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1
LOCALIZED CONTOUR TREE METHOD
FOR DERIVING GEOMETRIC AND
TOPOLOGICAL PROPERTIES OF COMPLEX
SURFACE DEPRESSIONS BASED ON HIGH
RESOLUTION TOPOGRAPHICAL DATA

PRIORITY CLAIM

This application claims priority to U.S. Provisional Ser.
No. 62/317,824 filed Apr. 4, 2016, the entire disclosure of
which is incorporated herein by this reference.

BACKGROUND

A depression is a sunken area on Earth’s surface sur-
rounded by higher ground in all directions. Surface depres-
sions are bowl-like landforms across a range of spatial
scales. They are formed by either natural or anthropogenic
processes. Natural surface depressions are abundant in topo-
graphically complex landscapes, particularly in glaciated,
Karst, volcanic or Aeolian landscapes (e.g. Huang, et al.
“Differentiating tower karst (fenglin) and cockpit karst
(fengcong) using DEM contour, slope, and centroid,” Envi-
ronmental Earth Sciences, 72(2), 407-416 (2014), the entire
disclosure of which is incorporated herein by this reference).

Examples of natural depressions include glaciated kettle
lakes, cirques, prairie potholes, Karst sinkholes, volcanic
craters, pit craters, impact craters, etc. Some surface depres-
sions are related to a variety of human activities, such as,
constructing detention basins and reservoirs, mining, quar-
rying, charcoal or lime production, or bombing.

Surface depressions trap, collect and often hold overland
runoff from higher areas of their closed interior drainage
basins during rainfall events and snowmelt in the spring.
Therefore, they are often covered by water temporarily,
seasonally or permanently, forming ponds, lakes, or wetland
landscapes. Depressions trap and store sediment and nutri-
ents, enhance water loss to the atmosphere via evaporation
and to deep groundwater via infiltration, and provide critical
habitats for plants and animals, having profound impacts on
local or regional hydrologic, ecologic, and biogeochemical
processes. The existence and density of surface depressions
control hydrological partitioning of rainfall into infiltration
and runoff and hydrologic connectivity, influence soil mois-
ture states and vegetation patterns, regulate runoff water
quality through trapping and filtering pollutants, wastes,
sediments and excess nutrients, and create the wet and
nutrient-rich environmental conditions for many species to
exist and reproduce. The vital hydrologic and ecologic
effects of surface depressions are largely determined by their
geographical location, surface area, depth, storage volume,
geometric shape, and other properties. Some of these prop-
erties are changing over time due to sedimentation, erosion,
vegetation dynamics, and other processes. Detection, delin-
eation and quantitative characterization of surface depres-
sions with accurate and up-to-date information are critical to
many scientific studies and practical applications, such as
ecohydrologic modeling, limnological analyses, and wet-
land conservation and management.

However, most previous studies were based on coarse
resolution topographical data, in which surface depressions
are treated as nuisance or spurious features. This is because
coarse resolution topographic data are unable to reliably
resolve small surface depressions and the noise and error in
the topographic data tend to create artifact depressions,
which are difficult to distinguish from real surface depres-
sion features. In a standard hydrological analysis, surface
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depressions are identified and then simply removed to create
a depressionless surface topography, which ensures that
water flows continuously across the topographic surface to
the watershed outlets and that the derived stream networks
are fully connected for runoff routing. Depressions are
typically removed by raising the elevations in depressions
with a depression-filling algorithm, or less commonly by
lowering the elevations of the depression boundary with a
depression-breaching algorithm. In the previous studies,
little attention has been paid to the geometric and topologi-
cal properties of surface depressions themselves, and the
effects of surface depressions on local and regional hydrol-
ogy and ecology were largely ignored.

In recent decades, the advent of airborne light detection
and ranging (LiDAR) and interferometric synthetic aperture
radar (InSAR) remote sensing technologies have produced
large volumes of highly accurate and densely sampled
topographical measurements (1-5 m spatial resolution) (see
White, S. A. et al. “Utilizing DEMs derived from LIDAR
data to analyze morphologic change in the North Carolina
coastline” Remote sensing of environment, (2003) 85(1),
39-47, and Finkl, et al. “Interpretation of seabed geomor-
phology based on spatial analysis of high-density airborne
laser bathymetry” Journal of Coastal Research, (2005)
21(3), 501-514, the entire disclosures of which are incorpo-
rated herein by this reference). The increasing availability of
high-resolution topographical data allows for an entirely
new level of detailed delineation and analyses of small-scale
geomorphologic features and landscape structures at fine
scales (Ussyschkin, V. et al. “Airborne Lidar: Advances in
Discrete Return Technology for 3D Vegetation Mapping.”
(2010) Remote Sensing, 3(3), 416-434, the entire disclosure
of which is incorporated herein by this reference).

To fully exploit high resolution topographical data for
scientific investigation of hydrologic and ecologic effects of
surface depressions, new algorithms and methods are
required to efficiently delineate, identify, and quantify sur-
face depressions across scales.

SUMMARY

Accordingly, embodiments of the present invention pro-
vide a novel model for detecting and delineating surface
depressions across scales and for characterizing their geo-
metric properties and topological relationships based on
deriving a localized contour tree. The methods are based on
the novel concept of a pour contour. The numerical algo-
rithm for surface depression identification is analogous to
human visual interpretation of topographical contour maps.

One embodiment of the invention is directed to computer-
implemented methods for detecting and characterizing sur-
face depressions in a topographical area. The methods
comprise a) providing a digital elevation model (DEM) of
the topographical area; b) designating a base elevation
contour and a contour interval for the DEM; ¢) using the
base elevation contour and interval from b), generating an
elevation contour representation of the topographical area,
wherein the contour representation comprises closed con-
tour lines and excludes open contour lines; d) identifying
one or more seed contours, defined as a lowest elevation
interior contour in a set of concentric closed contours, and,
beginning with the lowest elevation seed contour and hier-
archically expanding to higher elevation contours until a
highest elevation contour is reached, constructing a local
contour tree, wherein each contour line is represented as a
node in the local contour tree; and e) repeating step (d)
iteratively until all highest elevation contours are incorpo-
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rated in a local contour tree; wherein the number of surface
depressions corresponds to the number of local contour
trees, a simple depression comprises a local contour tree
with one seed node, and a complex depression comprises a
local contour tree with more than one seed node. A quasi-
pour contour node is the highest elevation contour line for
each local contour tree; however the true pour contour node
may be calculated. The true pour contour node is the spill
elevation and the quasi-pour contour node must be less than
or equal to the elevation of the true pour contour node.

Contour trees are constructed from the contour line rep-
resentations wherein a line is equivalent to a node such that
a local contour tree comprises one root node corresponding
to a highest elevation contour, a set=0 of internal nodes, and
a setz1 of terminal nodes, each terminal node corresponding
to a seed contour enclosed within the highest elevation
contour, each internal node having 0 or 1 parent nodes, and
1 or more child nodes, wherein an internal node having 2 or
more child nodes is designated a fork node, and each child
of a fork node is designated a split node.

In some embodiments, the identified surface depressions
may be further characterized by calculating one or more
morphometric properties of the depression relevant to the
type of depression sought to be identified.

Other embodiments of the invention provide non-transi-
tory computer readable media comprising computer-execut-
able instructions for carrying out one or more embodiments
of the inventive methods.

One embodiment provides a method for detecting and
characterizing surface depressions in a topographical land-
scape, the method comprising: detecting surface depressions
by generating a forest of local contour trees from a contour
representation of the landscape, said contour representation
generated according to a base elevation and a contour
interval, each local contour tree corresponding to a surface
depression and comprising a pour contour node, and at least
one sink point; and characterizing the surface depressions by
filtering the detected surface depressions according to a
plurality of morphological thresholds, said morphological
thresholds being derived from data relevant to surface
depressions of the topographical area.

Topological relationships between adjacent contour lines
are established and one or more local contour trees are
derived based on graph theory. By using a localized fast
priority search algorithm over the contour tree, the pour
contours are identified to represent surface depressions at
different scales (levels). Surface area, storage volume and
other morphological/morphometric properties may be cal-
culated for each individual depression, and the nested topo-
logical relationships between surface depressions may be
derived, providing critical information for characterizing
hydrologic connectivity, simulating the dynamic filling-
spilling-merging hydrologic process, and examining the
ecologic and biogeochemical function of surface depres-
sions on both natural and human-modified landscapes.

These and other embodiments and aspects will be clarified
and expanded by reference to the Figures and Detailed
description set forth below. Figures are included to illustrate
certain concepts and particular embodiments and should not
be construed as limiting the full scope of the invention as
defined by the appended claims.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A. Longitudinal profile of an exemplary simple
surface depression; and
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FIG. 1B. A contour representation of the simple surface
depression.

FIG. 2A. Longitudinal profile of an exemplary composite/
compound surface depression with nested hierarchical struc-
ture; and

FIG. 2B. A contour representation of the compound
surface depression.

FIG. 3A. Illustration of single-branch local contour tree
representation for the simple surface depression of FIG. 1;

FIG. 3B. Illustration of a multi-branch contour tree for the
composite/compound surface depression shown in FIG. 2;
and

FIG. 3C. A simplified contour tree for the composite
surface depression of FIG. 2.

FIG. 4. Flowchart showing a general embodiment of a
localized contour tree method.

FIG. 5. Map of an illustrative case study area in Crow
Wing County, Minnesota.

FIG. 6. Shaded relief map with contours for the Crow
Wing study area.

FIG. 7. Localized contour tree depression analysis result
for the Crow Wing study area.

FIG. 8. Whitebox stochastic depression analysis result for
the Crow Wing study area.

FIG. 9. Distribution of sinkhole inventory points in Fill-
more County, Minnesota.

FIG. 10. Flowchart of an embodiment of the inventive
methods as applied to detection of sinkholes.

FIG. 11A. Contour representation overlain on a shaded
DEM for an illustrative compound depression;

FIG. 11B. Elevation profile graph of a transect of the same
compound depression;

FIG. 11C. Local contour tree for the compound depres-
sion; and

FIG. 11D. Simplified local contour tree for the compound
depression.

FIG. 12. Illustration of a fitted minimum bounding rect-
angle for a surface depression.

FIG. 13. Histograms of representative morphometric
characteristics width, length, area, volume, depth, standard
deviation of elevations, elongatedness and compactness for
1784 1% rank training sinkholes.

FIG. 14. Table 4 setting forth summary statistics for the
1784 1°* rank training sinkholes.

FIG. 15. Table 5 setting forth summary statistics for the
extracted sinkholes of four different ranks.

FIG. 16, Table 6 providing a comparison of the sinkhole
inventory database and the LiDNR-derived sinkhole data
(note: KFDB=sinkhole inventory points in Karst Feature
Database; KFDB detected=sinkhole inventory points
located within LiDAR-derived depressions using the con-
tour tree method; KFDB not detected=sinkhole inventory
points not located within LiDAR-derived depressions; and
new sinkholes=sinkholes detected using the contour tree
method but not recorded in KFDB).

FIG. 17A. Examples of on-sinkhole depression polygons
overlain with LiDAR DEM shaded relief; or

FIG. 17B. Color infrared aerial imagery.

FIG. 18A. An LiDAR DEM shaded relief;

FIG. 18B. Examples of extracted sinkhole boundaries
overlain on the LIDAR DEM shaded relief; and

FIG. 18C. Color infrared aerial imagery of the same area.

FIG. 19A. Sinkhole boundaries delineated using the sink-
filling method; and

FIG. 19B. Sinkhole boundaries delineated using the local-
ized contour method.
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FIG. 20. Map showing the location of the Little Pipeste
Creek waters North Dakota.

FIG. 21A. A shaded relief map of the LiDAR-derived bare
earth DEM from the Little Pipestem Creek watershed 2011;
and

FIG. 21B. LiDAR intensity imagery.

FIG. 224. A false color composite of 1-m resolution
infrared aerial photograph for the Little Pipestem Creek
watershed from 2012; and

FIG. 22B. national wetlands inventory (NWI) data for the
area from 1979-1984.

FIG. 23A. Table 7 sets forth land-use and land-cover
composition for the Little Pipestem Creek watershed study
area;

FIG. 23B. Table 8 showing a summary of data sets
acquired, data acquisition dates, data resolution, and use;
and

FIG. 23C. Table 9 shoving a summary of the statistics for
the NWI data for the study area.

FIG. 24. Flowchart of an embodiment of the inventive
methods for delineating potential wetland depressions,
quantifying depression hierarchical structure, and estimating
depression water storage volumes.

FIG. 25A. Profile view of an illustrative compound/
complex depression nested hierarchical structure;

FIG. 25B. A plan view of A; and

FIG. 25C. A depression tree representation where differ-
ent color nodes in the tree represent different portions of the
complex depression basin of A where blue is 1% level, green
is 27? level, and red is 377 level.

FIG. 26A. Tllustration of a localized contour tree method
for depression, delineation, the contour level is set at 20 cm,
the contour tree representation where the letters on the
contour surface correspond to the nodes in the contour tree
graph;

FIG. 26B. A simplified contour tree representation;

FIG. 26C. Shows closed contours and NWI polygons
overlaid on LiDAR intensity imagery from 2011; and

FIG. 26D. Shows closed contours and NWI polygons
overlaid on color-infrared aerial photographs from 2012.

FIG. 27A. Spatial distribution of detected depressions for
Little Pipestem Creek watershed;

FIG. 27B. Depression boundaries and NWI polygons
overlaid on the LiDAR intensity imagery from 2011; and

FIG. 27C. Depression boundaries and NWI polygons
overlaid on the false color composite of aerial photographs
from 2012.

