Патент США № | 8018375 |
---|---|
Автор(ы) | Alexopoulos и др. |
Дата выдачи | 13 сентября 2011 г. |
A projected artificial magnetic mirror (PAMM) radar device includes a transceiver module, a shaping module, and an antenna structure. The antenna structure includes a plurality of metal patches, a metal backing, a dielectric material, and one or more antennas. The metal patches are electrically coupled to the metal backing to form an inductive-capacitive network that, for the one or more antennas and within a given frequency band, substantially reduces surface waves to obtain a detectable angle of incidence of approximately ninety degrees.
Авторы: | Nicolaos G. Alexopoulos (Irvine, CA), Chryssoula A. Kyriazidou (Kifisia, GR) |
---|---|
Заявитель: | Broadcom Corporation (Irvine, CA) |
ID семейства патентов | 44210085 |
Номер заявки: | 13/037,208 |
Дата регистрации: | 28 февраля 2011 г. |
Application Number | Filing Date | Patent Number | Issue Date | ||
---|---|---|---|---|---|
13034957 | Feb., 2011 | ||||
61322873 | Apr., 2010 | ||||
Класс патентной классификации США: | 342/175; 343/700MS; 343/846; 343/847; 343/912; 343/913 |
Класс международной патентной классификации (МПК): | G01S 13/00, H01Q 1/38, H01Q 1/48, H01Q 15/14 |
Класс совместной патентной классификации: | H01Q 15/0006 (20130101); H01Q 19/10 (20130101) |
Область поиска: | 342/175 343/700MS,846,847,909,911R,912,913 |
5886597 | March 1999 | Riad |
6366254 | April 2002 | Sievenpiper et al. |
6483480 | November 2002 | Sievenpiper et al. |
6538621 | March 2003 | Sievenpiper et al. |
6545647 | April 2003 | Sievenpiper et al. |
6774866 | August 2004 | McKinzie et al. |
6774867 | August 2004 | Diaz et al. |
6853350 | February 2005 | Alexopoulos et al. |
6906674 | June 2005 | McKinzie et al. |
6906682 | June 2005 | Alexopoulos et al. |
6917343 | July 2005 | Sanchez et al. |
6933895 | August 2005 | Mendolia et al. |
7109947 | September 2006 | Alexopoulos et al. |
7116202 | October 2006 | Alexopoulos et al. |
7215007 | May 2007 | McKinzie et al. |
7595757 | September 2009 | Sotoudeh et al. |
7679577 | March 2010 | Sotoudeh et al. |
7760154 | July 2010 | Sekine et al. |
7889134 | February 2011 | McKinzie et al. |
2003/0011522 | January 2003 | McKinzie et al. |
2003/0025637 | February 2003 | Mendolia et al. |
2005/0029632 | February 2005 | McKinzie et al. |
S Islam et al. "W-Band Millimeter Wave Artiical Magnetic Conductor Realization by Grounded Frequency Selective Surface", Proceedings Symposium IEEE/LEOS Benelux Chapter, 2007, Brussels. pp. 183-186. cited by examiner . Alexandros P. Feresidis et al. "Artificial Magnetic Conductor Surfaces and Their Apllication to Low-Profile High-Gain Plana Antennas". IEEE Transactions on Antennas and Propagation, vol. 53, No. 1, Jan. 2005. pp. 209-215. cited by examiner . Contopanagos, et al.; High-Q radio-frequency structures using one-dimensionally periodic metallic films; IEEE Transactions on Microwave Theory and Techniques; Sep. 1998; vol. 46, Issue 9; pp. 1310-1312. cited by other . Contopanagos, et al.; Thin frequency-selective lattices integrated in novel compact MIC, MMIC, and PCA architectures; IEEE Transactions on Microwave Theory and Techniques; Nov. 1998; vol. 46, Issue 11; pp. 1936-1948. cited by other . Contopanagos, et al.; Effective response functions for photonic bandgap materials; J. Opt. Soc. Am. A; 1999; vol. 16, Issue 7; pp. 1682-1699 [downloaded May 16, 2011: http://www.opticsinfobase.org/abstract.cfm?URI=josaa-16-7-1682 ]. cited by other . Contopanagos, et al.; Electromagnetic Properties of Periodic Multilayers of Ultra-Thin Metallic Films from DC to Ultraviolet