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METHOD FOR SIMULATING NOISY RADAR
TARGET ECHOES

GOVERNMENTAL INTEREST

This invention was made with Government support under
contract No. N00024-03-C-6110 awarded by the Department
of Navy. The Government has certain rights in this invention.

CROSS-REFERENCE TO RELATED
APPLICATION

None
FIELD OF THE INVENTION

This disclosure generally relates to simulation of radar
detection behavior and more particularly to simulation of
radar detection behavior using simulated Swerling and other
models for target echo signals.

BACKGROUND

Itis useful and important, in radar system design to know or
estimate the detection capability and behavior of the radar
system before a complete system design can proceed. An
important aspect of the radar system’s capability is in the
determination of the efficacy of certain signal processing
procedures, particularly the procedure known as “integra-
tion”, both coherent and non-coherent integrations. The pur-
pose of integration is to build up the value of a signal com-
pared to the accompanying internal noise fluctuations, so that
the presence of a target echo may be detected. In addition to
target echo detection, it is also important to determine the
properties of the signal processing algorithms that the radar
system utilizes. Thus, there is a need for ways to determine the
target echo detection efficacy and the properties of a radar
system’s signal processing algorithms through the use of
simulated target echo signals so that the radar system’s design
and signal processing algorithms can be tested during the
design stage of the radar system without physically realizing
the radar system in a field testing environment.

SUMMARY

A method for determining target echo detection efficacy
and properties of a radar system’s signal processing algo-
rithms through the use of simulated target echo signals is
disclosed according to an implementation of the present dis-
closure. The method comprises generating simulated a noise
complex envelope sequence representing a radar system’s
internal fluctuation noise; generating a simulated radar target
echo signal complex envelope pulse sequence; and adding the
simulated noise complex envelope sequence to the simulated
radar target echo signal complex envelope pulse sequence,
thereby producing a simulated noisy radar target echo signal
complex envelope sequence. The simulated noisy radar target
echo signal complex envelope sequence is then inputted to the
radar system’s signal processing algorithm and the output is
analyzed to determine the signal processing algorithm’s tar-
get echo detection efficacy and properties. The simulated
noisy radar target echo signal complex envelope sequence
provides realistic testing of the signal processing algorithm
because the target echo signal is accompanied by the inevi-
table radar system internal fluctuation noise.

According to another implementation of the present dis-
closure, a method for simulating radar target echo signal is
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2

disclosed. The method comprises generating a simulated
noise complex envelope sequence; generating a simulated
radar target echo signal complex envelope pulse sequence;
and adding the simulated noise complex envelope sequence
to the simulated radar target echo signal complex envelope
pulse sequence, thereby producing a noise-corrupted simu-
lated signal complex envelope sequence.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present
invention will be more fully disclosed in the following
detailed description of a preferred embodiment of the inven-
tion, which is to be considered together with the accompany-
ing drawings wherein like numbers refer to like parts, and
further wherein:

FIG. 1 is a flowchart illustrating the method of the present
disclosure;

FIG. 2 illustrates a block diagram of the method for simu-
lating signal plus noise;

FIG. 3A illustrates a block diagram of the method for
creating Swerling 111 or IV target fluctuation, noiseless case;

FIG. 3B illustrates the block diagram of FIG. 3A expressed
in real terms;

FIG. 4A illustrates a block diagram of one method for
introducing noise to two components of Swerling III and
Swerling [V target fluctuation signal complex envelopes;

FIG. 4B illustrates the block diagram of FIG. 4A expressed
in real terms;

FIG. 5A illustrates an alternative method of introducing
noise complex envelope to Swerling I1I and IV target fluctua-
tions. X, (t,) and X,(t,) are complex envelopes of statistically
independent, zero mean, Gaussian processes, with equal vari-
ances.