FIG. 28. Graphical comparison of depression area-vol-
ume relationships between LiDAR-computed and area-to-
volume equation predicted models.

FIG. 29. Exemplary computer-executable source code for
implementing the method according to claim 1.

DETAILED DESCRIPTION

Surface depressions are abundant in topographically com-
plex landscapes and they exert significant influences on
hydrologic, ecological and biogeochemical processes at
local and regional scales. The recent emergence of LiDAR
and InSAR remote sensing technologies provides an extraor-
dinary capability for acquiring high resolution topographical
data, which makes it possible to detect and quantify small
surface depressions.

The localized contour tree method was developed by
imitating human reasoning processes for interpreting and
recognizing surface depressions from a vector-based contour
map. A new concept of “pour contour” is set forth and
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applied to develop a graph theory-based contour tree repre-
sentation that is provided for the first time to tackle the
surface depression detection and delineation problem. The
pour contour and the contour tree constitute the cornerstones
concepts and the detection methods are conceptually differ-
ent from the previous raster-based depression detection
methods. The localized growing and construction of contour
trees and development of optimal tree search algorithms
ensure the computational feasibility and efficiency of the
methods.

Surface topography can be digitally represented by raster-
based elevation grids-Digital Elevation Models (DEMs) or
by vector-based equal elevation contour lines. In a DEM, a
surface depression consists of a local minimum and a set of
spatially connected grid cells of low elevation, which are
completely surrounded by embankment cells of higher
elevation. The local minimum at the depression bottom is
referred to as a sink point or a pit (FIGS. 1A and 1B), and
its elevation is less than or equal to that of its eight
neighbors. The sink point does not have a natural downslope
flow path to watershed outlets, and the surrounding overland
flow drains towards the sink point of the depression, forming
an interior basin. When more runoff water drains to the
depression, the water surface in it will eventually be raised
to a certain level at which flood water starts to overflow from
its perimeter. The lowest cell on the depression perimeter is
referred to as the pour point, where water would pour out if
the depression is filled up with water.

Geometrically, the boundary of a surface depression is
defined by the maximum level water surface, when flood
water fills up the depression and starts to spill out (FIGS. 1A
and 1B). The elevation of the depression pour point is
referred to as spill elevation (see Wang and Liu, “An
efficient method for identifying and filling surface depres-
sions in digital elevation models for hydrologic analysis and
modeling” International Journal of Geographical Informa-
tion Science, 20(2), 193-213 (2006), the entire disclosure of
which is incorporated herein by this reference). The bound-
ary of a surface depression indicates the spatial extent of the
pond/lake created by flooding the depression.

In a vector-based contour representation, a surface depres-
sion is indicated by a series of concentric (concentric, as
utilized herein, is not intended to be interpreted literally, but
to indicate that all lines in the series are closed, non-
intersecting, and have a common interior sink point) closed
contours with the inner contours having lower elevation than
their outer surrounding (FIGS. 1A and 1B). Although a hill
has a similar concentric pattern of closed contours, the
elevation increases rather than decreases toward the inner
contours. On a topographical map, small tick marks or
hachures, special cartographic symbols, are applied to the
closed contour lines of the depression, with hachures point-
ing downslope. Such contours are referred to as hachured
contour lines or depression contour lines. The sink point is
located inside the innermost closed contour line. The out-
ermost closed contour line of the depression indicates the
spatial extent (boundary) of the depression. The elevation of
the outermost closed contour approximates the spill eleva-
tion.

Surface depressions may vary in size, depth, and shape.
The composition and structure of surface depressions can be
highly complex (see, e.g. Hayashi, M. et al. “Simple equa-
tions to represent the volume-area-depth relations of shallow
wetlands in small topographic depressions” Journal of
Hydrology, 237(1), 74-85 (2003), incorporated herein by
reference). Some surface depressions might contain flat
areas and other smaller nested depressions. On a topographi-
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cal contour map, complex surface depressions are mani-
fested by the nested relationships of several sets of concen-
tric closed contours (FIGS. 2A and 2B). The nested
hierarchical structure of surface depressions controls the
dynamic filling-spilling-merging hydrologic process.

Surface depressions detected from a DEM or a contour
map could be real landscape features or spurious artifacts.
Artifact depressions are not actual bowl-like landforms.
They are caused by topographical data noise and errors, such
as original measurement errors, data truncation or rounding
errors, interpolation defects during data processing, and the
limited horizontal and vertical resolution of DEMs (see
Martz and Garbrecht (1999) “An outlet breaching algorithm
for the treatment of closed depressions in a raster DEM”
Computers & Geosciences, 25(7), 835-844, incorporated
herein by reference). Artifact depressions are very common
in coarse resolution DEMs, particularly for low-relief ter-
rains, id. Despite superior spatial resolution and high vertical
accuracy, high resolution DEMs from LiDAR and InSAR
technologies may also contain depression artifacts due to
their imperfections (see Li et al. (2011) “Lidar DEM error
analyses and topographic depression identification in a hum-
mocky landscape in the prairie region of Canada. Geomor-
phology, 129(3-4), 263-275, incorporated herein by refer-
ence). Artifact depressions are often characterized by small
size, shallowness, or irregular shapes.

A number of algorithms and methods have been proposed
to detect and characterize surface depressions in the litera-
ture (Marks et al. 1984, Jenson and Domingue 1988, Plan-
chon and Darboux 2002, Lindsay and Creed 2006, Wang and
Liu 2006, Barnes et al. 2014). The most widely used
conventional method for handling surface depressions was
developed by Jenson and Domingue (1988). This conven-
tional method is overly time-consuming and deficient for
handling large high resolution DEM data sets. To process
massive LIDAR DEMs for surface depression delineation,
Wang and Liu (see “An efficient method for identifying and
filling surface depressions in digital elevation models for
hydrologic analysis and modeling” International Journal of
Geographical Information Science, (2006) 20(2), 193-213,
incorporated herein by reference) developed a very efficient
algorithm to identify and fill surface depressions by intro-
ducing the concept of spill elevation and integrating the
priority queue data structure into the least-cost search of
spill paths. Due to its high computation efficiency and
coding simplicity and compactness, the priority-flood algo-
rithm of Wang and Liu ENREF 4 has been widely adopted
and implemented by several open source GIS software
packages, e.g., SAGA GIS (http://www.saga-gis.org/), and
Whitebox Geospatial Analysis Tools (GAT) (http://ww-
w.uoguelph.ca/~hydrogeo/Whitebox/). A number of variants
of the priority-flood algorithm with a varying time complex-
ity have been proposed, and a detailed review is provided by
Barnes et al. (2014) Priority-flood: An optimal depression-
filling and watershed-labeling algorithm for digital elevation
models. Computers & Geosciences, 62(0), 117-127 et al.
(2014), incorporated herein by reference. To distinguish real
surface depressions from artifacts, Lindsay and Creed
((2005) “Removal of artifact depressions from digital eleva-
tion models: Towards a minimum impact approach” Hydro-
logical Processes, 19(16), 3113-3126, incorporated herein
by reference) developed a stochastic depression analysis
method. In their method, the Monte Carlo procedure is
utilized to create a random error grid, which is then filled by
using the priority-flood algorithm of Wang and Liu (2006).
The probability of a depression occurring at any given
location is calculated as the ratio of the number of depres-
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sion occurrences to the total number of iterations. Those
with a probability higher than a user-specified threshold
value are identified as real surface depressions. The stochas-
tic depression analysis algorithm of Lindsay and Creed
(2006) has been implemented as a plugin tool in Whitebox
GAT, a powerful open-source GIS and Remote Sensing
software package developed at the University of Guelph’s
Centre for Hydrogeomatics.

Previous studies have focused on identifying and filling
surface depressions based on raster-based DEMs for hydro-
logic modeling of overland flow (surface runoff). So far,
little research has been directed to the quantitative charac-
terization of surface depressions or the explicit representa-
tion and derivation of spatial relationships between surface
depressions, although the newly emerged high resolution
topographical data contains sufficient information to reliably
resolve even small scale surface depression features. To fill
up this research gap, the present inventors developed meth-
ods based on a novel localized contour tree algorithm.

In contrast to previous studies, embodiments of the
method are based on the vector-based contour representation
of surface topography. The computational algorithm of
embodiments of the method is conceptually similar to the
reasoning logic of human visual interpretation of surface
depressions on a topographical map, namely, identifying
surface depressions through finding sets of concentric closed
contours with the decreasing elevation towards the inner
center. It includes four key technical components: 1) Iden-
tifying the “seed contours” to construct local contour trees to
represent the topological relationships between adjacent
closed contours based on the graph theory; 2) identifying
quasi “pour contours” to approximate surface depressions by
fast breadth-first priority search over each local contour tree;
3) using an outer expansion algorithm to determine true
“pour contours” to precisely delineate surface depressions
and then compute their geometric and volumetric properties;
and 4) simplifying local contour trees by removing non-pour
contour nodes to derive explicit nested relationships
between surface depressions across scales.

Identification of Seed Contours and Construction of Local
Contour Trees

Contour lines can be derived from a DEM consisting of
regularly distributed elevation points or from the Triangu-
lated Irregular Networks (TIN) consists of irregularly dis-
tributed elevation points. The position and density of con-
tour lines are determined by two important parameters: the
base contour line and the contour interval. The data noise or
errors in the DEM or TIN may lead to jagged, irregular or
fragmented contour lines. The common practice to reduce
data noise is to smooth the DEM by a filtering operation
prior to generating contours. A Gaussian or median filter can
be used to remove data noise and suppress small artifact
depressions without distorting the boundaries of true topo-
graphical depressions (Liu et al. (2010) “An object-based
conceptual framework and computational method for rep-
resenting and analyzing coastal morphological changes”
International Journal of Geographical Information Science,
24(7), 1015-1041, the disclosure of which is incorporated
herein by reference). Contours are then created based on the
smoothed DEM with an appropriate contour interval.

There are two types of contours: closed contours and open
contours. An open contour has a starting and an ending
points that intersect map edges at different locations (e.g.,
contour F in FIG. 1B), while a closed contour is continuous
without intersections with the map edges, forming a loop
(e.g., contour A, B, C, D, and E in FIG. 1B). To detect
surface depressions, only closed contours with a concentric
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pattern are examined, while all open contours are ignored in
the subsequent analysis. First, “seed contours” are identified
and used to construct local contour trees. A seed contour is
a closed contour that contains a sink point, but does not
contain any other contours inside. The seed contour is the
innermost closed contour, which may be surrounded by
other contours. As shown in FIGS. 2A and 2B, contours A,
C, and F are seed contours, whereas contours B, D, E, G, H,
1, J, K and L are not. The local contour tree construction is
prioritized in terms of the elevation value of the identified
seed contours, and the seed contour with the lowest eleva-
tion value is first processed in the queue.

The contour tree is a conceptual data structure for describ-
ing the relationships among contours (see Kweon and
Kanade, 1994. Extracting topographic terrain features from
elevation maps. CVGIP: image understanding, 59(2), 171-
182, incorporated heren by reference). A contour map can be
transferred into a graph with a tree structure (Boyell and
Ruston “Hybrid techniques for real-time radar simulation.
ed. Proceedings of the Nov. 12-14, 1963, fall joint computer
conference, 1963, 445-458). The present work utilizes the
contour tree to represent the topological relationship
between adjacent contours within a set of concentric closed
contours. The tree is composed of a root node, a set of
internal nodes (branches), and a set of terminal nodes
(leaves). The nodes in the tree represent closed contours, and
the link (edge) between nodes represents the containment
relationship between two adjacent closed contours. Each
node in a contour tree has only one parent node, but may
have one or more child nodes. If an internal node has two or
more child nodes, it is called fork (or join) node. The two or
more child nodes of a fork node are called split nodes. The
contour tree is constructed in a bottom-up manner with a tree
growing algorithm. For a simple surface depression shown
in FIGS. 1A and 1B, the contour tree is initiated with the
seed contour A as the leaf (terminal) node, which is the first
level contour at the bottom of the tree. Then, the contour tree
is grown by searching and adding the adjacent closed
contour B that contains the seed contour (leaf node) as its
parent node. This iterative process continues, until the
surrounding outermost closed contour E is included as the
root node. The single level surface depression leads to a
simple one-branch contour tree (FIG. 3A).

For a complex nested surface depression shown in FIGS.
2A and 2B, the bottom-up tree growing algorithm results in
a multi-branch contour tree. The root node (L in FIG. 3B)
has the highest elevation and directly or indirectly encloses
all of the other closed contours. A, C and F are the leaf nodes
(seed contours) without child nodes. The split and merge at
an internal node indicate the change in topological relation-
ship. The fork node G has two child nodes (contours) of the
same elevation, D and E. The contour tree embodies the
dynamic filling-spilling-merging hydrologic process of the
nested hierarchical structure of depressions (see Chu et al.
2013. Dynamic puddle delineation and modeling of puddle-
to-puddle filling-spilling-merging-splitting overland flow
processes. Water Resources Research, 49(6), 3825-3829,
incorporated herein by reference). When the overland runoff
flows into the depression a and depression b (FIGS. 2A and
2B), its water surface would gradually increase from the leaf
node level (seed contour) to the parent node level of higher
elevation. When the water surfaces of depression a and
depression b reach to their spill elevation SE1 (Wang and
Liu 2006), these two adjacent depressions would merge to
form a larger complex depression c, which is reflected by
sibling nodes D and E join at fork node G in the contour tree
(see FI1G. 3B). When the water surface levels of depression
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¢ and depression d increase to above their spill elevation
SE2, these two depressions further combine to form an even
more complex and larger surface depression e, which cor-
responds to the merge of nodes I and J at node K. Clearly,
the contour tree contains the information about the nested
hierarchical relationships between surface depressions of
different scales. Each local contour tree represents one
disjointed depression (simple or composite), and the number
of trees in the forest represent the total number of disjointed
depressions (single or composite) for the entire area.

