a dynamic object passes by the stationary object, lidar data of the dynamic object is prevented from being associated with radar data obtained substantially at the determined location of the stationary object. In another example, identifiers assigned to radar data can be used to minimize incorrect sensor data associations. In such case, lidar data of an object can be associated with radar data having a particular identifier.
Авторы: | Xue Mei (Ann Arbor, MI), Naoki Nagasaka (Ann Arbor, MI), Bunyo Okumura (Ann Arbor, MI) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | Toyota Motor Engineering & Manufacturing North America, Inc. (Plano, TX) |
||||||||||
ID семейства патентов | 57795670 | ||||||||||
Номер заявки: | 14/813,429 | ||||||||||
Дата регистрации: | 30 июля 2015 г. |
Document Identifier | Publication Date | |
---|---|---|
US 20170031015 A1 | Feb 2, 2017 | |
Класс патентной классификации США: | 1/1 |
Класс совместной патентной классификации: | G01S 13/931 (20130101); G05D 1/0257 (20130101); G01S 13/865 (20130101); G01S 13/58 (20130101); G01S 13/42 (20130101); G05D 1/0238 (20130101); G01S 17/936 (20130101); G01S 17/42 (20130101); B60W 30/0956 (20130101); G05D 2201/0213 (20130101) |
Класс международной патентной классификации (МПК): | G01S 13/42 (20060101); G01S 13/86 (20060101); G01S 13/93 (20060101); G01S 17/42 (20060101); G01S 17/93 (20060101); G01S 13/58 (20060101); B60W 30/095 (20120101) |
Область поиска: | ;342/54 |
7046841 | May 2006 | Dow et al. |
8027029 | September 2011 | Lu et al. |
8351684 | January 2013 | Clar et al. |
8594927 | November 2013 | Louis et al. |
8605998 | December 2013 | Samples et al. |
8766975 | July 2014 | Mohr et al. |
2013/0242284 | September 2013 | Zeng |
2014/0032012 | January 2014 | Joshi et al. |
2016/0363647 | December 2016 | Zeng |
Mertz et al.; "Moving Object Detection with Laser Scanners"; Journal of Field Robotics; 2013; pp. 17-43; vol. 30, Issue 1; 2012 Wiley Periodicals, Inc.; (27 pages). cited by applicant . Kovavisaruch et al.; "Accuracy Improvement Method for Vehicle Detection Using Optical Sensors"; IEEE; 2009; pp. 218-222; (5 pages). cited by applicant . Cho et al.; "A Multi-Sensor Fusion System for Moving Object Detection and Tracking in Urban Driving Environments"; 2014 IEEE International Conference on Robotics & Automation (ICRA); May 31 - Jun. 7, 2014; pp. 1836-1843; Hong Kong, China; (8 pages). cited by applicant . Darms et al.; "Obstacle Detection and Tracking for the Urban Challenge"; IEEE Transactions on Intelligent Transportation Systems; Sep. 2009; pp. 475-485; vol. 10, No. 3; (11 pages). cited by applicant . Golovinskiy et al.; "Shape-baesd Recognition of 3D Point Clouds in Urban Environments"; 2009 IEEE 12th International Conference on Computer Vision (ICCV); pp. 2154-2161 (8 pages). cited by applicant . Mei et al.; "Detection and Motion Planning for Roadside Parked Vehicles at Long Distance"; 2015 IEEE Intelligent Vehicles Symposium; Jun. 28-Jul. 1, 2015; pp. 1-6; CEOX, Seol, Korea; (6 pages). cited by applicant . Felzenszwalb et al.; "Efficient Graph-Based Image Segmentation"; International Journal of Computer Vision; Sep. 2004; pp. 1-26; vol. 59, No. 2; (26 pages). cited by applicant . Takagi et al.; "Road Environment Recognition Using On-Vehicle Lidar"; Jan. 2006; pp. (9 pages). cited by applicant. |