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1
HUMANIZED STEERING MODEL FOR
AUTOMATED VEHICLES

TECHNICAL FIELD OF INVENTION

This disclosure generally relates to a humanized steering
system for an automated vehicle, and more particularly
relates to using deep-learning techniques to develop a steer-
ing-model that steers the vehicle in a manner similar to how
an operator manually steers the vehicle.

BACKGROUND OF INVENTION

Fully automated (i.e. autonomous) vehicles that steer the
vehicle without any manual input from an operator of the
vehicle have been proposed. However, the algorithms that
control the steering of the vehicle have performance tuning
variables that make tuning the algorithm for passenger
comfort complicated. Even when passenger comfort is con-
sidered, the performance of the algorithms only provides
superior comfort during the specific steering scenarios that
were used to tune the algorithm. What is needed is an
algorithm or steering model that mimics the steering char-
acteristics of a human operating the vehicle.

SUMMARY OF THE INVENTION

In accordance with one embodiment, a humanized steer-
ing system for an automated vehicle is provided. The system
includes one or more steering-wheels operable to steer a
vehicle. The system also includes an angle-sensor config-
ured to determine a steering-angle of the steering-wheels.
The system also includes a hand-wheel used by an operator
of the vehicle to influence the steering-angle and thereby
manually steer the vehicle. The system also includes a
steering-actuator operable to influence the steering-angle
thereby steer the vehicle when the operator does not manu-
ally steer the vehicle. The system also includes a position-
sensor operable to indicate a relative-position an object
proximate to the vehicle. The system also includes a con-
troller configured to receive the steering-angle and the
relative-position. The controller is further configured to
determine, using deep-learning techniques, a steering-model
based on the steering-angle and the relative-position, and
operate the steering-actuator when the operator does not
manually steer the vehicle to steer the vehicle in accordance
with the steering-model, whereby the vehicle is steered in a
manner similar to how the operator manually steers the
vehicle.

Further features and advantages will appear more clearly
on a reading of the following detailed description of the
preferred embodiment, which is given by way of non-
limiting example only and with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The present invention will now be described, by way of
example with reference to the accompanying drawings, in
which:

FIG. 1 is a diagram of a humanized steering system for an
automated vehicle in accordance with one embodiment;

FIG. 2 is a table of data in the system in accordance with
one embodiment;

FIG. 3 is diagram of data in the system of FIG. 1 in
accordance with one embodiment; and
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2

FIG. 4 is logic diagram of data of a process performed by
the system of FIG. 1 in accordance with one embodiment.

DETAILED DESCRIPTION

FIG. 1 illustrates a non-limiting example of a humanized
steering system, hereafter referred to as the system 10. While
the description of the system 10 presented herein is gener-
ally directed to a fully-automated (i.e. autonomous) vehicle,
hereafter referred to as the vehicle 12, it is contemplated that
the teachings presented herein are applicable to partially
automated vehicles that may momentarily take-over control
of the vehicle 12 or momentarily assist the an operator 14
with manually steering the vehicle 12 to, for example, avoid
another vehicle.

The system 10, or more specifically the vehicle 12, is
equipped with one or more steering-wheels, hereafter the
steering-wheels 16. The steering-wheels 16 may be gener-
ally characterized as operable to steer the vehicle 12. While
the vehicle 12 is expected to typically be a four-wheeled
automobile, it is contemplated that the teachings presented
herein will also be applicable to two-wheeled or three-
wheeled vehicles equipped with a single steering-wheel,
articulated vehicles that steer by varying the relative angle
between a forward and rear portions of the vehicle, and other
wheeled vehicles possibly equipped with many more than
four wheels and/or more than two steering-wheels.

In order for the system 10 to determine the angle or
direction of the steering-wheels 16, the system includes an
angle-sensor 20 configured to determine and/or indicate a
steering-angle 18 of the steering-wheels 16. The angle-
sensor may use one of variety of technologies such as
variable resistance, variable reluctance, or digital position-
encoder to output or provide a signal indicative of the
steering-angle 18.