Identification of Quasi-Pour Contours Through a Priority
Breadth-First Search Spanning Local Contour Trees

In this study, a surface depression is treated as a 2D spatial
object whose spatial extent is defined by the maximum level
water surface area when flood water completely fills up the
depression and starts to spill out from its pour point. The
boundary of a surface depression corresponds to a closed
contour with the same elevation as its pour point, which is
referred to as the pour contour in this study. The pour point
of the depression is located on its pour contour. Therefore,
the task of surface depression detection becomes the iden-
tification of pour contours. For a simple one-branch contour
tree in FIG. 3A, the root node E indicates the outermost
closed contour of the single level depression, which is
surrounded by either open contours or closed contours with
alower elevation. The closed contour corresponding the root
node E is referred to as a quasi-pour contour. Due to the
contour interval, the elevation value of the quasi-pour con-
tour may be equal to or slightly smaller than the spill
elevation, and the quasi-pour contour would be overlapped
or contained by the true pour contour in a close vicinity
(FIGS. 1A and 1B). For a multi-branch contour tree (FIG.
3B), the root node L is a quasi-pour contour too, which
approximates the boundary of the highest level surface
depression e (FIG. 2). The nodes I and J, two child split
nodes of the fork node K, are two quasi-pour contours,
approximately representing the boundaries of two surface
depressions ¢ and d (FIG. 2A). Similarly, the nodes D and
E are the child nodes of the fork node G. They are quasi-pour
contours, approximately defining the boundaries of surface
depressions a and b (FIG. 2A).

In a contour tree, the root node and the child split nodes
of all fork nodes are quasi-contours, which approximates all
surface depressions across scales. A breadth-first priority
search algorithm is applied to the contour tree to find and
label all quasi-pour contours.

Determination of True Pour Contours and Geometric Prop-
erties of Surface Depressions

The elevation value of a quasi-pour contour may be equal
to or lower than the spill elevation. The elevation difference
between a quasi-pour contour and the true pour contour is
always smaller than the contour interval. When the contour
interval is sufficiently small, all quasi contours would be
very close to their true pour contour.

When a quasi-pour contour has a slightly smaller value
than the spill elevation, the surface area and depth of the
spatial object bounded by the quasi-pour contour would be
accordingly smaller than those of the true pour contour. To
get accurate measurements on the geometric properties of
surface depressions, each quasi-pour contour is expanded
outward within the contour interval to determine its true
pour contour using an incremental buffering algorithm. The
true pour contours are then used to define the boundaries of
all surface depressions.

In specific examples, using the true pour contours as the
boundaries, three sets of geometric properties for each
surface depression are derived: 1) planimetric attributes, 2)
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depth and volumetric attributes, and 3) shape attributes.
Planimetric attributes include the geographical location of
centroid point, perimeter, and surface area. Depth and volu-
metric attributes include mean depth, maximum depth, and
storage volume of water detention capacity. Shape attributes
include compact index, circularity, and asymmetry. The
planimetric and shape attributes are calculated by treating
the true pour contour as a polygon. The depth and volumetric
attributes are calculated by statistical analysis of all eleva-
tion cells within the true pour polygon. The maximum depth
of a surface depression is the elevation difference between
pour point (spill elevation) and the sink point.

Derivation of Explicit Nested Topological Relationships of
Surface Depressions Through Simplification of Local Con-
tour Trees

To explicitly represent the nested hierarchical structure of
a complex surface depression, the local contour tree is
simplified by removing the nodes that do not correspond to
pour contours. The root node of the contour tree is kept in
the simplification since it always represents a pour contour.
By searching the contour tree top-down, we examine each
node if it is a child split node of a fork node. Only the child
split nodes of fork nodes are retained, and other nodes in the
contour tree simplification are deleted.

After the simplification, the single branch contour tree
only has the root node left (e.g., FIG. 3A). The multi-branch
contour tree shown in FIG. 3B is reduced to a smaller
compact tree with only 5 nodes (FIG. 3C). The simplified
tree may be referred to as the depression tree, since all nodes
are pour contours and represent surface depressions at
different levels within a complex depression. The leaf nodes
of the simplified depression tree represent simple depres-
sions at the first level. The parent fork node of two leaf nodes
in the depression tree represents a composite at the second
level. The merge of a second level depression node with
other second level depression nodes or with other first level
depression nodes form a more complex third level depres-
sion. The complexity level of a composite depression can be
measured by the height of the depression tree, namely the
length of the longest path from the root node to the leaf
nodes.

Traversing the depression tree top-down simulates the
splitting of a large composite surface depression into smaller
lower level depressions when water level decreases, while
traversing the depression tree bottom-up emulates the merg-
ing of smaller lower level depressions into larger and more
complex depressions when water level increases. A complex
depression may have more than one first level simple
depressions embedded within it. FIG. 2A illustrates a com-
plex depression e with three-levels, in which three first level
depressions (a, b, d) and one second level depression (c) are
nested inside. The combination of the topological informa-
tion about the nested hierarchical structure and the geomet-
ric attributes provides a comprehensive description and
quantification of each individual surface depression across
scales.

Computation Procedure and Algorithm Pseudo Code

Embodiments of the inventive methods are specifically
designed for computer implementation to provide rapid
construction/detection and delineation of surface depres-
sions in a landscape of interest. The flowchart in FIG. 4
shows the data processing steps and algorithm components
of one exemplary embodiment of a localized contour tree
method. The data processing steps include: 1) Smooth the
DEM with a Gaussian or median filter; 2) generate contours
from the smoothed DEM by choosing the elevation of the
base contour and the contour interval; 3) identify seed
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contours and construct local contour tree based on the
topological relationship between the concentric closed con-
tours; 4) search and identify all quasi-pour contours and
simplify the local contour tree to the depression tree; 5)
determine true pour contours and its spill elevation based on
quasi-pour contour using an incremental expansion algo-
rithm; and 6) calculate planimetric, volumetric and shape
properties for each surface depression defined by the true
pour contour.

Algorithm pseudo codes for key technical components are
given in Table 1. Algorithms and mathematical equations
used for computing planimetric, volumetric and shape prop-
erties can be found in Liu and Wang, 2008 (“Mapping
detention basins and deriving their spatial attributes from
airborne LiDAR data for hydrological applications™ Hydro-
logical Processes, 22(13), 2358-2369) and Liu et al. (2010),
both of which are incorporated herein by this reference.

The algorithm has been implemented using Microsoft
Visual C++ NET programming language and ArcObjects
SDK for .NET. An array is declared as CONTOUR, which
stores the information for each closed contour. The member
variables of the array CONTOUR include the contour
unique identification number (UIN), contour elevation (CE),
sink point elevation (SPE), inwards adjacent contour neigh-
bors (NBR), outwards adjacent contour unique identification
number (OUIN), outwards adjacent contour elevation
(OCE) and depression level (DL). If no outwards adjacent
contour exists, the OUIN and OCE are set as —1. To derive
the number of inwards adjacent neighbors (NBR) for each
contour, we used the ArcGIS “Polygon Neighbors™ geopro-
cessing tool. The contour line feature layer was first con-
verted to non-overlapping polygon feature layer and then
used as the input for the “Polygon Neighbors” tool, which
finds the neighbors of each contour polygon and record the
statistics in the output table. A priority queue is declared as
SEED, which has the same member variables as CON-
TOUR. We prioritize the local contour tree construction in
terms of the elevation value of the identified seed contours,
and the seed contour with the lowest contour elevation (CE)
has the top priority and is first processed in the queue. The
member functions of the priority queue include SEED.
push( ) SEED.top( ) and SEED.pop( ) which respectively
support the operations of inserting a contour node into the
queue, searching the lowest elevation contour node from the
queue, and deleting the lowest elevation contour node from
the queue. By looping through the array CONTOUR, the
contours with no inwards adjacent contour neighbors
(NBR=0) are determined as seed contours and inserted into
the priority queue SEED through the member function
SEED.push( ) Another two priority queues are declared as
LBQ and UBQ, which store the contour nodes representing
the lower and upper bound at each depression level, respec-
tively. The array FLAG marks the contour nodes that have
been processed and pushed into the queue. Two maps are
declared as QPOUR and TPOUR, which store the set of
quasi pour contours and true pour contours at each depres-
sion level, respectively. Maps are associative containers that
store elements formed by key/value pairs and are accessible
by key and by index. FIG. 29 illustrates a computer-
implementable code for an exemplary method.
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(a) Pseudo-code for identifying all quasi-pour contours and assigning level
number to each depression; (b) pseudo-code for determining true pour contours
based on quasi contours with an incremental expansion algorithm.

(2) (b)

Function IdentifyQuasiPourContour
LBQ < SEED
level < 1
condition < true
While condition
While LBQ is not empty

D = contour interval

For level =1 to max(level)
LBQ < QPOUR[level]

Function IdentifyTruePourContour

s < LBQ.top( ) LBQ

LBQ.pop(s) low < s.CE

While s.OUIN = -1 and s.CE < high < s.CE + D
s.OCE While (high — low < W)

t « CONTOUR[s.OUIN]
If tNBR = 1 Then

mid < (low + high) / 2
If contour(mid) is closed and

W = contour elevation difference

For each quasi pour contour (s) in

st only encloses contour(s)
End If Then
End While low < mid
UBQ.push(s) Else If contour(mid) is open
End While high < mid
If UBQ.size > 0 Then End If
QPOUR.add(level, UBQ) End While

level < level + 1
While UBQ is not empty
s <= UBQ.top( )

contour Then
UBQ.push(high)

If contour(high) is closed

UBQ.pop(s) Else If contour(mid) is closed
If s.OUIN = -1 and s.CE < contour Then
s.OCE UBQ.push(mid)

t <= CONTOUR[s.OUIN]

If tNBR > 1 and FLAGIt] contour Then

= false UBQ.push(low)
LBQ.push(t) End If
FLAG([t] < true End For
Else TPOUR.add(level, UBQ)
condition < false End For
End If End Function
End While

End Function

Else If contour(low) is closed

The inventive localized contour tree method is fundamen-
tally different from the previous raster-based methods for
surface depression detection. The rationale used in our
method for surface depression detection is the same as the
reasoning process that a human interpreter visually identifies
surface depressions from a vector-based contour map. The
design is based on a core concept “pour contour” that
developed by the present investigators for surface depres-
sion studies. The graph theory based algorithms have been
introduced to implement different technical components of
the method. The surface depression detection problem is
treated as the identification of a set of concentric contours
with an increasing elevation outward, which is represented
by a contour tree. The delineation of surface depressions is
realized by identifying and refining pour contours. The
search for surface depressions only occurs locally surround-
ing the seed contours rather than globally over all contours
for the entire study area. The breath-first priority search is
used to construct and grow local contour trees, identify
quasi-pour contours, and simplify the contour tree. Local-
ized contour tree construction and optimized graph theory
based search algorithms make embodiments of the inventive
methods computationally efficient and fast. The detection
results for surface depression are reliable and consistent with
human interpretation results.

According to embodiments of the method, each disjoined
surface depression is detected and identified as one local
contour tree. A disjointed surface depression is spatially
independent of other surface depressions. When fully
flooded, water in a disjointed surface depression will spill

40

45

out and become overland flow, rather than directly merging
with other surface depressions. A disjoined surface depres-
sion can be a single depression represented by a single-
branch contour tree or a complex nested depression repre-
sented by a multi-branch contour tree. All disjointed surface
depressions in the study area correspond to a forest of many
local contour trees.

Embodiments of the method further explicitly derive the
geometric and topological properties of surface depressions.
This goes beyond the previous raster-based methods, which
focused on surface depression detection and filling without
much attention to quantification of surface depressions. By
precisely determining the position of true pour contours as
the boundaries of surface depressions, the methods are able
to accurately compute planimetric, volumetric and shape
properties for each individual surface depression. The
depression tree simplified from contour tree explicitly
describes the nested hierarchical structure of a complex
depression, the level of composite depression and the overall
complexity of a disjoined depression quantitatively. The
numerical information about semantic properties and struc-
tures of surface depressions are valuable for many applica-
tions, such as, simulating and modeling surface runoft and
peak stream flows over time in hydrological analysis, deter-
mining local and regional water storage capability, estimat-
ing water evaporation and infiltration loss, and predicting
water volume changes in limnologic and wetland studies,
etc.

The reliability and accuracy of the surface depressions
detected by embodiments of the method may be influenced
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by a number of factors. The spatial resolution and vertical
accuracy of the original topographical data largely deter-
mine the minimum depression size and depth that we can
reliably detect and delineate. The detection of smaller and
shallower surface depressions demands higher spatial reso-
Iution and vertical accuracy of topographic data. The origi-
nal LiDAR DEM data used in this example has 1 m spatial
resolution and a vertical accuracy of 28 cm (RMSE). It
should be able to resolve a 2 m or larger surface depression
with a depth of over 50 cm according to the Shannon
sampling theorem. Since the method is based on the vector-
based contour representation, the option of the base contour
line and particularly the contour interval would also influ-
ence the depression detection result. The selection of a large
contour interval will generate few contour lines and increase
computation speed of our method, but some shallow surface
depressions would be missed during the contouring process.
A small contour interval will help to detect shallow depres-
sions, but results in an increased computation. It should be
noted that the computed geometric and topological proper-
ties of the detected surface depressions in our method are
accurate and are not influenced by the selection of the
contour interval, because the an incremental expansion
algorithm component is included to find the true pour
contour. When the contour interval is sufficiently small, the
quasi pour contours would be very close to true pour
contours, and the incremental expansion of quasi contours
may become unnecessary. The location difference between a
quasi-pour contour and its true pour contour in gentle and
flat terrain would be much larger than that in a steep terrain.
As a general guideline, the target minimum size of surface
depression to be mapped should be at least two or three
times larger than spatial resolution of original topographical
data, and the target minimum depth of surface depressions to
be mapped should be larger than the contour interval as well
as the vertical accuracy of original topographical data.