FIG. 5B shows the block diagram of FIG. 5A expressed in
real terms;

FIG. 6A illustrates the process of adding noise to the target
echo signal at complex envelope level in a radar scan block
correlated case where Swerling I fluctuation per block is
assumed;

FIG. 6B illustrates the process of adding noise to the target
echo signal at complex envelope level in a radar scan block
correlated case where Swerling 11 per block is assumed;

FIG. 7 illustrates the process of adding noise to the general
complex envelope case.

FIGS. 8A and 8B illustrate simulating the complex enve-
lope of signal plus noise according to equations (6.0.6)-
(6.0.11).

FIG. 8C shows an alternative methods to the process shown
in FIGS. 8A and 8B.

FIG. 9 shows a block diagram of the method for simulating
the complex envelope of moving target signal plus noise;

FIG. 10 shows a block diagram of the method for simulat-
ing the phase progression applied to the signal complex enve-
lope;

FIG. 11 illustrates the process of modeling the range glint
characteristics; and

FIG. 12 illustrates the process of generating the complex
envelope sequence of simulated radar target echo pulses.

All drawings are schematic and are not intended to show
any dimensions to scale.

DETAILED DESCRIPTION

This description of the preferred embodiments is intended
to be read in connection with the accompanying drawings,
which are to be considered part of the entire written descrip-
tion of this invention.
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In determining target echo detection efficacy and proper-
ties of a radar system’s signal processing algorithms through
the use of simulated target echo signals, an important aspect
is generating simulated radar target echoes that are realistic
such that the signal processing algorithm can be tested using
conditions that are as realistic as possible.

The signal processing algorithm can be provided ina signal
processor or as a computer program loaded on a machine-
readable storage medium. Thus, the signal processing algo-
rithm for a radar system can be tested without an actual radar
system by inputting the simulated target echo or echoes
accompanied by the inevitable radar system internal fluctua-
tion noise.

Since a radar system will inevitably be faced with various
types of targets, it is desirable that the various types of radar
targets be used in a simulation to determine appropriate
design parameters. According to the present disclosure, simu-
lating radar target echoes is performed at the level of complex
envelope. This provides a simulated echo signal that is real-
istic because in the real world, noise get added to radar target
echo signals at the complex echo level before envelope
extraction by the radar system’s signal processor. This dis-
closure describes how that can be done for almost any type of
target echo fluctuation.

Referring to the flow chart 100 shown in FIG. 1, a method
for determining target echo detection efficacy of a signal
processing algorithm of a radar system is disclosed. The
method comprises generating simulated a noise complex
envelope sequence representing a radar system’s internal
fluctuation noise (see block 110); generating a simulated
radar target echo signal complex envelope pulse sequence
(see block 120); and adding the simulated noise complex
envelope sequence to the simulated radar target echo signal
complex envelope pulse sequence, thereby producing a simu-
lated noisy radar target echo signal complex envelope
sequence (see block 130). The simulated noisy radar target
echo signal complex envelope sequence is then inputted to the
radar system’s signal processing algorithm (see block 140)
and the output is analyzed to determine the signal processing
algorithm’s target echo detection efficacy and properties (see
block 150). The simulated noisy radar target echo signal
complex envelope sequence provides realistic testing of the
signal processing algorithm because the target echo signal is
accompanied by the inevitable radar system internal fluctua-
tion noise.

In the present disclosure, emphasis is placed on the simu-
lation of the traditional four Swerling models for radar cross
section (RCS) fluctuations (i.e. target echo) and on the gen-
eral chi-square type of RCS fluctuation. These models can be
exactly simulated, with noise added properly, because the
chi-square type of fluctuation, with an integral number of
duo-degrees of freedom, arises out of complex Gaussian ran-
dom variables that describe the complex envelopes. The
simulation is done by starting with a number of complex
Gaussian processes, adding the complex noise envelopes, and
then adding the appropriate number of squares of the complex
noise and signal mixtures.