As will be explained in more detail later, the system 10
described herein is generally configured to operate or steer
the vehicle 12 in a manner that mimics the manner in which
a human-being (i.e. the operator 14) manually steers the
vehicle 12. In general, the system ‘learns’ the manner in
which the operator 14 manually steers the vehicle 12 by
observing/recording a variety of aspects that influence how
the operator 14 may steer the vehicle 12, and then builds a
mathematical model in an effort to duplicate that observed
behavior.

In order for the operator 14 to be able to manually steer
the vehicle 12, the system 10 (or the vehicle 12) is equipped
with a hand-wheel 22 used or operable by the operator 14 of
the vehicle 12 to influence the steering-angle 18, and thereby
manually steer the vehicle 12. While the term hand-wheel is
typically interpreted to be the relatively round hand-wheels
typical found in an automobile, other alternative means of
steering such as joy-sticks, handle-bars, reins, foot-pedals,
push-buttons, rotary or sliding knobs, and the like are also
contemplated and are included in the definition of the
hand-wheel 22.

The system 10 also includes a steering-actuator 24 useful
or operable to influence the steering-angle 18 so the system
10 is able to steer the vehicle 12 when the operator 14 does
not manually steer the vehicle 12. In one embodiment, the
steering-actuator 24 may result in the hand-wheel 22 moving
as the steering-angle 18 changes, which is often the case for
assisted-steering type steering-mechanisms. Alternatively,
the steering-mechanism may be characterized as a steer-by-
wire type steering-mechanism where there is no mechanical
connection between the hand-wheel 22 and the steering-
actuator 24. That is, in a steer-by-wire type system there may
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only an electrical connection so the hand-wheel 22 may not
move in response to changes in the steering-angle 18 when
the system 10, rather than the operator 14, is steering the
vehicle 12.

The system 10 also includes a position-sensor 26 operable
to indicate a relative-position 28 an object 30 proximate to
the vehicle 12. Non-limiting examples of the object 30
include lane-markings on the surface of the roadway or
travel-lane traveled by the vehicle 12, roadway-edges, signs,
sign-posts, barriers such as guardrails, construction-barrels,
pedestrians, animals, and other-vehicles such as automo-
biles, motorcycles, bicycles, and the like. The position-
sensor 26 may include one or any combination of; but is not
limited to, a camera 26A, a radar unit 268, and a lidar unit
26C.

The system 10 also includes a controller 32 configured to
receive, for example, the steering-angle 18, the relative-
position 28, and/or manual-control signals 38 for observing/
learning the manner in which the operator 14 operates (e.g.
steers) the vehicle 12 when the operator 14 is manually
operating the vehicle 12. The controller 32 is also configured
to operate or steer the vehicle 12 in a manner similar to how
the operator 14 manually steers the vehicle 12 when the
operator 14 is not manually operating or steering the vehicle
12.

The controller 32 may include a processor (not specifi-
cally shown) such as a microprocessor or other control
circuitry such as analog and/or digital control circuitry
including an application specific integrated circuit (ASIC)
for processing data, as should be evident to those in the art.
The controller 32 may include memory (not specifically
shown), including non-volatile memory, such as electrically
erasable programmable read-only memory (EEPROM) for
storing one or more routines, thresholds, and captured data.
The one or more routines may be executed by the processor
to perform steps for determining the manner in which the
operator 14 manually operates or steers the vehicle 12, and
autonomously operating the vehicle 12 in a similar manner,
as described herein.

Given the information present in, for example, the steer-
ing-angle 18 from the angle-sensor 20, the relative-position
28 and other information about the object 30 (e.g. size,
shape, motion, classification, etc.) from the position-sensor
26, the controller is configured to determine, using deep-
learning techniques, a steering-model 34 based on at least
the steering-angle 18 and the relative-position 28. Using
deep-learning techniques is advantageous over control-
theory based techniques because deep learning relaxes some
of pre-conceived notions or assumptions necessary for con-
trol-theory based model-construction techniques. Deep-
learning techniques readily include effects of real-time con-
ditions such as, for example, how temperature can influence
tire stiffness, and/or how a steering maneuver affects pas-
senger comfort. The steering model 34 may be constructed
or trained using Recurrent Neural Networks (RNNs) which
are time-based deep learning methods that can be imple-
mented in a dynamic system.