As in previous raster-based methods, the detected surface
depressions could be real surface depressions or artifact
depressions due to data noise and data processing errors.
Since most artifactual surface depressions are small, shal-
low, and irregular in shapes, smoothing the original topo-
graphical data prior to contouring can help reduce artifact
depressions in our method. In addition, after deriving geo-
metric properties for all surface depressions, appropriate
threshold values for surface area, depth, and shape index
may be selected to find small, shallow and irregular digital
depressions to be removed as artifacts.

It should be noted that the reliability of the geometric
properties of surface depressions, particularly, depth and
storage volume, are subject to the season of topographical
data acquisitions. For instance, LiDAR remote sensing gen-
erally cannot penetrate water and thick vegetation. LiDAR
data acquired during dry and leaf-off conditions on the
ground are preferred for depression analysis. Even during
the dry season, some surface depressions may be partially
covered by water, such as the Agate Lake shown in FIG. 5.
In this case, the derived depth and storage volume of the
corresponding depressions would be significantly underes-
timated. The estimated volumetric properties need to be
corrected by incorporating other sources of information or
simply using the empirical statistical relationship between
volume and surface area (see Gleason et al. 2007. Estimating
water storage capacity of existing and potentially restorable
wetland depressions in a subbasin of the Red River of the
North. USGS Northern Prairvie Wildlife Research Center, 89,
incorporated herein by reference).
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The true pour contours determined from the incremental
expansion of quasi pour contours provide a solid foundation
for accurately computing the various geometric properties of
individual surface depressions. The depression tree simpli-
fied from the local contour tree provides a compact repre-
sentation of the nested topological structure of complex
surface depressions. The combination of planimetric, volu-
metric and shape properties and the nested hierarchical
structures derived from our method provide comprehensive
and essential information for various environmental appli-
cations, such as fine-scale ecohydrologic modeling, limno-
logic analyses, and wetland studies. The following examples
demonstrate that the localized contour tree method is func-
tionally effective and computationally efficient.

According to other embodiments of the invention, a
non-transitory computer readable medium comprising com-
puter-executable instructions for carrying out embodiments
of the inventive methods is provided. A DEM based on, for
example, LiDAR, is stored and operations may be effectu-
ated on the model. Morphogeographical and morphometric
values and thresholds may also be stored in order to char-
acterize detected surface depressions as belong to a surface
depression category of interest, for example, Karst sink-
holes, wetland potholes, or military field impact craters.
FIG. 29 sets forth exemplary computer readable code for
implementing a general embodiment of the methods by a
computer. The code may be readily adapted to detecting
specific surface depressions and/or features by applying, for
example, different pre-processing criteria and different mor-
phological data thresholds specific to a depressional feature
of interest.

The following Examples illustrate development and
implementation of embodiments of the inventive methods in
actual studies of surface depressions located in specific
topographical landscapes. As will be readily understood by
a person of ordinary skill in the art, although specifically
exemplified, embodiments of the inventive methods may be
applied to detect a wide variety of surface depressions in a
wide variety of topographic landscapes, and may be applied
longitudinally across time frames to ascertain changes in the
number and/or character of surface depressions in an area of
interest.

Example 1

The following example illustrates an embodiment of the
inventive method via a case study of an area in Crow Wing
County, Minnesota (FIG. 5).

The rectangular case study area is 3 km long in west-east
direction and 2.4 km wide in south-north direction with a
total area of 7.2 km?. The surface elevation ranges from 373
m to 425 m. It is part of a glaciated plain of the Prairie
Pothole Region of North America. There are numerous small
surface depressions created by the retreating glaciers. Many
of these glaciated surface depressions are covered by pooled
water seasonally or permanently, forming a wetland ecosys-
tem and landscape. The LiDAR data for Crow Wing County
were acquired on May 9, 2007 (Minnesota Geospatial Infor-
mation Office 2008), which is freely available from Minne-
sota Geospatial Information Office. For purposes of the
exemplary study, data was accessed September, 2014 from
ftp.Imic.state.mn.us/pub/data/elevation/lidar/county/crow-
wing/.

The bare-earth LiDAR DEM is in the map projection of
Universal Transverse Mercator (UTM) Zone 15N and ref-
erenced to horizontal datum-NADS83 and vertical datum
NAVDSS8. The LiDAR DEM has 1 m spatial resolution and
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its RMSE (root mean squared error) of vertical measure-
ments was estimated to be 28.95 cm based on 118 GPS
check points (Merrick & Company 2008). An edge-preserv-
ing filter, 3x3 median filter, was used to smooth the LiDAR
DEM. The shaded relief map of the bare-carth LiDAR DEM
is shown in FIG. 6.

Based on the smoothed bare-earth LiDAR DEM, the
vector contour representation was generated by setting the
base contour to be 370 m and the contour interval to be 0.5
m. The localized contour tree method was then applied to the
contours to identify surface depressions. FIG. 7 shows the
detected surface depressions and their levels. In total, 267
disjoined surface depressions are detected, in which 244 are
single level simple depressions, and 23 are multi-level
complex surface depressions. For each disjoined surface
depression, their geometric and topological properties have
been computed. Table 2 shows the geometric and topologi-
cal properties of a number of selected surface depressions:
a, b, c,d, e, f, gand h (FIG. 7). The summary statistics of
all the detected surface depressions for the case study area
are shown in Table 3.

TABLE 2
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these depressions ranged from 101 m? to 992,113 m?, with
a median size of 401 m* The total surface area of all
depressions was 2,021,727 m?, which was larger than that
detected by the disclosed method by 0.6%. This is because
some shallow surface depressions were not captured and
represented by the contour lines with a contour interval of
0.5 m. The Whitebox stochastic depression analysis tool
does not have functions to derive geometric properties for
individual surface depressions, let alone the nested hierar-
chical relationships among depressions inside a large com-
plex depression like e shown in FIG. 2B.

Example 2

The following example illustrates use of an embodiment
of the inventive method to detect, quantify and characterize
sinkholes in a Karst landscape. Specifically, the example
illustrates Wrapping karst sinkholes by using a localized
contour tree method derived from high-resolution digital
elevation data in accordance with embodiments of the

Geometric and topological properties of selected depressions

Depression a b c d e f g h
Centroid (46507, (46,510, (46509, (46504,  (46.509, (46.505, (46507,  (46.497,
(lat, lon) -93.924) -93.919) -93.911) -93.902) -93.903) -93.911) -93.896) -93.914)
Spill elevation 396.0 386.5 392.5 405.5 399.0 393.0 405.0 384.5
(m)
Surface area 45814 20,883 6,536 22,749 43,049 123,690 62,989 998,027
(m?
Max depth (m) 16.86 7.72 5.81 5.11 10.60 12.90 19.28 5.57
Mean depth 7.08 3.57 1.77 1.58 3.83 7.00 5.91 4.38
(m)
Volume (m?* 324,706 74,601 11,532 36017 165,089 865991 372,480 4,366,404
Compactness 0.35 0.21 0.16 0.28 0.14 0.31 0.18 0.13
Circularity 0.82 0.49 035 0.67 035 0.81 0.54 0.76
Asymmetry 0.05 0.77 0.80 0.34 0.59 0.59 0.52 0.12
Complexity 1 2 3 4 5 6 7 8
level
TABLE 3 invention. The methods permit automated creating and
updating sinkhole inventory databases at a regional scale in
Summary statistics of depressions a timely manner.
Surface  Perimeter  Max Mean Storage 4 Sinkholes are .sul?stantially .closed depressions in the
area (m2) (m) depth (m) depth (m) volume (m3) Earth’s surface with internal drainage caused by subsurface
— dissolution of soluble bedrock in karst landscapes. Sudden
Minimum o1 4 0.16 0.03 3 sinkhole collapse and gradual ground subsidence phenom-
Maximum 998,027 8218 19.28 7.08 4,366,404 P g g pt
Mean 7,521 239 2.08 0.83 31,330 €non may cause severe damage to human propertles and
Median 515 113 0.79 0.31 155 50 affect water quality in underlying carbonate acquirers. Con-
Sum 2,008,230 63,694 NA NA 8,365,218 sequently, sinkhole inventory mapping is critical for under-
standing hydrological processes and mitigating geological
The surface depressions detected from the local contour hg;ards in karst areas. The reliability .Of sinkhole s.u.scepti-
tree method are compared to those from the Whitebox bility and hazard maps and the effectiveness of mitigation
stochastic depression analysis tool. The stochastic depres- 55 activities largely rely on representativeness, completeness,
sion analysis was conducted on the LiDAR DEM grid with and accuracy of the sinkhole inventories on which they are
100 iterations. The probability of being part of a surface based. In the last f decades, a number of institutions and
depression was calculated for each grid cell. Those grid cells associations in several states of the United States have
with a probability value not lower than 0.7 were considered developed sinkhole or other karst feature databases mostly
as real depression cells. Such cells were detected as depres- 60 integrated in Geographical Information Systems (GIS),
sion cells 70 or more times out of 100 iterations. Subse- including Kentucky, Minnesota, Missouri, and Florida.
quently, the morphology operator was applied to the However, most previous methods for mapping sinkholes
detected depression cells to remove small erroneous holes were primarily based on visual interpretation of low-reso-
and to smooth the boundaries of depressions. FIG. 8 shows Iution topographic maps (e.g. U.S. Geological Survey 1:24,
the depression features detected by the Whitebox stochastic 65 000 scale topographic maps) and aerial photographs with

depression analysis tool. There were 310 disjoined depres-
sions identified with the Whitebox tool. The surface area of

subsequent field verification, which are labor-intensive and
time-consuming. Moreover, complete field verification of
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each sinkhole is often impractical, thus the reliability of
manually digitized sinkhole data by even the same worker
may be questionable. Finally, some previous studies found
that sinkholes might be changing fast due to natural or
anthropogenic causes such as urban development and agri-
cultural expansion. Therefore, there is a compelling need to
automate mapping of sinkholes to update the sinkhole
inventory regularly and to detect trending change across the
sinkhole landscape.

In recent decades, the advent of airborne Light Detection
and Ranging (LiDAR) and Interferometric Synthetic Aper-
ture Radar (InSAR) remote sensing technologies have pro-
duced large volumes of highly accurate and densely sampled
topographical measurements. The increasing availability of
high-resolution digital elevation data derived from LiDAR
and InSAR technologies allows for an entirely new level of
detailed delineation and analyses of small-scale geomorpho-
logic features and landscape structures at fine scales.

The Study Area

The study area, Fillmore County (FIG. 9), is an active
Karst area located in southeastern Minnesota, which is part
of'the Upper Mississippi Valley Karst. The county has a total
area of 2230 km?, which is primarily composed of cultivated
crops (41.5%), pasture’hay (21.8%), deciduous forest
(18.6%), grassland/herbaceous (11.5%), and developed land
(5.4%) according to the National Land Cover Database
2011. Most surficial karst features, such as sinkholes, are
only found in those areas with less than 15 m of sedimentary
cover over bedrock surface. Since the 1990s, various efforts
have been made by the Minnesota Geological Survey and
the Minnesota Department of Natural Resources to map
karst features and publish various versions of karst feature
distribution maps for southeastern Minnesota. Gao et al.
(2002) initiated the development of the Minnesota Karst
Feature Database (KFDB) for southeastern Minnesota that
allows sinkholes and other karst features (springs, stream
sinks, etc.) to be displayed and analyzed in a GIS environ-
ment. The KFDB is provided as point features in ESRI
Shapefile format (Minnesota Geospatial Commons, 2005).

According to the metadata, the latest update to the KFDB
was conducted in November 2005, over a decade ago. As of
November 2005, 9128 sinkholes had been mapped and
recorded in southeastern Minnesota. Of the 9128 sinkholes
in the KFDB, 6139 (67.3%) were located in Fillmore
County. FIG. 9 shows the sinkhole distribution overlain on
the LiDAR DEM shaded relief in Fillmore County. It
appears that the majority of sinkholes were highly concen-
trated on the flat hilltops between or adjacent to river
valleys. The flat hilltops in a northwest to southeast band
across the central part of Fillmore County are part of an old
erosion surface that cuts across the stratigraphy. In Fillmore
County, limestone and dolostone underlie most of the
County. Fillmore County has been called the “Karst Capital
of Minnesota.” With 6139 sinkholes and 873 springs that
have been mapped, the county is believed to have more
Karst features than the rest of southeastern Minnesota com-
bined. However, investigators also report that sinkholes are
forming rapidly in southeastern Minnesota due to both
natural and anthropogenic processes. It is estimated that the
rate of sinkhole formation is about 2% per year of the total
inventory of sinkholes. This high rate of formation indicates
that many sinkholes are ephemeral features in the landscape,
which calls for the needs for regular updating of sinkhole
database in the region. A recent study by Rahimi and
Alexander (2013) revealed that approximately two-thirds of
the inventoried sinkholes in Winona County in southeastern
Minnesota have been filled for agricultural use reasons.
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LiDAR Data

The LiDAR data for Fillmore County was acquired during
Nov. 18-24, 2008 as part of the LiDAR data acquisition
project for nine counties in southeastern Minnesota (Min-
nesota Geospatial Commons, 2008). The bare earth LiDAR-
derived DEM is in the reap projection of Universal Trans-
verse Mercator (UTM) Zone 15N and referenced to
horizontal datum-NAD83 and vertical datum NAVD88. The
LiDAR DEM has 1 m spatial resolution and its RMSE (root
mean squared error) of vertical measurements was estimated
to be 28.7 cm at a 95% confidence level of all land cover
categories. The shaded relief map of the bare-earth LiDAR
DEM is shown in FIG. 9. The elevation values range from
39 to0 426 m, with an average elevation of 362 m. In addition
to the LiDAR data, leaf-off 4-band (red, green, blue, and
infrared) digital orthoimagery for validating our sinkhole
detection results was utilized. The digital orthoimagery for
Fillmore County was flown in mid-April 2011 at 0.5 m
resolution. Both data sets can be obtained from the Minne-
sota Geospatial Commons website.

