![]() | |
---|---|
Патент США № | 9962142 |
Автор(ы) | Falahatpisheh и др. |
Дата выдачи | 08 мая 2018 г. |
The disclosure relates to method of processing three-dimensional images or volumetric datasets to determine a configuration of a medium or a rate of a change of the medium, wherein the method includes tracking changes of a field related to the medium to obtain a deformation or velocity field in three dimensions. In some cases, the field is a brightness field inherent to the medium or its motion. In other embodiments, the brightness field is from a tracking agent that includes floating particles detectable in the medium during flow of the medium.
Авторы: | Ahmad Falahatpisheh (Irvine, CA), Arash Kheradvar (Irvine, CA) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Патентообладатель: |
|
||||||||||
Заявитель: | The Regents of the University of California (Oakland, CA) |
||||||||||
ID семейства патентов | 55962147 | ||||||||||
Номер заявки: | 14/941,294 | ||||||||||
Дата регистрации: | 13 ноября 2015 г. |
Document Identifier | Publication Date | |
---|---|---|
US 20160140730 A1 | May 19, 2016 | |
Application Number | Filing Date | Patent Number | Issue Date | ||
---|---|---|---|---|---|
62079834 | Nov 14, 2014 | ||||
62113929 | Feb 9, 2015 | ||||
62199853 | Jul 31, 2015 | ||||
Класс патентной классификации США: | 1/1 |
Класс совместной патентной классификации: | G01S 15/8984 (20130101); A61B 8/0883 (20130101); A61B 8/5223 (20130101); G06K 9/4661 (20130101); G06K 9/4604 (20130101); G06K 9/52 (20130101); A61B 8/06 (20130101); A61B 8/483 (20130101); G01S 15/8993 (20130101); G01S 15/588 (20130101); G01S 15/89 (20130101); G06T 7/215 (20170101); G06T 7/269 (20170101); G06K 9/00134 (20130101); G06K 9/0014 (20130101); G06K 9/00147 (20130101); A61B 8/485 (20130101); G06T 2207/30104 (20130101); G06T 2200/04 (20130101); G06T 2207/10136 (20130101); G01S 13/50 (20130101); G01S 13/89 (20130101); G06T 2207/30048 (20130101); G06K 2209/05 (20130101) |
Класс международной патентной классификации (МПК): | G06K 9/00 (20060101); G06T 7/269 (20170101); G06T 7/215 (20170101); A61B 8/08 (20060101); G01S 15/89 (20060101); G01S 15/58 (20060101); G06K 9/46 (20060101); G06K 9/52 (20060101); A61B 8/06 (20060101); G01S 13/50 (20060101); G01S 13/89 (20060101) |
2010/0099991 | April 2010 | Snyder |
2014/0071125 | March 2014 | Burlina |
2015/0094584 | April 2015 | Abe |
2015/0201908 | July 2015 | Kang |
2016/0018501 | January 2016 | Kimura |
Barnhart, et al. 1994 "Phase-conjugate holographic system for high-resolution particle-image velocimetry" Applied Optics 33(30): 7159-7170. cited by applicant . Elsinga, et al. 2006 "Tomographic particle image velocimetry" Experiments in Fluids 41(6): 933-947. cited by applicant . Falahatpisheh, et al. 2014 "Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields" Experiments in fluids 55(11): 1-15. cited by applicant . Kheradvar, et al. 2010 "Echocardiographic particle image velocimetry: A novel technique for quantification of left ventricular blood vorticity pattern" Journal of the American Society of Echocardiography 23(1): 86-94. cited by applicant . Pereira, et al. 2002 "Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows" Meas Sci Technol. 13: 683-694. cited by applicant . Stanislas, et al. "Main results of the third international PIV challenge" Experiments in Fluids 45(1): 27-71. cited by applicant . Westerweel, et al. 2013 "Particle image velocimetry for complex and turbulent flows" Annual Review of Fluid Mechanics 45(1): 409-436. cited by applicant. |