The cases of non-integral duo-degrees of freedom and of
arbitrary cross section fluctuations must be treated differ-
ently. The process consists of starting with a sequence of RCS
values and taking the square root of these values to produce a
sequence of amplitude values. These are then multiplied by
the sine and cosine of an arbitrary angle to produce simulated
signal complex envelopes. Complex Gaussian noise with zero
mean and appropriate variance is added to the simulated
signal complex envelope to produce the complex envelope of
signal plus noise. The envelope of the complex envelope sums
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then produces the amplitude for subsequent noncoherent pro-
cessing. Because of arbitrariness of the signal phase, one
must be cautious in any processing before envelope extrac-
tion. However, the process is suitable for pulse to pulse coher-
ent processing where initial signal phase is unimportant. For
example, a Doppler shift may be imposed on the signal phases
before adding the complex envelopes.

The final type of simulation considered is that of target
motion (about the center of gravity) characterized by sinusoi-
dal motion (or with a combination of sinusoids). Such motion
is characteristic of precession and nutation. By treating these
motions as having random starting phase (which is quite
reasonable physically), the echo complex envelope is easily
described, and fairly arbitrary motion can be simulated by
starting with the complex covariance matrix, factoring it by a
Cholesky decomposition, and using one of the factors to
transform a sequence having uncorrelated elements into a
sequence having the desired motions.

Of the four Swerling models, simulation of the Swerling 11
model is the simplest. The pulse-to-pulse fluctuations are
statistically independent and their amplitudes have a Ray-
leigh probability density function. This means that the pow-
ers, i.e., squared amplitudes, have an exponential probability
density function. The object here is to simulate such a varia-
tion at the complex envelope level, so that system noise (zero
mean, Gaussian) can be added properly.

Any process that has a Rayleigh amplitude probability
density function can arise only from a complex envelope
process that is Gaussian whose real and imaginary parts have
zero mean, equal variances and are statistically independent.
Thus, the complex envelope process is the sum of two statis-
tically independent, zero mean, Gaussian processes, one rep-
resenting noise with variance 0,2 and the other representing
the fluctuating signal with variance o.?. The signal-to-noise
(power) ratio (SNR) is simply the ratio of these two variances.

SNR=0%0,? (2.1.1)

Some symbology is now required.

X(#)=noise complex envelope

=X (Op7x,(0)

x,(t) is commonly called the “I” component and x (t) is com-
monly called the “Q” component. For signal plus noise, we
provide a sequence of values.

#r):i=1,2...,N

Pa)i=1,2... N (2.1.2)

For regularly spaced pulses, the t; will be regularly spaced.
The variances of the complex envelopes are:

0;2:20X52:20X52:2xn0ise “power” (2.1.3)

2 50 2 9o 2_ e < »
0;,7=20, “=20, “=2xnoise “power (2.1.4)

SNR=0,’0,’=0,’/0% (2.1.5)

According to the Swerling II model, the X(t,) are statistically
independent, zero mean, Gaussian random variables with
variance (2.1.3). The ¥(t,) are statistically independent, zero
mean, Gaussian random variables with variance (2.1.4).

In all discussion to follow, the nature of y(t,) may change,
depending on the signal fluctuation model for the target echo
signal. But the noise X(t,) always has independent pulse-to-
pulse fluctuations, regardless of the target fluctuation model.

FIG. 2 shows a block diagram of the method for simulating
target echo signal plus noise. In the block diagram, the t; are
time of the element sequences: i=1, 2 . . . , N. The noise
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sequence always has statistically independent elements. The
statistics of the signal sequence depend on the target fluctua-
tion model. The x (t;) and x.(t,) are the real and imaginary
parts of the noise complex envelope. Similarly, the y_(t;) and
y(t,) are the real and imaginary parts of the target echo signal.
This block diagram applies to the simulation of any type of
signal fluctuation. The thing that changes is the nature of the
signal fluctuation.