The steering-model 34 has an input data structure that
may be characterized as a binary-vector 36 that includes
many kinds of inputs like weather, obstacles, vehicle state,
and/or vehicle position in lane. Each bit or combination of
bits in the binary-vector represents an element of input.
Once the steering-model 34 is determined, the system 10 is
able to operate the steering-actuator 24 when the operator 14
does not manually steer the vehicle 12 to steer the vehicle 12
in accordance with the steering-model 34. This provides a
means whereby the vehicle 12 is steered in a manner similar
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to how the operator 14 manually steers the vehicle 12. By
way of example and not limitation, the steering-model 34
may output a desired-angle 40 of steering-wheels 16 to steer
the vehicle 12 when the operator 14 does not manually steer
the vehicle 12. The control of the steering-actuator 24 in
response to a changing value of the desired-angle 40 may be
by way of a proportional-integral-derivative (PID) position
control algorithm, as will be recognized by those in the art.
Alternatively, the response-time-characteristics of the steer-
ing-actuator 24 may be included in the steering-model 34. In
an alternative non-limiting embodiment the desired-angle 40
may instead be a desired-torque value output by the con-
troller 32 and used to determine, for example, how much
current is applied to the steering-actuator 24 in order for the
steering-actuator 24 to generate or output to change the
steering-angle 18 of the steering-wheels 16.

FIG. 2 illustrates a non-limiting example of the binary-
vector 36, or a portion thereof. As suggested above, the
steering-model 34 may be characterized by a binary-vector
36 which may be composed of a plurality of bits indicative
of parameters 42 of the steering-model 34. Each bit of the
binary-vector 36 may correspond to one element of input.
For example, the bits that form the binary-vector 36 may
indicate a variety weather conditions and use I’s and 0’s to
indicate those weather conditions. FIG. 2 is a suitable
example of how a pleasant sunny day may be indicated. For
the weather-condition 42A indicated, the steering-model 34
model would presume that the object 30 is readily or more
confidently detected/classified by the camera 26 A, and trac-
tion is good. In contrast, when the weather-condition 42A
indicates that rainy or snowy are indicated, the operator 14
may manually steer the vehicle 12 in a more cautious
manner, so steering-model 34 may be tuned to steer the
vehicle 12 less aggressively when rainy or snowy conditions
are indicated.

While not shown in FIG. 2, the weather-condition 42A
may include a temperature 44. The temperature 44 may be
indicated in the binary-vector 36 by an eight-bit number
(000000000 to 11111111) where zero (0) corresponds to less
than or equal to -65° C., and 11111111 corresponds to
greater than or equal to 190° C. The temperature 44 may be
used by the steering-model 34 to help determine if, for
example, ice may have formed on the roadway, or estimate
the stiffness of the tires of the vehicle 12 and adjust the
parameters 42 of the binary-vector 36 such as a steering-
response-time 46 of the vehicle-specification 42C.

The binary-vector 36 may include one or more of the
parameters 42 indicative of the vehicle-state 42B, such as,
but not limited to lateral-acceleration 48 A and/or longitudi-
nal-acceleration 48B (lateral/longitudinal-acceleration in
FIG. 1), vehicle-speed 50, yaw-rate 52, and the steering-
angle 18. Accordingly, the system 10 may include or be
equipped with an accelerometer 54 and/or a speed-sensor 56.
These variables may be indicated by a binary number input
into the binary-vector 36. For example, the vehicle-speed 50
may be indicated by a seven-bit binary number so speeds
from zero (0000000) to greater than or equal to one-
hundred-twenty-seven (1111111) miles per hour can be
indicated.

The binary-vector 36 may include one or more of the
parameters 42 indicative of the vehicle-specification 42C,
such as, but not limited to vehicle-size 58A (e.g. wheel-base
and/or body-length), vehicle-mass 58B, steering-response-
time 58D, and/or engine-power 58C. If the system 10
identifies an instance of the object 30 that needs to be steered
around (i.e. avoided), all of these variable may affect how
the vehicle 12 responds to a change in the steering-angle 18
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and thereby affect what the operator 14 senses with regard
to comfort and human-like steering behavior by the system
10.