Methods

An embodiment of the inventive methods comprising a
semi-automated approach was employed. Several steps
included: (a) LiDAR DEM preprocessing; (b) depression
identification using the localized contour tree method; (c)
calculation of morphometric properties of depressions; and
(d) sinkhole extraction by eliminating non-sinkhole depres-
sions using morphometric parameters. The flowchart in FIG.
10 sets forth bookmark4 the detailed data processing steps.
LiDAR DEM Preprocessing

The basic assumption for sinkhole detection is that sink-
holes are a subset of surface depressions, which might also
include other non-sinkhole natural depressions or man-made
depressions. Since the localized contour tree method is a
vector-based method applied to the LiDAR DEM, the pur-
pose of this preprocessing step is to extract a subset of the
original LiDAR DEM that represents surface depressions. In
this way, those non-depression areas will be eliminated from
the analysis as they are unlikely to be sinkholes. This can
greatly reduce the number of contours being generated and
thus reduce the computation time.

As data noise or errors in the DEM may lead to jagged,
irregular or fragmented contour lines, a 3x3 median mor-
phological operator was used to smooth the LiDAR DEM.
The median operator is an edge-preserving filter that is used
to reprove data noise and suppress small artifact depressions
without distorting the boundaries of true surface depres-
sions, and is considered better than a mean (averaging) filter.
After smoothing the original DEM with the median filter, the
efficient depression filling algorithm developed by Wang and
Liu (2006) was used to generate a new filled DEM. The
algorithm identifies and fills surface depressions by spill
elevation and integrating the priority queue data structure
into the least-cost search of spill paths. It has been widely
adopted and implemented in several GIS software packages
due to its high computation efficiency and coding simplicity.
By subtracting the original DEM from the resulting filled
DEM, a new elevation difference grid is generated repre-
sentative of depression location and depths. The elevation
difference grid is converted into polygons without boundary
simplifications in order to make the polygon boundaries
exactly match pixel edges. After converting raster to poly-
gon, the polygon may undergo a buffer analysis to make sure
most of the contour lines are closed, especially at the edge
of the study area. The polygon layer is used as a mask to
extract a subset of the smoothed LiDAR DEM representing
depression regions.



US 10,096,154 B2

21

Depression Identification

Based on the subset of the smoothed LiDAR DEM
representing depression areas, vector contours were gener-
ated by setting the base contour to be 39 m and the contour
interval to be 0.5 m, which is slightly greater than the
vertical accuracy of the LiDAR DEM with an RMSE value
of 28.7 cm. An embodiment of the localized contour tree
method was then applied to the contours to identify surface
depressions. A minimum depression area of 100 m* and a
minimum depression depth of 0.5 m were used, which
allows identification of sinkholes that are larger than 100 m>
and deeper than 0.5 m. The area and depth thresholds were
selected as sufficient to identify most natural sinkholes in the
study area.

In the contour maps, depressions are represented as closed
contours that are surrounded by other closed contours at a
higher elevation. Only closed contours are kept for further
analysis while open contours that do not form a loop are
eliminated from further analysis. Topology between closed
contours is then constructed. Specifically, each closed con-
tour is attributed with its adjacent outward contour, if any,
and the corresponding contour elevation. To facilitate the
algorithm for fast searching of depressions, the “seed con-
tours”, which are defined as closed contours that do not
enclose any other contours, are initially identified. FIG. 11A
shows an example of a compound (this term is used inter-
changeably with complex and composite) surface depres-
sion, and the elevation profile of the transect A-B is shown
in FIG. 11B. It appears that the compound depression has
two smaller depressions nested inside. As shown in FIG.
11A, contours M and O are seed contours whereas contours
N, P, Q, and R are not. The seed contours serve as the
starting point to search outwards for other associated closed
depression contours, which are identified as the 1st rank
contours. Assuming that the water level increases inside the
depression, the water will spill out of the depression at a
certain threshold, which is defined as the spilling elevation
of a depression. In other words, the spilling elevation of a
depression is the highest elevation for water ponding.
Beyond the spilling elevation, the ponded water spills. If two
or more adjacent depressions (1st rank) share the same
spilling elevation, they will be merged and form a 2nd rank
depression (FIG. 11A). Similarly, a further combination of
2nd rank depressions forms even higher level depressions.
Whenever two or more depressions merge, a higher rank of
depression is created.

According to the model, the topological relationships
between depressions (contours and their bounded regions)
are represented by a contour tree. Contours are mapped as
nodes and interstitial spaces as links. The nodes in the tree
graph represent contours, and the link (edge) between nodes
represents the adjacency and containment relationships
between contours. In the contour tree, splitting and merging
of nodes represent the change in topology. As shown in the
contour tree graph in FIG. 11C, contour (depression) N
encloses the depression seed contour M (1st rank), and there
is no topological change between them. Therefore, contour
N is also determined as the 1st rank contour, the same rank
as the depression seed contour M. With the water level
increasing, the depressions (contours) N and O merge to
form a 2nd rank depression P.

This iterative procedure continues until all the depression
seed contours and their outward closed contours are pro-
cessed and depression ranks are determined accordingly. In
the perspective of graph theory, the hierarchical relation-
ships of nested depressions inside a compound depression
constitute a tree. The most outward contour of the compound
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depression is the root of the tree, the directed links bet
adjacent contours a the edges of the tree, and seed contours
are the leaf nodes of the tree. The depression seed contours
are used as the starting point to search outwards to minimize
search time for establishing the tree or forest of trees.
Compared to the global contour tree method described in
Wu et al. (“An Effective Method for Detecting Potential
Woodland Vernal Pools Using High-Resolution LiDAR
Data and Aerial Imagery” Remote Sensing, (2014) 6(11),
11444-11467, incorporated herein by reference), the local-
ized contour tree method is more effective and computa-
tionally efficient. Instead of creating a single global tree for
the entire area, the localized contour tree algorithm con-
structs a forest of trees. Each tree represents one compound
depression, and the number of trees in the forest represents
the number of compound depressions for the entire area. A
simple surface depression (1st rank) constitutes a single-
branch contour tree, while a compound surface depression is
represented by a multi-branch contour tree. For example, the
corresponding contour tree for the compound depression
shown in FIG. 11A is a multi-branch tree (FIG. 11C). To
explicitly represent the nested hierarchy of a compound
surface depression, the contour tree is simplified by remov-
ing those nodes without topological change. Only those
nodes with topological changes (immediately before merg-
ing) are kept in the simplification. It should be noted that the
root node of the contour tree is always kept in the simpli-
fication since it represents the maximum boundary of the
compound depression. After simplification, the multibranch
contour tree shown in FIG. 11C is reduced to a smaller
compact tree with only three nodes (FIG. 11D). The leaf
nodes of the simplified contour tree represent two simple
depressions (N and O) at the 1% rank. The parent (root) node
represents the compound depression (R) at the 2nd rank. The
simplified contour tree gives a clear representation of the
nested hierarchical structure of a compound surface depres-
sion.
Calculation of Depression Characteristics

After identifying surface depressions and quantifying
their ranks according to their topological relationships, basic
morphometric characteristics for each depression at each
rank are calculated, including in this specific embodiment,
the width (w), length (1), area (A), perimeter (p), depth,
volume, elongatedness (ELG), compactness index (CI), and
standard deviation of elevation (STD). The method by
Chaudhuri and Samal (2007) was adopted to compute the
minimum bounding rectangle for each depression polygon.
The depression length was defined as the length of the major
axis and the depression width was defined as the length of
the minor axis of the fitted minimum bounding rectangle
(FIG. 12). The perimeter is the length of the contour that
delimits the sinkhole in plain view, and the sinkhole area is
considered as the planimetric surface bounded by the perim-
eter. Depth is defined as the maximum depth between the
sinkhole edge and the deepest point within the sinkhole.
STD calculates the standard deviation of all cells in the
DEM that belong to the same depression. ELG is defined as
the ratio between the length and width of the fitted minimum
bounding rectangle:

ELG=l/w [Equation 1]

A circle and square will have the smallest value for ELG.
Basso et al. (2013) classified sinkholes into four groups
according to ELG: (i) circular and sub-circular (ELG=1.21);
(ii) elliptical (1.21 b ELG=1.65); (iii) sub-elliptical (1.65 h
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ELG=1.8); and (iv) elongated (ELG N 1.8). CI is a widely
used shape indicator (see Davis, 2002) defined by e perim-
eter and area of the object:

CI=4nd/p? [Equation 2]

The most compact object in a Euclidean space is a circle.
A circle-shaped object has a compactness index of unity. The
compactness index is also known as the circularity measure
(see Pratt, 1991). The abovementioned morphometric; prop-
erties were examined to identify threshold values that could
be used to filter out non-sinkhole/spurious depressions.
Sinkhole Extraction Analyst

To streamline the procedures for automated sinkhole
extraction, the method has been implemented as an ArcGIS
toolbox—Sinkhole Extraction Analyst, which will be avail-
able for the public to download free of charge in the near
future. The core algorithm components are developed using
the Python programming language. The toolbox includes
two tools: Depression Identification Tool and Sinkhole
Extraction Tool. The Depression Identification Tool asks the
user to provide a single input, the LiDAR DEM, and then
executes the aforementioned procedures with user-specified
parameters such as the base contour, contour interval, mini-
mum depression area, and minimum depression depth to
automatically create depression polygons at different ranks.
The Sinkhole Extraction Tool selects and exports potential
sinkholes based on user-specified criteria related to the area,
depth, STD, LTG, CI, etc. All depression and sinkhole
results can be saved as ESRI Shapefile or Geodatabase
format.

Results

Using the localized contour tree method with certain
relevant parameter values (contour interval=0.5 in; base
contour=39 m; and minimum area=100 m?), 14,499 depres-
sions were identified at 1st rank from the LiDAR-derived
DEM in Fillmore County, nearly three times greater in
number than the inventoried sinkholes in the KFDB. The
number of 2nd, 3rd, 4th, and 5th rank depressions were
1668, 235, 75, and 17, respectively. Depressions detected
using the localized contour tree is a combination of sink-
holes and other natural or man-made depressions, including
stream channels, ponds, retention basins, and road ditches.
Thus, the next step is to extract potential sinkholes from
these detected depressions.

Sinkholes vary in size, shape and distribution in different
regions of the world. Consequently, sinkholes are defined
differently in literature. For instance, Karst solution sink-
holes in southwest Slovenia have been defined as having
more than 2 m deep basins with more than 10 in diameter.
Mukherjee (2012) used a 4-m depth threshold to locate
sinkholes in Nixa, Mo., while Zhu et al, (2014) considered
a 6-m depth threshold sufficient to identify most natural
sinkholes in the Floyds Fork watershed in central Kentucky.
In Fillmore County, Witthuhn and Alexander (1995)
reported that sinkholes ranged from b 1 m to N30 m in
diameter and 0.3-18 m in depth; the majority of them were
3-12 in in diameter and 1.5-12 m deep. This estimation was
based on a limited number of sinkholes surveyed in the field
as only sinkhole locations have been recorded in the KFDB.
No data about sinkhole boundaries for Fillmore County has
been reported in the literature. By intersecting the KFDB
sinkhole points layer with the depression polygons layer
generated from the localized contour tree method, it was
found that 1858 (30.3%) out of 6139 inventoried sinkholes
in the KFDB were located within 1784 depressions (1st
rank). These intersected depressions were considered as the
“training sinkholes” in the present study, as they were
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considered very likely to be true sinkholes due to coincident
locations with the KFDB. The histograms and summary
statistics of morphometric properties of the 1784 training
sinkholes are shown in FIG. 13, and FIG. 14, Table 4,
respectively.

Based on summary statistics of the 1784 training sink-
holes, it appeared that most sinkholes ranged from 169 m?
(5th percentile) to 3696 m* (95th percentile) in size and from
0.73 m (5th percentile) to 6.55 m (95th percentile) in depth.
The median size and depth are 751 m* and 3.37 m, respec-
tively. The former is approximately equal to the size of a
circle with 30 m in diameter, which can be evidenced from
the median width (27.1 m) and length (40.7 m) based on the
minimum bounding rectangle. The standard deviation of
elevations within each depression ranged from 0.18 m (5th
percentile) to 1.64 m (95th percentile). Most training sink-
holes had CI values greater than 0.31 and EL.G values less
than 2.54.