Continuing with the Swerling II model for target echo
signal fluctuation, we refer to FIG. 2. The Swerling 11 model
requires that, in each sequence of complex envelopes,

), i=1,2..., 1.
Y i=1,2 N 2.1.6

the terms are statistically independent Gaussian random vari-
ables as described above. This model has been described as
the “noise-in-noise” model. The Gaussian random variables
may be created, in a simulation program, by the appropriate
MATLAB program or by appropriate algebraic transforma-
tion of a sequence of pairs of uniformly distributed, statisti-
cally independent, random variables.

Next we consider the Swerling I model for target echo
fluctuation. For the Swerling I model, we must create signal
complex envelopes that show constancy in amplitude over N
pulses, but vary over a group of N pulses in each group.
Referring to FIG. 2, and the equation (2.1.2), we may index
each block of N pulses with the index k:

K=1,2...,M @2.2.1)

where M is the number of groups or blocks, each block having
N signal pulses that are all the same. So we may show this by
writing the signal as: ¥,(t,)

P04 i=1,2,. . N k=1,2,.. ., M (2.2.2)

where M is the number of blocks. As k varies, the &, are
chosen from a complex Gaussian process with zero mean and
variance o7,

Noncoherent integration takes place over a block of N
pulse echoes and each noncoherent integration result is the
test statistic that is applied to a threshold to get (or not get) a
target detection. In any simulation, a large number of such
threshold applications is made in order to get statistics on
detection probability. That is, M must be a large number,
because M is the number of Monte Carlo replications.

Next we consider the Swerling IV model target echo fluc-
tuation. The Swerling IV fluctuation has statistical indepen-
dence from pulse-to-pulse over the group of N pulses. In this
case, however, the pulse-to-pulse fluctuations have a gamma
(unnormalized chi-square) probability density function with
four degrees of freedom or two duo-degrees of freedom in the
power or squared amplitude. A different way of saying this is
that the squared amplitude, or power, is the sum of two sta-
tistically independent exponentially distributed random vari-
ables. Each of these components can be looked at as a Ray-
leigh variate in its amplitude or envelope. The complex
envelope of each component is a zero mean complex Gauss-
ian random variable whose variance is one half of the total
variance. The simulation of such a target echo, with noise, is
more involved than in the case of Swerling 1 and II models.

There are at least three ways in which this simulation may
be accomplished. If the noise was not being included in the
simulated target echo signals, all of the methods would pro-
duce the same result for the chi-square (i.e., gamma) fluctua-
tion of squared envelope. The present disclosure describes the
ways for simulating the signal and the noise and combining
the two to produce simulated target echo complex envelope
that realistically simulates signal plus noise. The combining
of'the simulated signal and simulated noise takes place at the
level of complex envelope.
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Next we address simulating the Swerling 111 and Swerling
IV models. The Swerling III and Swerling IV amplitude
values are the square roots of a random variable that has a
gamma (unnormalized chi-square) probability density func-
tion. Such a probability density has two parameters: (a) Num-
ber of degrees of freedom, and (b) Scale parameter. The
gamma density can be formed from the sum of a number of
squares of real Gaussian, zero mean, random variables that
have the same variance. The number of degrees of freedom is
the number of Gaussian random variables whose squares are
the terms in the sum. It is of interest to see just how this sum
operates.

Let

M 23.1)
M= Z z
k=1

where the 7, are real, zero mean, statistically independent,
Gaussian random variables, each with variance . The ran-
dom variable v, is said to be a gamma random variable with
M degrees of freedom and scale factor o°. For the sake of
completeness, the probability density function is:

M(M/Z)*lexp(_u/zol) (2.3.2)