The binary-vector 36 may include one or more of the
parameters 42 indicative of the object-characteristic 42D,
such as, but not limited to object-location 60A, object-vector
60B, object-classification 60C, and lane-position 60D. As
suggested above, the object 30 may be anything that is
present on or near a roadway. The object 30 may be
something that is used by the system 10 to steer the vehicle
into a particular biased value of the lane-position 60D. That
is, the lane-position 60D may not be the center of a selected
travel-lane. Alternatively, the object 30 may be within the
forward travel-path of the vehicle 12, or moving in a
direction (object-vector 60B) that will intersect with the
forward travel-path.

By way of further example, the object-location 60A may
be indicated in the binary vector by which of eight locations
or directions about the vehicle 12 that the object 30 occu-
pies. Eight bits may correspond to the directions shown in
FIG. 3 which may be labeled in the binary-vector 36 as
<Dir_LF>, <Dir_F>, <Dir RF> <Dir_L> <Dir_R>,
<Dir_LB>, <Dir_B>, <Dir_RB>, respectively. If the object
30 is large, such as a semi-tractor/trailer vehicle, which may
occupy the right-front, right, and right-back directions or
locations, then the object-location 60A in binary may be
00101001.

The object-classification 60C may be indicated by a
combination of bits to indicate various information about an
obstacle that includes classification, distance, and/or speed if
the object 30 is moving. By way of example, 0000 means no
obstacle, 0001 means a car, 0010 means a person, 0011
means an animal, 0100 means a road-block. Distance and
speed may also be indicated in binary form in the binary-
vector 36. Similarly, with regard to the lane-position 60D,
000 indicates “in the middle”, 101 indicates “left of road”,
001 indicates “right of road”, 110 indicates “double-laning
in the left” and 011 indicates “double-laning in the right”.

The steering-model 34 may be implemented as a discrete
time model with, for example, a sample/update rate of
AT=0.1 seconds. The sample/update rate can be modified if
the data collecting frequency is different. At time TJi], the
binary-vector 36 (i.e. the input for the steering-model 34)
may be expressed as X_T[i]. The steering-model 34 include
a transformation function H_TJ[i], which is sometimes
referred to as the hidden layer and characterized as being
composed of neurons. That is, H_TJ[i] here is the hidden
layer at time T[i] with the new input X_T[i]. By way of
further explanation, neurons in the hidden layer are like
neurons in a human brain that ‘grab’ the data from inputs and
extract features or parameters from the input so that brain
will learn how identify/categorize information and react to
situations. The hidden layer is essentially invisible but is
very important because the learning process happens here.

The output of the steering-model 34 at time T[i] may be
expressed as Y_TJ[i]. The input (the binary-vector 36), the
hidden layer H_T[i], and the output Y_T[i] may be con-
nected or related to each other by weight-matrices W1, WH,
and WO. The hidden layer H_TJ[i] may have ‘grabbed’ some
features that will influence a future value of the desired-
angle 40. Therefore, H_T[i] is considered when computing
new hidden layer at time T_[i+1]. Given input X_T[i+1] at
time T[i+1], then H_T[i+1]=f(WI*X_T[i+1]+WH*H_TTi]),
where f is an activation function. Usually, f(x)=tan h, or
fx)=1/(1+exp (-x)). Therefore the output at T[i+1] is:
Y_T[i+1]=fo(WO*(H_T[i+1])), where fo is an activation
function and usually fo=tan h or fo is sigmoid function.
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The RNNs are characterized as a supervised learning
algorithm, which means the input data that forms the binary-
vector 36 are labeled. The labeled data means that given an
input, the desired output is given so the learning process will
be urged toward an acceptable solution. In this example, at
time T[i] there is a true output, Yd_T[i]. However, for
unsupervised learning, the data are unlabeled, that is, no
responses are provided. The system 10 or more specifically
the controller 32 needs classify the data by itself. Once
classified, the system 10 uses a ‘backpropagation through
time’ method to tune the weight matrices, WI, WH, and WO.
The backpropagation method is used to minimize the error
function by gradient descent.