In order to reline the detected depressions down to those
which may represent “true” sinkholes, a combination of
morphometric; parameters based on the summary statistics
of the 1784 training sinkholes: area b 4000 m?, depth N 0.5
m, STD N 0.18 m, ELG b 2.54, and CI N 0.31 was
employed. Since most natural sinkholes tend to have circular
or elliptical shape, the criteria of ELG b 2.54 and CI N 0.31
eliminated many elongated depression features that
appeared to be stream channels, road ditches, and other
man-made or natural features that were less likely to be
sinkholes. Water-filled ponds usually have flat bottoms in the
LiDAR DEM, resulting in depressions with low STD. Using
the threshold of STD N 0.18 m, water-filled ponds and other
hydro features were removed from consideration as potential
sinkholes. Using these criterions, the method was able to
distinguish sinkholes from other non-sinkhole depressions.
Some examples of non-sinkhole depressions are shown in
FIGS. 17A and 17B.

After applying the sinkhole extraction criteria area h 4000
m>, depth N 0.5 STD N 0.18 in, ELG b 2.54, and CI N 0.31),
the numbers of detected sinkholes of 1st, 2nd, 3rd, and 4th
rank in the study area were 5299, 208, 37, and 10, respec-
tively. Visual assessment of the results shows that the
localized contour tree method is a very effective approach to
identify sinkholes in the region. FIG. 18C shows some
examples of extracted sinkhole boundaries overlain on the
LiDAR DEM shaded relief and color infrared aerial imag-
ery. Apparently, a large number of Karst sinkholes were
found under a dense forest or tree canopy. Those inventoried
sinkholes not captured by the LiDAR data appeared to have
been filled due to agricultural use or other reasons.

FIG. 15/Table 5 provides a summary statistics of the
extracted sinkholes at four different ranks. The identified 1st
rank sinkholes have an aggregate area of 4.38 km?, repre-
senting approximately 0.2% of the total land area of Fill-
more County. The average area is 827 m? per sinkhole,
which is the same as a circle with a diameter of 32.5 m.
Median width and length of sinkholes increased with the
sinkhole rank from 22.9 m at 1st rank to 25.4 m at 4th rank
and from 35.5 m at 1st rank to 234.7 in at 4th rank,
respectively. The median maximum depth of sinkhole
ranged from 1.98 m at 1st rank to 5.69 in at 4th rank, while
the deepest sinkhole at 4th rank reaching a depth of 8.18 in.
The area of 1st rank sinkholes ranged from 100 to 3991 m?,
with a median size of 543.31 m?. Following the classifica-
tion of sinkholes according to Basso et al. (2013), 16.3% of
1st rank sinkholes were circular, 56.0% were elliptical, and
27.6% were elongated. Similarly, the lower rank sinkholes
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were much more compact according to the compactness
index with a gradual decrease from 1st rank to 4th rank.

FIG. 16/Table 6 shows the comparison between invento-
ried sinkholes in the FDB and sinkholes detected from the
LiDAR DEM using the localized contour tree method. Out
of the 6139 inventoried sinkholes in Fillmore County
recorded in the KFDB, 1858 (30.2%) were successfully
captured by the LiDAR data using the localized contour tree
method for depression identification (see column “KFDB
Detected” in Table 6). In order to evaluate the performance
of LiDAR data for sinkhole mapping, the National Land
Cover Database (NLCD) (2011) was incorporated into the
analysis. The land cover types in Fillmore County are
dominated by cultivated crops (41.5%), followed by pasture/
hay (21.8%), deciduous forest (18.6%) and grassland/her-
baceous (11.5%). FIG. 9 clearly shows that the majority of
sinkholes were highly concentrated on flat hilltops between
or adjacent to river valleys. The primary land cover type
associated with these flat hilltop areas was cultivated crops.
In other words, the majority of sinkholes were distributed in
the agricultural land areas. A total of 2815 (45.9%) inven-
toried sinkholes in the KFDB were located within agricul-
tural crops, followed by 1651 (26.9%) in grassland/herba-
ceous and 849 (13.8%) in pasture/hay. Only 414 (6.7%)
inventoried sinkholes were found to be located in deciduous
forest.

On the contrary, 1007 (19.0%) out of 5299 1st rank
sinkholes detected using the inventive localized contour tree
method were located in deciduous forest. Among these
forested sinkholes, 891 were new sinkholes that had not
been recorded in the KFDB. This dramatic increase can be
attributed to the capability of LiDAR for penetrating through
vegetation canopy, which enables mapping small Karst
features like sinkholes with much less interference from
vegetation than aerial photography. However, only 1259
(23.8%) sinkholes were detected in agricultural areas, com-
pared to 2815 in the KFDB. The possible explanation for this
striking decline is that many sinkholes have been filled due
to agricultural use or other man-made reasons. It was found
that 3645 (59.4%) out of 6139 sinkholes in the KFDB were
not located in the depression areas of the LiDAR DEM. This
indicates that more than half of the inventory sinkholes were
no longer depression features, and could not be captured by
LiDAR.

The localized contour tree method for detecting sinkholes
is fundamentally different from the previous raster-based
methods for sinkhole mapping (e.g. Mukherjee, 2012 and
Zhu et al. 2014). The inventive methods more explicitly
derive geometric and topological properties of sinkholes.
FIGS. 19A and 19B illustrate the differences of sinkhole
detection results between the inventive localized contour
tree method and the traditional sink-filling method. It is clear
that many small sinkholes from the traditional method are
nested within larger surface depressions. For example, the
largest surface depression (area=14,327 m?) in the center of
FIG. 19A enclosed three smaller sinkholes inside. The
sinkhole extraction criteria above (area b 4000 m?) would
disqualify this largest depression from being considered as
apotential sinkhole. Therefore, those three smaller sinkholes
nested within the depression would also be eliminated
accordingly using the sink-filling method. On the contrary,
the inventive contour tree method provides a much more
accurate and reliable sinkhole mapping results as demon-
strated in FIG. 19B.

Summarily the exemplified embodiment of the method
specifically adapted for detecting sinkholes comprises (1)
extracting a subset of DEM representing depression areas
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instead of using the whole DEM for the area to generate
contours, which reduces the number of contours being
generated and greatly reduces the computation time; and (2)
calculating morphometric properties specifically relevant to
sinkholes to provide critical information in addition to
locations. The algorithms are implemented as an ArcGIS
toolbox—Sinkhole Extraction Analyst. In addition to detect-
ing sinkhole locations, the localized contour tree method
allowed for extracting sinkhole boundaries and quantifying
sinkholes at different ranks across different spatial scales.
Although a simple thresholding method eras used to extract
potential sinkholes from surface depressions, other machine
learning-based methods such as decision tree and random
forest could also be employed to facilitate sinkhole detection
susceptibility mapping, depending on the availability and
quality of sinkhole training data.

It should be noted that the localized contour tree might not
detect some shallow depressions whose depths are less than
the contour interval, as these depressions might be absent
from the contour maps even when these features actually
exist in the landscape. This is the intrinsic limitation of DEM
contouring. The number of artifact depressions resulted
from LiDAR DEM error are effectively reduced by setting
appropriate thresholds of surface area and depth of depres-
sions. As recommended by Li et al. (“Lidar DEM error
analyses and topographic depression identification in a hum-
mocky landscape in the prairie region of Canada” Geomor-
phology, 129(3-4), 263-275 (2011), incorporated herein by
reference) soil and climate conditions of a study site, the
process of interest and the scope of the study an need to be
taken into account when making the decision on selecting
appropriate area and depth thresholds. The present example
focused on potential sinkholes that were larger than 100 m?;
ever the method may be readily tailored to identify smaller
sinkholes when liner-resolution DEMs become available.

LiDAR data flown during dry conditions on the ground is
preferred for depression identification and sinkhole detec-
tion. LiDAR generally cannot penetrate water, meaning that
topography of inundated depressions could not be captured
by LiDAR data. This might result in true sinkholes covered
with water not being detected if solely based on LiDAR
data. The color infrared aerial photographs acquired in
leaf-off conditions can facilitate the validation of sinkhole
detection results when field verification is impractical. The
acquisition date differences between LiDAR data and aerial
photographs should be taken into account when sinkhole
occurrences are not consistent between different data sets.
Human development and land use practices, such as new
residential development or agricultural expansion, could
result in disappearance of sinkholes from the landscape.
These new developments in the landscape might not be
reflected in the LiDAR data or aerial photographs if they
were acquired before these developments.

Example 3

The following example illustrates an embodiment of the
inventive methods directed to identifying wetland depres-
sions.

The Prairie Pothole Region of North America is charac-
terized by numerous, small, wetland depressions that per-
form important ecological and hydrological functions.
Recent studies have shown that total wetland area in the
region is decreasing due to cumulative impacts related to
natural and anthropogenic changes. The impact of wetland
losses on landscape hydrology is an active area of research
and water/resource management. Various spatially distrib-
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uted hydrologic models have been developed to simulate
effects of wetland depression storage on peak river flows,
frequently using dated geospatial wetland inventories.

One embodiment of the invention provides a novel
method for identifying wetland depressions and quantifying
their nested hierarchical bathymetric/topographic structure
using high-resolution light detection and ranging (LiDAR)
data. The novel contour tree method allows identified wet-
land depressions to be quantified based on their dynamic
filling spilling merging hydrological processes. In addition,
wetland depression properties, such as surface area, maxi-
mum depth, mean depth, storage volume, etc., can be
computed for each component of a depression as well as the
compound depression. The inventive method provides more
realistic and higher resolution data layers for hydrologic
modeling and other studies requiring characterization of
simple and complex wetland depressions, and helps priori-
tize conservation planning efforts for wetland resources.

The Little Pipestem Creek watershed in North Dakota was
selected as an appropriate exemplary study area. The Prairie
Pothole Region (PPR) of North America encompasses an
area of approximately 715,000 km?, including portions of
Canada and the state of Minnesota, Iowa, North Dakota,
South Dakota, and Montana in the U.S. (FIG. 20). The PPR
is characterized by millions of wetland depressions created
by the last glacial retreat more than 10,000 years ago. These
wetland depressions are typically small and shallow, with an
estimated median size of 1,600 m? and depths generally less
than one meter (Huang et al. 2011). They vary in ponded
water permanency, expressing ephemeral, temporal, sea-
sonal, semi-permanent, and permanent hydroperiods,
depending on precipitation patterns, soil conditions, and
contributing area. These depressional potholes have the
capability to retain a considerable amount of water which
may or may not be released to contribute to overland flow.
Extent and distribution of these depressions, as well as
antecedent water stored within them, control the area con-
tributing to the basin outlet. The water supplied to potholes
is largely from direct precipitation, surface inflows from
upland, and near-surface groundwater seepage. Water losses
from potholes are primarily driven by evapotranspiration
(ET) during summer, with net ET typically exceeding net
precipitation during the growing season. Since depressional
potholes are relatively small in size, shallow in depth, and
dependent largely on precipitation and ET, most are ephem-
eral. As a result, depressional potholes in the PPR are
especially sensitive to natural climatic variability, human-
induced climate change, and human modification of land-
surface hydrology (e.g., ditches and draining), making them
one of the most dynamic hydrological systems in the world.
In part, due to their hydrology, however, they are also among
the most vulnerable systems.

It is estimated that the lower 48 states in the U.S. lost an
approximate 53% of their original wetland area between the
1780s and the 1980s. The latest report on the status and
trends of prairie wetlands (Dahl 2014) estimated that total
wetland area declined by 301 km* or 1.1% in the PPR
between 1997 and 2009, primarily driven by cumulative
impacts from altered hydrology and associated anthropo-
genic changes such as draining, ditching or filling of depres-
sions. The extensive alteration and reduction of wetland
depressions have been found to be partially related to the
increasing magnitude and frequency of flood events along
rivers in the PPR.

In past decades, numerous wetland hydrology studies
have been undertaken in the PPR. Depression storage is a
dominating storage element in the PPR, as well as other
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areas of the U.S., where it accounts for most of the retention
on a watershed surface. While several researchers have
focused on identifying topographic depressions for hydro-
logic modeling and wetland studies, the present inventors
are not aware of any studies quantifying depression storage
hierarchy in potholes resulting from changing water levels
within these systems. This lack of fine-scale detail can create
errors within hydrological models when models do not
account for intra-depression hierarchical hydrodynamics.

Before the advent of digital elevation models (DEMs), the
values of depression storage were usually assumed or indi-
rectly estimated due to practical difficulties in making direct
measurement of the basin morphology of individual depres-
sion. With increasing availability of high-resolution DEMs
derived from light detection and ranging (LiDAR) data,
depression storage can now be accurately measured, as
LiDAR-derived DEMs are often capable of representing
actual depressions in the landscape because of their fine
scale and high horizontal and vertical accuracies (Wu et al.
2014, 2016). The traditional approaches to identifying sur-
face depressions assume that overland flow nitiates after all
surface depressions are fully filled. In reality, surface depres-
sions may be filled gradually due to different input condi-
tions, which results in a dynamic filling, spilling, and
merging of intra-depression topographic features affecting
hydrological processes (Yang and Chu, 2013).

A localized contour tree method in accordance with
embodiments of the invention was developed and used to
identify pothole depressions and characterize their nested
hierarchical structure based on a high-resolution LiDAR
DEM. Unique features of this innovative depression delin-
eation and characterization algorithm include: (1) account-
ing for dynamic filling, spilling, and merging hydrologic
processes that are not considered in current depression
identification algorithms; (2) representing and visualizing
topological relationships between depressions using the con-
tour tree graph, clearly showing the nested hierarchical
structure of depression complexes; and (3) characterizing
depression geometric properties (e.g., maximum and aver-
age depth, perimeter, surface area, and depression storage,
etc.). These features provide important and improved inputs
for hydrologic modeling and watershed management.