W,uzo,o—>0

Py, ) =

=0,u<0

The Swerling 11T and IV cases have target fluctuations that
are gamma distributed with each term having 4 degrees of
freedom or, as often stated, 2 duo-degrees of freedom. The
reason is that each complex envelope yields two real variables
and each of these real variables contributes to the number of
degrees of freedom. We can express the sum in equation
(2.3.1) in the form of complex envelopes by referring to the
discussion on Swerling I model above. The squared magni-
tude of each complex envelope sample ¥(t,) yields the squares
of two variables

PP =p @ )+y2 (1) (2.3.3)

Thus, if we write

2 2 (2.34)
DT = ] VA + @]
k=1 k=1

we see that the sum on the left hand side is a gamma random
variable with 2 duo-degrees of freedom and scale factor 0y~2/2,
since each of the sums on the right hand side has terms with
variance 0y~2/2. The equation (2.3.3) shows how signal ampli-
tude can be produced in the absence of noise. The method is
illustrated in FIG. 3A in complex envelope terms and in FIG.
3Binreal terms. ¥, (t,) and ¥,(t,) are each just like the §,(t,) of
the equation (2.1.2) in the Swerling I case described above.
One may see that input to the square root block is a gamma
variate with two duo-degrees of freedom and a scale factor
0y~2/2, the common variance of all the real components.

As indicated in FIG. 3A, the nature of the ¥, (t,) and ¥,(t,)
will determine whether the fluctuation is Swerling III or
Swerling IV. For Swerling III, the values of ¥,(t;) and ¥,(t,)
are constant forallt,,i=1, 2 ..., N. For Swerling IV, the values
of ¥, (t,) fluctuate from pulse-to-pulse with the gamma varia-
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tion with 1 duo-degree of freedom as does ¥,(t,). ¥, and ¥, are
statistically independent, zero mean, complex Gaussian pro-
cesses with equal variance. Their expression in real terms is
shown in FIG. 3B. In FIG. 3B, y_(t,), y,,(t,) are real and
imaginary parts of ¥, (t,). v ..(1,), ¥,,(t,) are real and imaginary
parts of ,(t,).

Next we consider adding simulated noise to the simulated
Swerling III and IV models of target echo fluctuations. The
simple descriptions of Swerling III and Swerling IV fluctua-
tions do not tell how the noise is added to the signal at the
complex envelope level. We must make some assumptions as
to how this may be done. There are at least three ways that the
noise may be incorporated which are described herein. Of the
ways that noise may be incorporated, the last method can be
used for any cross section fluctuation, even empirical or
observed cross sections.

We first consider the case where the noise input is common
to both complex envelopes of the simulated signal. This is
illustrated in FIG. 4A. Here the common noise has complex
envelope X(t,). The several complex envelopes are:

Signal: ¥,(z;), zero mean, Va.riancezoyi2

‘s T ; oy 2y 2= :
Noise: 7,,(1;), zero mean, variance=0;,“=0j; “=2xvari-

ance of real (or imaginary) part (3.1.1)

#(2,), variance o,2=2xvariance of real (or imaginary)

part (3.1.2)

Signal-to-noise ratio:

h8

202, (3.1.3)
o2

=2 X (SNR of either component)

»a

The reason for the factor 2 in the equation (3.1.3) is that there
are two components to the signal complex envelope and the
total signal variance (i.e., power) is the sum of the powers of
the components.

A question might arise about the phasing of the signal
components. Note that the signal powers (after magnitude
squaring) are added and, thus, the phases have no contribution
here. The total signal variance (i.e., power) is thus twice the
variance of either component, resulting in the equation
(3.1.3).