At time T[i], the step error is expressed as E_T[i]=sum
[(Yd_T[m]-Y_T[m])"2], m=1, 2, . . . L, where L is the
number of neurons in output layer. At time T[n], define the
accumulated error as the sum of step errors at a previous
time E_a=sum(E_TTJi]), i=1, 2, 3, . . . n. Egs. 1-3 illustrate
applying backpropagation through time using the chain rule
to calculate the derivation:

0E a < 9B T[] Eq. 1

awI _; awrI

dE_a & JE_T[i] Eq. 2
= , and

OWH ~ & OWH

9E_a & JE_T[] Eq. 3

Using gradient descent to update WI WH, and WO
provides Egs. 4-6.

— JE a Eq. 4
new = oW
WH = Wi JdE_a d Eq. 5
new =M ewm
JE a Eq. 6

new WO = Wl—nm,

where 1) is learning rate.

The problem of RNNs is vanishing gradient problem that
is mentioned by Yoshua Bengio, Patrice Simard and Paolo
Frasconi in a publication entitled Learning Long-Term
Dependencies with Gradient Descent is Difficult, by Bengio,
Smiard, and Frasconi, published in IEEE transactions on
Neural Networks, VOL 5, NO. 2, March 1994. If this
problem happened in training process, Long-Short-Term-
Memory (LSTM) can be used to avoid it. The LSTM method
presented below is adopted from on-line lecture notes (lec-
ture 12) published by the Department of Computer Science
at the University of Oxford which are course materials for
Machine Learning in the 2014-2015 academic year.

FIG. 4 illustrates a non-limiting example of a logic
diagram 400 to illustrate the process executed by the con-
troller 32. The operations in the logic diagram 400 corre-
spond to Eqs 7-12

i_TTi+1|=f (W *_TTi+1 1+ Whi*h_T]i]), Eq. 7,
ST+ 1= _TTi+1 |+ Why*h_T1i)), Eq. 8,
o_TTi+11=A{Wxo™x_T[i+1]+Who *h_TTi]), Eq. 9,
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g Tli+11=g(Wxg*x_TTi+11+Whg*h_TT1i]), Eq. 10,
c_Ti+1]=i_TTi+1]-g_TTi+1]+f Tli+1]-c_TT[i] Eq. 11,
h_TTi+1]=o_TTi+1]-h(c_TTi+1]) Eq. 12,

where function f, g, h are activation functions, which can be
sigmoid function, tan h, and - means element-wise multipli-
cation.

With new h_T[i+1], repeat the process described above.
Here use Wxi, Whi, Wxt, Whf, Wxo, Who, Wxg and Whg
instead WI, WH. Use the backpropagation through time to
tune the weight matrices. In real practice, there are several
ways to affect the learning performance. The number of
neurons in hidden layer is uncertain and it affects the training
results. To reach the best result, divide the data into two
parts: training set and testing set. Use the training set to
apply the algorithm above to get the weight and use the test
set to get the error. Adjust the number of neurons and repeat
the learning process until the error reaches the smallest.
Another way to improve the result may be adding biases and
tune the biases during backpropagation. Adding more hid-
den layers in this algorithm is another way to improve the
performance. Adding more hidden layers means that more
previous time steps will be considered for the next step.

The system 10 learns to steer the vehicle 12 in a manner
similar to a human being, e.g. the operator 14. To avoid
learning bad driving habits, there are two choices: one is to
apply a filter to ignore the bad driving time and keep the
good one to learn; the other is to record the data of a good
driver. Or combine two methods together to reach the best
result.

The steering-model described herein provides for a sys-
tem 10 that can steer the vehicle 12 in a manner that mimics
the operator. Further understanding of the system 10 is
provided by the description of several ‘use cases’ described
below. For each of the use cases, the input can be different,
but not all inputs need to be considered for each case.

The simplest case is lane keeping. In this case, the input
can be defined as simple as: distance to a lane boundary (the
lane-position 60D), the present value of the steering-angle
18, and the present value of the vehicle-speed 50. In general,
know control algorithms tend to steer the vehicle toward the
center of a travel lane. However, different people have
different habits for driving. The output of the steering-model
34 does not necessary keep the vehicle in the center. It is
more similar to the operator 14 whose data is used for
training.