The Study Area

The selected Little Pipestem Creek watershed study area
is located within the 2,770 km? Pipestem River sub-basin,
which is part of the Missouri River Region—James River
Sub-Region. The Little Pipestem Creek watershed is a
10-digit (#1016000202) Hydrologic Unit Code (HUC) sys-
tem with an approximate area of 506 km?, covering parts of
four counties (Foster, Kidder, Stutsman, and Wells) in North
Dakota (see FIG. 20). Land-use and land-cover data (Table
7 set forth in FIG. 23A) derived from the National LLand
Cover Database 2011 characterizes the watershed as domi-
nated by Herbaceous (35.9%) and Cultivated Crops
(35.1%), with considerable amounts of Open Water (9.4%)
and Emergent Herbaceous Wetlands (5.9%). The area is
further characterized by a temperate and humid climate with
an average annual precipitation of 40 cm.

The landscape is hummocky and contains numerous
closed wetland depressions. Most wetlands are inundated or
saturated for a relatively short period in the spring following
snow-melt. The period of maximum water depth varies with
inter-annual fluctuations in weather conditions, but typically
takes place in March and April when evapotranspiration
remains relatively low but basins are receiving snowmelt
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inputs. Stream flows are typically highest during February
through April (Shook and Pomeroy 2012), as a result of
snowmelt.
Datasets

Several high-resolution remotely sensed data sets were
utilized, including the bare-earth LiDAR DEM, LiDAR
intensity imagery, color-infrared aerial photographs, and
National Wetlands Inventory (NWI) maps (Table 8 set forth
in FIG. 23B).

The LiDAR data was collected with a Leica sensor
ALS60 from Oct. 27, 2011 to Nov. 3, 2011 as part of the
James River Basin LiDAR acquisition campaign, a collab-
orative effort among the US Army Corps of Engineers, US
Fish and Wildlife Service, Natural Resources Conservation
Service, and North Dakota State Water Commission. The
LiDAR-derived bare-earth DEMs were distributed through
the North Dakota LiDAR Dissemination Service (website
lidar.swc.nd.gov) as 2,000 mx2,000 m tiles with 1-m pixel
resolution. The LiDAR DEM was in the Universal Trans-
verse Mercator (UTM) Zone 14 N map projection refer-
enced to NADS3 and NAVDS8 horizontal and vertical
datums. The overall vertical accuracy assessment at the 95%
confidence level of the LIiDAR DEM was reported to be 15.0
cm on open terrain. The Little Pipestem Creek watershed
study area was composed of 164 DEM tiles. The Dynamic
Raster Mosaicking function in ArcGIS (ESR1, Redlands,
Calif., version 10.2) was used to create a mosaicked dataset
that combined the 164 DEM tiles as a seamless 1-m raster
for all subsequent image analyses and map generation. The
shaded relief map of the LiDAR-derived bare-earth DEM
with National Hydrography Dataset (NHD) flowlines over-
laid on top is shown in FIG. 21A. The elevation of the
watershed ranges from 471 to 651 m, with relatively high
terrain in the south and low terrain in the north. Streams and
rivers flow northwards and merge into the Pipestem Creek
(see NHD flowlines in FIG. 21A).

It should be noted that the reliability of LiDAR-based
geometric properties of wetland depressions, particularly
water surface area and storage volume, are affected by
antecedent water storage and dense vegetation. The LiDAR
data were acquired during leaf-off conditions, with no mea-
surable precipitation for the week prior to the LiDAR
campaign (NOAA National Climate Data Center at
www.ncdc.noaa.gov, accessed Dec. 16, 2014), though field-
based inspections of surface hydrology was not conducted.

LiDAR intensity data were simultaneously collected with
the LiDAR elevation point clouds during the acquisition
campaign. The intensity is a measure of the return signal
strength of the laser pulse that generated the point, which is
largely determined by the reflectivity of materials within the
light path. Intensity data can be used to identify different
types of materials on the ground, especially when those
features have distinct reflectance in the partition of the
electromagnetic spectrum detected by the sensor (Lang and
McCarty, 2009). Since most topographic LiDAR sensors
operate in the near-infrared wavelengths, which tend to be
absorbed by water, the return amplitude from water is
typically very weak. As a result, waterbodies tend to be
characterized as very dark features in the LiDAR intensity
image (FIG. 21B). The intensity value ranges for the LiDAR
intensity imagery in our study area ranged from O to 248.
The LiDAR intensity data were primarily used for identi-
fying existing waterbodies in the study area, though it can
also serve as a substitute for aerial imagery when none is
available to validate wetland depressions delineated from
LiDAR DEMs.
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Cloud-free, four-band (red, green, blue, and near-infrared)
aerial photographs for the study area were collected from
Jul. 14, 2012 to Jul. 30, 2012 by the U.S. Department of
Agriculture’s National Agriculture Imagery Program
(NAIP) during the agricultural growing season. The tiling
format of the NAIP imagery is based on a 3.75'x3.75' quarter
quadrangle with a 300 pixel buffer on all four sides. The
study area was comprised of 29 tiles, which were mosaicked
together and clipped to the watershed boundary to create a
seamless raster image (FIG. 22A). The color-infrared (CIR)
aerial photographs were used for visual assessment of wet-
land depressions detected from the LiDAR DEM. It should
be noted that the aerial photographs were acquired in
Summer 2012, when water levels were lower and water
surface areas were smaller than those in Fall 2011 when the
LiDAR data were acquired, as evidenced by visual com-
parisons of existing water areas between the LiDAR inten-
sity imagery and aerial photographs.

NWI data (www.fws.gov/wetlands, accessed Dec. 16,
2014) was used for the study area for validation and results
comparison. These data were derived by manually interpret-
ing aerial photographs acquired from 1979 to 1984 at a scale
of 1:24,000 with subsequent support from soil surveys and
field verification. Wetlands were classified based on domi-
nant vegetation structure into various types (see Table 9 set
forth in FIG. 23C). National Wetlands Inventory maps have
a targeted mapping unit, which is an estimate of the mini-
mum sized wetland that can be reliably mapped; it is not the
smallest wetland that appears on the map. The targeted
mapping unit for the PPR was 0.1 to 0.4 ha (Tines, 1997 and
Johnston, 2013). There were 8,091 NWI polygons across the
Little Pipestem Creek watershed, including palustrine,
lacustrine, and riverine systems. Freshwater (palustrine)
emergent wetland was the dominant wetland type, with
7,804 wetland polygons accounting for 84% of the total
wetland area in the study area. Of the 225 freshwater pond
polygons, 124 of them were nested within freshwater emer-
gent wetland polygons. Each part of wetland polygons
composed of multiple parts were assessed individually,
namely each part was considered a unique polygon for
purposes of the study. The total area of all NWI polygons
was approximately 62 km?, covering 12.3% of the water-
shed area (506 km?).

It should be noted that the NWI data in this region are
considerably out of date, as they were manually interpreted
from black and white aerial photographs that were acquired
more than 20 years ago. NWI data is a static dataset that does
not reflect wetland temporal change, and the positional
accuracy associated with the wetland polygons is largely
unknown. However, the NWI data does provide a valuable
source for wetland location information.

Methods

Using the LiDAR-derived bare-earth DEM, potential wet-
land depressions and their nested hierarchical structure were
delineated and quantified using an embodiment of the inven-
tive localized contour tree method. The LiDAR intensity
imagery was used to extract existing waterbodies on the
ground in late October 2011 when the LiDAR data were
acquired. For the depression water storage modeling, two
types of depressional storage were considered, the above-
water volume and below-water volume. The below-water
volume refers to the existing water volume stored in a
wetland depression beneath the water surface, whereas the
above-water volume is defined as the potential water volume
a wetland depression can hold between the water surface and
the spilling point. If a depression is completely dry without
any existing water, the above-water volume refers to the
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storage volume between the lowest point in the basin (e.g.,
sink point) and the spilling point. By adding the computed
above-water volume and the estimated below-water volume,
the total storage volume was calculated for each individual
wetland depression at different hierarchical levels, following
the flowchart shown in FIG. 24.

Characterization of Wetland Depressions

The nested hierarchical structure of complex topographic
depressions controls the dynamic filling, spilling, and merg-
ing hydrologic processes, as illustrated in FIGS. 25A, 25B,
and 25C. In accordance with embodiments of the invention,
topographic depressions were categorized into two groups:
simple depressions and complex/compound depressions. A
simple depression is a depression that does not have any
other depression nested inside, whereas a complex or com-
pound depression has at least two simple depressions nested
inside. A large complex/compound depression might also
have some smaller complex depressions nested inside. The
local minimum at the bottom of a depression is referred to
as a sink point (see SP in FIG. 26A), and its elevation is less
than or equal to that of its neighbors. As precipitation drains
to a depression (or groundwater seeps in), the water surface
in it will eventually be raised to a level at which water starts
to spill from its perimeter. The lowest point on the depres-
sion perimeter is referred to as the spilling point (see SE in
FIG. 26A), and the elevation of the spilling point is referred
to as the spill elevation (Wang and Liu, 2006). If two or more
adjacent simple depressions (i.e., 1st level depressions)
share the same spill elevation, they are merged and form a
2nd level complex depression. Similarly, further combina-
tions of 2nd level depressions forms even higher level
depressions. Whenever two or more depressions merge, a
higher depression level is created. The depression level
represents the complexity of the nested hierarchical structure
of a depression.

As shown in FIGS. 26A, 26B, and 26C, the complex
depression D is a 2nd level depression, which has two 1st
level simple depressions (A and B) nested inside. Similarly,
the complex depression E is a 3rd level depression, in which
three 1st level simple depressions (A, B, and C) and one 2nd
level complex depression (D) are nested inside. The com-
bination of the topological information about the nested
hierarchical structure and the geometric attributes provides
a comprehensive description and quantification of each
individual surface depression across scales. The nested
hierarchical structure of a complex depression can be rep-
resented as a depression tree graph (FIG. 26C). The nodes in
the tree graph represent depressions, and the link between
nodes represents the adjacency and containment relation-
ships between depressions. In the depression contour tree,
splitting and merging of nodes represent the change in
topology. For example, when overland runoff flows into the
simple depressions A and B, their water surfaces would
gradually increase. When the water surfaces of simple
depression A and simple depression B reach to their spilling
point SE1, these two adjacent depressions would merge to
form a larger complex depression D, which is reflected by
sibling nodes A and B joining at parent node D in the tree
graph (FIG. 26C). When the water surface levels of simple
depression C and complex depression D increase to above
their spilling point SE2, these two depressions further com-
bine to form an even more complex and larger surface
depression E, which corresponds to the merge of nodes C
and D at root node E. When the water surface level of
complex depression E further increases to above the spilling
point SE3, the water will spill into downstream basins. The
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depression tree graph contains information about the nested
hierarchical relationships among topographic depressions of
different scales.

As previously discussed, in a vector-based contour rep-
resentation, a topographic depression is indicated by a series
of concentric closed contours with the inner contours having
lower elevation than their outer surrounding (FIG. 27A).
The sink point is located inside the innermost closed con-
tour. The outermost closed contour of the depression indi-
cates the spatial extent (boundary) of the depression. The
elevation of the outermost closed contour also approximates
the spill elevation for the entire depression. Contours gen-
erated from high-resolution LiDAR. DEM s often contain
very jagged artifacts. Therefore, the DEM may be smoothed
before generating contours. The median or Gaussian
smoothing filter may be used to remove data noise and
suppress small artifact depressions without distorting the
boundaries of true topographic depressions (Liu et al. 2010;
Wuetal. 2014). The smoothed DEM is then used to generate
contours. There are two key parameters for DEM contour-
ing: the base contour and the contour interval. The base
contour may be set as zero while the contour interval is
chosen based on the topography of the mapped area and
application needs. In the example study, the contour interval
was set at 20 cm which was chosen based on the LiDAR
vertical accuracy (15 c¢m) and consideration of computa-
tional time. DEM contouring and generation of local contour
trees was thereafter performed as previously described in the
other examples.

As previously described in Examples 1 and 2, the task of
topographic depression detection becomes the identification
of spilling contours. To explicitly represent the nested hier-
archical structure of a complex depression, the local contour
tree is simplified by removing the nodes that do not corre-
spond to spilling contours. The complexity level of a com-
plex depression can be measured by the number of nodes
passing through the longest path from the root node to the
leaf nodes. Traversing the depression tree top-down simu-
lates the splitting of a large complex depression into smaller
lower level depressions when water level decreases, while
traversing the depression tree bottom-up emulates the merg-
ing of smaller lower level depressions into larger and more
complex depressions when water level increases. A complex
depression may have more than one first level simple
depressions embedded within it, depending on the selection
of contour intervals and the elevation difference between the
lowest point in the depression and the spill contour eleva-
tion. Each depression tree represents one complex depres-
sion, and the number of trees in the forest represent the
number of complex depressions for the entire area.

After delineating wetland depressions from the LiDAR
DEM and quantifying the complexity of their nested hier-
archical structure using the localized contour tree method,
the presence of standing (antecedent) water in each indi-
vidual depression was determined to contrast a LiDAR-
based assessment with existing area and volume assess-
ments. The following methodology was applied to quantify
the maximum volume of water stored in these systems
before the spill elevation was reached, applying an area-to-
volume algorithm to quantify below-water storage. Wet-
lands with standing water were characterized with low
LiDAR intensity values (i.e., were darker than the surround-
ing areas), while other land cover types (e.g., cultivated
crops, upland grassland) had higher intensity values and
were lighter in color. Simple thresholding techniques have
been used in previous studies to extract standing waterbod-
ies in LiDAR intensity imagery (Lang and McCarty 2009;
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Huang et al. 2011). The 1-m gridded LiDAR intensity
imagery for the study area was smoothed using a 3x3
median filter. The filtered intensity image was then used to
separate water and non-water pixels. A threshold value was
set to separate water and non-water pixels by examining
typical waterbodies. The threshold was set at an intensity
value of 30 based on examination of the intensity histogram
and visual inspection of typical waterbodies in the LiDAR
intensity imagery. Areas with intensity values between 0 and
30 were mapped as waterbodies while areas with intensity
values between 31 and 255 were mapped as non-water. More
detailed description on water pixel classification using
LiDAR intensity has been provided by (Huang et al. 2014).