It is useful to express the signal and noise contributions in
real terms, as well as in complex envelope terms. This is done
in FIG. 4B for the case of a common noise source for both
complex envelope signal components. The signal-to-noise
ratio differs from that of the equation (2.1.5) because the total
real signal variance is twice that of either component. Thus,
we may write, as total signal variance,

0,.2=0,,2+0,,2=20,,2=20,% (3.1.4)

According to another aspect of the present disclosure, the
noise input to each of the components of the signal complex
envelope may not be common but from separate noise
sources. FIG. 5A is a block diagram showing the two noise
complex envelopes being added to the two components of the
signal complex envelope. The complex envelopes of the two
noise sources are

&, (1,) and X,(t,)

The two sources are statistically independent and each is a
zero mean, complex Gaussian random process, with the same

10

15

20

25

30

35

40

50

55

60

65

8

variance as the other. Calling this common variance o>, the
signal-to-noise ratio is

(3.2.1)

(]
b

SNR =

b

where 0y~2 refers to the common variance of ¥, and ¥,.

FIG. 5B shows the signal and noise combination expressed
in real terms. The real variances for noise and signal are,
respectively

0.%0.and0,? 0,2
and the signal-to-noise ratio is

2

202 (3.2.2)
SNR= —L = 2
Xl U—Xz

Regarding the noise contribution, when Swerling intro-
duced his target fluctuation models I-1V as well as the general
chi-square fluctuation models, his purpose was to provide
formulas for false alarm and detection probabilities. There-
fore, in the Swerling model formulas, the variable was the
ratio of signal power to noise power, and since the noise was
presumed to have constant power, the signal-to-noise ratio
varied exactly as the signal power varied. The Swerling for-
mulas therefore had no need for determining how noise
entered at the complex envelope level.

In order to determine detection properties in the presence
of radar system’s internal noise and additional external
sources of interference, such as sporadic electromagnetic
emission from other radiators, simulation according to the
present disclosure is necessary. In an actual situation, each
pulse is accompanied by a noise sample. No matter what the
pulse-to-pulse target echo may be, the noise (at the complex
envelope level) is added to the total signal complex envelope.
This is the method for adding noise to the target echo signal
complex envelope shown in FIGS. 4A and 4B according to
one embodiment of the present disclosure.

(General Chi-Square Cross Section Fluctuation)—The
method described above can be extended to any chi-square
(i.e., gamma) cross section fluctuation. What must be known
is the value of the number of duo-degrees of freedom for each
pulse and the block character of the fluctuation. Let

k=no. of duo degrees of freedom, each pulse

F=number of equal amplitudes per block

N=total number of pulses per dwell

K=total number of duo-degrees of freedom.

Then,

K=Fk (4.0.1)

and the number of pulses in each block is

N/F (4.0.2)

To simulate this situation, it is necessary to simulate each
block separately and in parallel with the others. The process is
illustrated in FIG. 6A. In the cases treated in this memoran-
dum, the values of k are limited to:

k=1

k=2 (4.0.3)

That is, within each block, the target is either a Swerling [ or
Swerling III, but from block to block, there are statistically
independent fluctuations. This also means the F divides N:

N/F=integer (4.0.4)
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Block diagrams showing how the noise may be added to the
target echo are shown in FIGS. 6A and 6B. FIG. 6 A refers to
the case where the fluctuation within a block has k=1 for each
pulse and there is statistical independence from block to
block. The variance of the process ¥, (1) is 0y~2 and the variance
of the noise process is o,°. The signal-to-noise ratio is

4.0.5)

FIG. 6 A illustrates how the noise is added to the target echo
signal at complex envelope level. This example illustrates a
radar scan block correlated case where Swerling I fluctuation
per block is assumed and X(t,) is the noise. The values for t,,
i=1,2...,N, are drawn from a complex, zero mean, gaussian
process with variance o,>. The signal values are block corre-
lated into blocks of f blocks of N/F pulses in each block. The
values of ¥, (t,) are drawn from a complex, zero mean gauss-
ian process with variance 0y~2. The values of ¥, (t,) are grouped
as follows:

¥,(t,) are constant over each block:

10790 - . =1 (tyr)

Yiltvira)= - - =51 (towsr)-

FIG. 6B illustrates a case where the fluctuation within a
block has k=2 for each pulse and there is statistical indepen-
dence from block to block, i.e. Swerling III per block. The
variance of the signal process is 0};12+0};22 but the signal-to-
noise ratio is

SNR=0;/0;”

SNR=0;,”/0;” (4.0.6)

The values of ¥, (t,) and ¥,(t,) are each similar to ¥, (t,) of FIG.
6A but the ¥, (t,) are statistically independent from the ¥,(t,)
and each has the same variance 0y~2.