Lane changing is also very common. In addition to the
input for lane keeping; inputs for obstacle-classification,
obstacle-size, and distance to the object 30 may also need to
be considered. Noting that different people handle driving
situation differently; some drivers may want to avoid
obstacles as early as possible while some drivers tend to
make a quick lane change when getting close to the
obstacles. In general, there is no fixed standard to judge the
driving habits of the operator 14 as long as it is safe to
themselves and others. The trained model can be better
tuned to meet different people’s habit by using different
training data.

Another case is similar to existing on highway: a constant
nonzero curvature path and also involves points with dis-
continuous curvature where vehicle transition from highway
to ramp. In this case, in addition to lane keeping, comfort
level is more important. Always staying on the center of the
lane may not be a good choice. Most people will drive close
to right lane boundary when on a ramp turning right and
close to left lane boundary when on a ramp turning left so
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that the radius is bigger than just driving along the center and
force exerted on drivers/passengers is reduced. If this sce-
nario is in the training database, the trained model should be
able to provide the torque curve which is more close to
human.

Accordingly, a humanized steering system (the system
10) for an automated vehicle and a controller 32 for the
system 10 are provided. The system 10 uses deep-learning
techniques so the steering-model 34 is better able to mimic
the steering behavior of a human-being, e.g. the operator 14.

While this invention has been described in terms of the
preferred embodiments thereof, it is not intended to be so
limited, but rather only to the extent set forth in the claims
that follow.

We claim:

1. A humanized steering system for an automated vehicle,
said system comprising:

one or more steering-wheels operable to steer a vehicle;

an angle-sensor configured to determine a steering-angle
of the steering-wheels;

a hand-wheel used by an operator of the vehicle to
influence the steering-angle and thereby manually steer
the vehicle;

a steering-actuator operable to influence the steering-
angle thereby steer the vehicle when the operator does
not manually steer the vehicle;

a position-sensor operable to indicate a relative-position
an object proximate to the vehicle; and

a controller configured to

receive the steering-angle and the relative-position,

determine, using deep-learning techniques, a steering-
model based on the steering-angle and the relative-
position while the operator is using the hand-wheel to
manually steer the vehicle, and

operate the steering-actuator when the operator does not
manually steer the vehicle to steer the vehicle in
accordance with the steering-model, whereby the
vehicle is steered in a manner similar to how the
operator manually steers the vehicle.

2. The system in accordance with claim 1, wherein the
steering-model outputs a desired-angle of steering-wheels to
steer the vehicle when the operator does not manually steer
the vehicle.

3. The system in accordance with claim 1, wherein the
steering-model is characterized by a binary-vector com-
posed of a plurality of bits indicative of parameters of the
steering-model.

4. The system in accordance with claim 3, wherein the
binary-vector includes a parameter indicative of a weather-
condition.

5. The system in accordance with claim 4, wherein the
weather-condition includes sunny, cloudy, foggy, rainy,
snowy, windy, and temperature.

6. The system in accordance with claim 3, wherein the
binary-vector includes a parameter indicative of a vehicle-
state.

7. The system in accordance with claim 6, wherein the
vehicle-state includes lane-position, lateral-acceleration,
longitudinal-acceleration, vehicle-speed, and the steering-
angle.

8. The system in accordance with claim 3, wherein the
binary-vector includes a parameter indicative of a vehicle-
specification.

9. The system in accordance with claim 8, wherein the
vehicle-specification includes vehicle-size, vehicle-mass,
steering-response-time, and engine-power.
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10. The system in accordance with claim 3, wherein the
binary-vector includes a parameter indicative of an object-
characteristic.

11. The system in accordance with claim 10, wherein the
object-characteristic includes object-location, object-vector, 5
object-classification, and lane-position.

12. The system in accordance with claim 3, wherein the
binary-vector includes parameters indicative of a weather-
condition, a vehicle-state, a vehicle-specification, and an
object-characteristic. 10