After completion of the identification of potential wetland
depressions and delimiting and quantifying depression com-
plexity levels, various geometric attributes of depressions
were computed for all depression contour levels, including
simple and complex depression surface area, perimeter,
maximum depth, mean depth, and depression storage, etc.
The above-water volume (V ;) for each simple depression
that comprises a complex depression (as applicable) was
calculated based on statistical analysis of LiDAR DENT
cells enclosed by the depression boundary (or spilling)
contour:

V =(ZxC-S)xR? [Equation 5]

where Z=elevation of the depression boundary contour;
C=number of cells enclosed by the depression boundary
contour; S=summation of elevation values of all cells
enclosed by the depression contour; and R=pixel resolution
of the DEM grid. The maximum depression storage for the
entire complex depression area is the summation of depres-
sion storage from all simple depressions. V ;- was calcu-
lated for all depressions that were without any standing
water to contrast LIDAR-based volume assessments to area-
to-volume equations.

Since the near-infrared LiDAR sensors generally could
not penetrate water, the depression morphology beneath the
water surface could not be derived from LiDAR data.
Therefore, it is not possible to calculate the exact storage
volume of an existing waterbody. However, numerous stud-
ies have showed that there is a strong statistical relationship
between storage volume (V) and surface area (A) in a
topographic depression (e.g. Geason et al. 2007; Le and
Kumar 2014). Gleason et al. (2007) developed a general
area-to-volume equation (Equation 6) relating the volume
(V) and wetted area (A) to estimate water storage in pothole
wetlands in the Glaciated Plains physiographic region:

P=0.25x414742 [Equation 6]

where A is the measured surface area in hectares and V is the
predicted storage volume in hectare-meters. Since the study
area is located in the Glaciated Plains, Equations 5 and 6
were adopted and modified by transforming the storage
volume unit from hectare-meters to cubic meters:

L4742 [Equation 7]

Vaw = 0.25 % (4/10,000)"*™ % 10,000

= 00317 x AL¥742

where A is the water surface area in m* and Vj,, is the
predicted existing below-water storage volume in m>. By
adding the LiDAR-computed above-water volumes (V ;)
and the estimated below-water volumes (Vg;,), the total
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storage volume (V) was calculated for each wetland
depression (simple depressions or complex depressions) at
different levels by:

V=Vt Vaw [Equation 8]

Equation 8 combines the maximum potential storage from
the lowest point of the contour polygon that is above water
(and thus calculated through LiDAR analyses of simple or
complex depressions) to the spill elevation plus the calcu-
lated volume of water estimated to exist below the wetted
area of the wetland depression (as applicable).

Results

Summarily, after smoothing the 1-m LiDAR-derived
bare-earth DEM using a 3x3 median filter, the vector con-
tour representation was generated by setting the base con-
tour of each depression to be zero meters and the contour
interval to be 20 cm. The localized contour tree method was
then applied to contours to identify topographic depressions
in the study area (FIGS. 27A, 27B, and 27C). In total, 12,402
depressions were detected and characterized, of which
11,301 were 1st-level simple depressions, and 1,101 were
multi-level (e.g., >1st level) complex depressions. The
greatest complexity was found in an eight-level system. For
each surface depression (simple depression or complex
depressions), geometric and topological properties were
computed.

Using the LiDAR intensity data, 3,269 out of 12,402
wetland depressions were identified with standing water.
The total water surface area was approximately 5,350 ha,
with an average size of 2.04 ha and a median size of 0.182
ha, which is slightly larger than the median size (0.164 ha)
of NWI polygons in the study area. Using the V- equation
(Equation 7), it was estimated that these existing waterbod-
ies contained approximately 104.7 million m> of water. The
LiDAR-based storage potential (i.e., Equation 5) was con-
trasted with the area-to-volume relationship based storage
potential equations (i.e., Equation 7) for the remaining 9,133
dry depressions, which were comprised of 8,676 (95.0%)
simple depressions and 457 (5%) complex depressions (FIG.
28). Among the dry depressions, 8,643 (88%) were less than
0.20 ha in size. The total surface area of all dry depressions
was approximately 1,253 ha. The total LiDAR-computed
volume and area-to-volume equation predicted volume were
3.87 and 3.35 million m>, respectively. Overall, the storage
volumes using the area-to-volume relationship established
in Equation 7 tended to underestimate the LiDAR-computed
storage volumes using Equation 5 in the study area, and no
distinct pattern was found for measured storage for simple or
complex depressions (see FIG. 28). Nevertheless, the area-
to-volume equation developed by Gleason et al. (2007)
provides a reasonable estimate of full depression storage
volume when high-resolution topographic data is not avail-
able for precisely calculating the storage volume. Since the
area-to-volume equation developed for the Glaciated Plains
by Gleason et al. (2007) underestimated the storage volume
for wetland depressions in the study area, a new power
function curve was fitted to these dry depressions:

V=0.01725x41-3008¢ [Equation 9]

The fitted power function curve is slightly above the
area-to-volume estimated volume, providing a better area-
to-volume model for estimating storage volume for wetland
depressions in the watershed.

The localized contour tree method is fundamentally dif-
ferent from the previous raster-based methods for topo-
graphic depression detection, which used the priority-flood
algorithm and its variants to create a hydrologically con-
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nected surface by flooding DEMs inwards from their edges
(Lindsay and Creed 2006; Wang and Liu 2006; Barnes et
al.). The depressions are then derived by subtracting the
original DEM from the depression-filled DEM. These raster-
based methods assume that the surface is fully flooded and
ignore the nested hierarchical structure within depressions.
On the contrary, the inventive method for topographic
depression detection is a vector-based approach that does
not make the fully-flooded assumption. The topographic
depression detection problem is treated as the identification
of a set of concentric contours with an increasing elevation
outward, represented by a contour tree. Localized contour
tree construction and search algorithms make the inventive
methods computationally efficient and fast. The detection
results for topographic depression are likely to be consistent
with human interpretation results.

The LiDAR DEM for the study area has a 1-m spatial
resolution with a vertical accuracy of 15 CM. It should be
able to detect a depression with a diameter of 2 in and a
depth of 30 cm according to the Nyquist-Shannon sampling
theorem (Blaschke 2010). Since the method is based on the
contour representation of depressions, the selection of the
base contour line and particularly the contour interval will
also affect the depression detection result. The larger the
contour interval, the fewer contour lines generated and the
less computation time needed to detect depressions (and vice
versa). The contour interval chosen to generate contours for
the study area was 20 cm. Consequently, the localized
contour tree might not detect some shallow depressions
whose depths are less than 20 cm, and these depressions
might be absent from the contour maps even when these
features actually exist in the landscape. This is the intrinsic
limitation of DEM contouring, however the number of
artifact depressions resulted from LiDAR DEM error may
be effectively reduced by setting appropriate thresholds of
surface area and depth of depressions.

The ideal conditions for IDAR data collection are leaf-off
and dry antecedent conditions for wetland depression analy-
ses. LIDAR generally cannot penetrate water, meaning that
the basin morphology of inundated depressions could not be
captured by LiDAR data. Therefore, it is not possible to
calculate the exact water volume under the existing water
surface. The LiDAR used in our study were collected during
late October to early November in 2011, which was after
vegetation senescence. However, the depressions appear to
be wetter than that in the summer season, as evidenced from
water surface comparisons between the LiDAR intensity
imagery (2011) and aerial photographs (2012) in FIGS. 26C
and 26D, as well as in FIGS. 27B and 27C.

Reliable and up-to-date wetland extent is essential for
improving conservation and management of wetlands and
flood mitigation efforts. The exemplified embodiment pro-
vides a new approach for delineating wetland depressions,
quantifying their nested hierarchical structure, and estimat-
ing depression water storage volume using LiDAR DEM
and LiDAR intensity imagery. Although information pre-
sented in this study is specific to the Little Pipestem Creek
watershed, the inventive method is applicable to other areas
with sufficiently high-resolution topographic data. With the
increasing availability and high-resolution LiDAR data and
aerial photographs, such as in the PPR, the inventive meth-
ods provide a reliable way for monitoring and updating
wetland extent and estimating water storage capability.

What is claimed:

1. A computer-implemented method for detecting and
characterizing surface depressions in a topographical area,
the method comprising:
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a) providing a digital elevation model (DEM) of the
topographical area, wherein the DEM is derived from
high resolution digital elevation data collected by Light
Detecting and Ranging (LiDAR) or Interferometric
Synthetic Aperture Radar (InSAR) technology;

b) designating a base elevation contour and a contour
interval for the DEM;

¢) using the base elevation contour and interval from b),
generating an elevation contour representation of the
topographical area, wherein the contour representation
comprises closed contour lines and excludes open
contour lines;

d) identifying one or more seed contours, defined as a
lowest elevation interior contour in a set of concentric
closed contours, and, beginning with the lowest eleva-
tion seed contour and hierarchically expanding to
higher elevation contours until a highest elevation
contour is reached, constructing a local contour tree,
wherein each contour line is represented as a node in
the local contour tree;

e) repeating step (d) iteratively until all highest elevation
contours are incorporated in a local contour tree;
wherein the number of surface depressions corresponds

to the number of local contour trees, a simple depres-
sion comprises a local contour tree with one seed
node, and a complex depression comprises a local
contour tree with more than one seed node;

) identifying a quasi-pour contour node for each local
contour tree; and

g) determining a true-pour contour node for each local
contour tree, wherein an elevation of a true pour
contour node is a spill elevation and an elevation of a
quasi-pour contour node is less than or equal to the
elevation of the true pour contour node.

2. The method according to claim 1, wherein prior to step
(b), the DEM is subjected to pre-processing to extract a
subset of the DEM comprising surface depressions, said
preprocessing comprising applying a smoothing operation,
applying a filling operation, generating an elevation differ-
ence DEM, and converting the elevation difference DEM
raster to generate a polygon layer, using the polygon layer as
a mask to extract the subset of the DEM.

3. The method according to claim 1, wherein the deter-
mining of step (g) comprises expanding an elevation of each
quasi-pour contour outward by an incremental buffering
algorithm to determine elevation of the true pour contour.

4. The method according to claim 1, wherein a contour
interval is selected to increase or decrease density of the
closed contour lines.

5. The method according to claim 1, wherein construction
of'local contour trees is prioritized based on elevation of the
identified seed contours such that the local contour tree
comprising the lowest seed contour line elevation is con-
structed first.

6. The method according to claim 1, wherein a local
contour tree comprises one root node corresponding to a
highest elevation contour, a set=0 of internal nodes, and a
set=1 of terminal nodes, each terminal node corresponding
to a seed contour enclosed within the highest elevation
contour, each internal node having 0 or 1 parent nodes, and
1 or more child nodes, wherein an internal node having 2 or
more child nodes is designated a fork node, and each child
of a fork node is designated a split node.

7. The method according to claim 1, further comprising
calculating one or more morphometric properties of the
detected depressions.
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8. The method according to claim 7, wherein the mor-
phometric properties are selected from one or more plani-
metric properties, volumetric properties, and shape proper-
ties.

9. The method according to claim 8, wherein the plani-
metric properties are derived from the true-pour contour and
are selected from a geographical location of a centroid point,
perimeter, surface area.

10. The method according to claim 8, wherein the volu-
metric properties are selected from mean depth of a depres-
sion, maximum depth of a depression, standard deviation of
elevation (STD) and water detention capacity of a depres-
sion.

11. The method according to claim 10, wherein the shape
properties are selected from compact index (CI), circularity
(ELG) and asymmetry.

12. The method according to claim 6, further comprising
generating simplified local contour trees by removing all
internal nodes that are not forked nodes such that all
remaining internal nodes correspond to pour contours of
non-surface depressions.

13. The method according to claim 2, wherein the topo-
graphical area comprises a Karst landscape and the surface
depressions sought to be detected and characterized com-
prise sinkholes, the method further comprising (h) calculat-
ing one or more morphometric property values of detected
depressions and comparing the value to a threshold value for
each morphometric property to eliminate surface depres-
sions not likely to be sinkholes, wherein the threshold values
are based on morphological data derived from sinkholes
previously identified and characterized in the Karst land-
scape.
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14. The method according to claim 2, wherein the topo-
graphical area comprises a Wetlands landscape and the
surface depressions sought to be detected and characterized
comprise wetlands potholes, the method further comprising
(h) calculating one or more morphometric property values of
detected depressions and comparing the value to a threshold
value for each morphometric property to eliminate surface
depressions not likely to be potholes, wherein the threshold
values are based on morphological data derived from pot-
holes previously identified and characterized in the Wetlands
landscape.

15. A method of constructing a hydrological model of a
wetlands landscape comprising potholes, the method com-
prising accounting for intra-depression elevation morphol-
ogy of complex potholes within the landscape by detecting
and characterizing the potholes according to the method of
claim 14, wherein the method is performed at least twice
across a time frame, further wherein characterizing com-
prises quantifying water storage, the method further com-
prising quantifying a change in water storage across the time
frame.

16. A non-transitory computer readable medium compris-
ing computer-executable instructions for carrying out the
method according to claim 1.

17. A non-transitory computer readable medium compris-
ing computer-executable instructions for carrying out the
method according to claim 13.

18. A non-transitory computer readable medium compris-
ing computer-executable instructions for carrying out the
method according to claim 16.
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