Frequencies; J. Opt. Soc. Am. A; 1999; vol. 16, Issue 9; pp. 2294-2306 [downloaded May 16, 2011: http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-16-9-229- 4]. cited by other . Merrill, et al.; Electromagnetic scattering from a PBG material excited by an electric line source; IEEE Transactions on Microwave Theory and Techniques; Nov. 1999; vol. 47, Issue 11; pp. 2105-2114. cited by other . Kyriazidou, et al.; Artificial versus natural crystals: effective wave impedance of printed photonic bandgap materials; IEEE Transactions on Antennas and Propagation; Jan. 2000; vol. 48, Issue 1; pp. 95-106. cited by other . Kyriazidou, et al.; Monolithic waveguide filters using printed photonic-bandgap materials; IEEE Transactions on Microwave Theory and Techniques; Nov. 1999; vol. 47, Issue 11; pp. 297-307. cited by other . Zhang, et al.; Scan blindness free phased array design using PBG materials; IEEE Transactions on Antennas and Propagation; Aug. 2004; vol. 52, Issue 8; pp. 2000-2007. cited by other . Bethe, Theory of Diffraction by Small Holes; The Physical Review; Second Series, vol. 66, Nos. 7 and 8; Oct. 1 and 15, 1944; pp. 163-182. cited by other . Levine, et al.; On the Theory of Electromagnetic Wave Diffraction by an Aperture in an Infinite Plane Conducting Screen; Comm. Pure and Appl. Math; vol. 3; 1950; pp. 355-391. cited by other . Bouwkamp; Diffraction Theory; Philips Research Laboratories; pp. 35-100 [downloaded May 19, 2011: http://iopscience.iop.org/0034-4885-17-1-302]. cited by other . Eggiman; Higher-Order Evaluation of Electromagnetic Diffraction by Circular Disks; IRE Transactions on Microwave Theory and Techniques; Sep. 1961; vol. 9, Issue 5; pp. 408-418. cited by other . Eggimann, et al.; Dynamic Interaction Fields in a Two-Dimensional Lattice; IRE Transactions on Microwave Theory and Techniques; Mar. 1961; vol. 9, Issue 2; pp. 110-115. cited by other . Pendry; Magnetism from conductors and enhanced nonlinear phenomena; IEEE Transactions on Microwave Theory and Techniques; Nov. 1999; vol. 47, Issue 11; pp. 2075-2084. cited by other . O'Brien, et al.; Photonic band-gap effects and magnetic activity in dielectric composites; Institute of Physics Publishing; Journal of Physics Condensed Matter; J. Phys.: Condens. Matter 14 (2002); pp. 4035-4044; [downloaded Jan. 22, 2011: http://iopscience.iop.org/0953-8984/14/15/317]. cited by other . Koschny, et al.; Resonant and antiresonant frequency dependence of the effective parameters of metamaterials; The American Physical Society; Physical Review E 68; 2003; 4 pp. cited by other . Kyriazidou, et al.; Metamorphic materials: bulk electromagnetic transitions realized in electronically reconfigurable composite media; Journal Optical Society American; vol. 23, No. 11; Nov. 2006; pp. 2961-2968. cited by other . Alexopolous, et al.; Effective Parameters for Metamorphic Materials and Metamaterials Through a Resonant Inverse Scattering Approach; IEEE Transactions on Microwave Theory and Techniques; Feb. 2007; vol. 55, Issue 2; pp. 254-267. cited by other . Kyriazidou, et al.; Theory and Design of Metamorphic Materials; Metamaterials Handbook, vol. 1 Theory and Phenomena of Metamaterials, Part III; Oct. 2009; pp. 20.1-20.18. cited by other . Kyriazidou, et al.; Metamorphic Electromagnetic Media; Proceedings of the 9th International Conference on Electromagnetics in Advanced Applications ICEAA '05; Sep. 12-16, 2005; pp. 965-968. cited by other . Kyriazidou, et al.; Effective Description and Power Balance of Metamaterials; 23rd Annual Review of Progress in Applied Computational Electromagnetics, 2007 ACES; Mar. 19-23, 2007; pp. 260-265. cited by other. |