(Non-Integral Values of k)—Of particular interest here is
the case of so-called Weinstock models in which value of k
such that k<1 or, in general, k=integer. In such cases the
equation (4.0.1) yields

K=non-integer. (4.1.1)

The general form of the gamma (generalized chi-square)
probability density function is

VM2 lexp(—y /26 4.1.2)

W,v>0,o—>0

pv) =

=0,v<0,

where M is the number of degrees of freedom and M/2 is the
number of duo-degrees of freedom. For one pulse, M/2 cor-
responds to k. The mean and variance of the random variable
v are

E(v)=Mc?

var(v)=2Mc*, 4.1.3)

so that

AEW) @.1.4)

var(v)

It does not appear possible to construct, theoretically, the
complex envelope of a process whose squared envelope has
the probability density as shown in the equation (4.1.2) with
non-integral values of M/2, starting with Gaussian complex
envelopes. Instead, we shall have to fall back on a general
method of constructing the real and imaginary parts when we
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have a statistical description of the cross section or empiri-
cally measured cross sequences. This general method is
treated below.

Before that is done, however, examine the simulations of a
random fluctuation that does not fit into any of the “block
correlated” models described above. It must be remembered
that the block correlated models were introduced as approxi-
mations to more general fluctuation than any of those
described by the Swerling models. The more general Swer-
ling, or “chi-square”, models that have an integral value fork,
the “per-pulse duo degrees of freedom”, can be simulated as
described so far in this report. However, other forms of fluc-
tuation cannot be simulated by means of underlying Gaussian
complex envelopes. Among them are the cases of non-inte-
gral values of k, as mentioned above. In all cases, whatever
model one uses for cross section fluctuations, even those that
are empirically based must be somehow reduced to a model of
complex envelope fluctuations. This is necessary if the addi-
tion of noise is to be made properly. That is, noise is added to
the signal at the complex envelope, if any nonlinear “mixing”
of signal and noise is to be avoided.

(A Model Showing “Partial Coherence”)—The term “par-
tial coherence” has been applied to those fluctuations that
may exhibit pulse-to-pulse fluctuations that have some phase
“coherence”. Then some “build-up” of signal-to-noise ratio
may be obtained by coherent integration; i.e., pulse-to-pulse
addition of complex envelope or addition where the phases
are included. One important purpose for this model is to
determine the benefits, if any, of pulse-to-pulse coherent inte-
gration. The value of such integration, compared to nonco-
herent integration, is dependent on the steadiness or regular-
ity of the pulse-to-pulse phase progression. This requires a
knowledge of the pulse-to-pulse complex envelope progres-
sion.

As far as modeling of target fluctuation is concerned, it is
the intrinsic variation that matters and that is what we want to
model. It is not enough to describe the complex envelope
variation in terms of its autocorrelation function. In order to
simulate radar target echo, it is necessary to produce the
pulse-to-pulse statistical probability density function. In
order to determine, analytically that probability density func-
tion, description of the autocorrelation function is not
enough. The underlying probability density function must be
known or assumed in order to simulate the process.

(A General Complex Envelope)—The assumption made
here is that complex envelope is the sum of a deterministic
term and a randomly varying term:

PO=a0)+E(0), 1=iT: i=1,2, .. ., N, (5.1.1)

where X(t) is a zero mean, wide sense stationary, Gaussian
random process with autocorrelation function R(T). t(t) is
the deterministically varying part of the complex envelope.
m(t) is taken to describe the deterministic fluctuation intrinsic
to the body and not due to any translational motion of its
center of gravity. For example, m(t) might be taken to
describe a sinusoidal or other regular variation of the body’s
orientation with respect to the radar. This is illustrated in FIG.
7. All quantities are complex envelopes. m(t,) is a constant if
there is no deterministic variation. The frequency character-
istic of the shaping filter is proportional to the power density
spectrum of K(t,). Z(t,) is a Gaussian sequence with statisti-
cally independent terms.

The fluctuating component X(t,) has an autocorrelation
function given by R.(t), T=kT. This may be produced as
indicated in FIG. 7, with a shaping filter whose input is a
complex white Gaussian sequence Z(t) with statistically inde-
pendent elements. (This is the same as saying “white”). The
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value of its variance is considered below. The transfer func-
tion H(f) has a squared magnitude proportional to the Fourier
transform of R (kT). The phase of the transfer function is
arbitrary. The detailed design of such a filter is a well-known
procedure and will not be discussed here. However, it is
important to discuss signal-to-noise ratios and this is done
below.

The deterministic component m(t,) may take on many
forms. The simplest form is that of a constant.

mi(t,)=m, for all ¢, (5.1.2)

The next most simple form is that in which the variation is
sinusoidal:

mi(t;)=Iml exp (jwot;) (5.1.3)

The equation (5.1.3) does not refer to any translational
motion. It has only to do with the target variation around its
center of gravity. For example, m(t,) could describe changes
in reflectivity as a result of spinning and precession. In such a
case, there may be more than one frequency component. Any
translational motion would be superposed on m(t,). The
framework of the equation (5.1.1) can be made to include the
translational motion of the target by enlarging the meaning of
m(t;) to include the range variation caused by center of gravity
motion.

(Arbitrary and Empirical Cross Sections)—The problem
in specifying RCS fluctuations lies in the necessity to create
or simulate radar echoes together with the system noise that
inevitably accompanies such echoes. At the level of observed
cross section, the noise is nonlinearly “mixed” with echo
signal and cannot then be separated. If one knows or can
create RCS values and does not have information concerning
complex envelope, the noise can be introduced to the echo
signal by the method described below. The approach is
equally applicable to the cases:

i. A specified fluctuation model for RCS; and

ii. Empirically obtained RCS, e.g., measurements made in

the field, operationally, or on a test range.

The only requirement for the second case above is that the
RCS values are free or nearly free of system noise. That is, the
measured RCS values have sufficiently high signal-to-noise
ratio that they may be considered noise free. The approach
will be to create, artificially, the complex envelopes from the
RCS values and add system noise at the level of complex
envelope. In this way, the actual way in which system noise
accompanies a signal can be properly simulated.

As one may see from the equation (5.1.1), our interest lies
in the pulse-to-pulse fluctuation, implying that our concern is
with pulse-to-pulse operations, such as pulse-to-pulse inte-
gration (coherent and/or noncoherent). Actual pulse shapes,
such as occur after pulse compression, are not of importance
in the simulations considered in this report. The times of
interest are i, multiples of the repetition period T (or any
other set of discrete time instants).

As we have done earlier, we denote the sequence of signal
complex envelopes by

W), 1=l (6.0.1)

The RCS represented by this complex envelope is propor-
tional to

() 2.
We denote the RCS by B(t,), so we may replace the equation
(6.0.2) by B(t,) such that

(6.0.2)

B(t)~I3(t) . (6.0.3)
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We may write the equation (6.0.1) as

FE)= ey (). (6.0.4)

Then
B(li):ycz(li)-"ysz(li)’

where we have replaced the proportionality in the equation
(6.0.3) by the equality in the equation (6.0.5). An amplitude
function would be proportional to the magnitude of §(t,) and
thus proportional to the square root of B(t,). We may write

(6.0.5)

)Ny 2.2 exp [0, (6.0.6)
where

O(t;)=arctan (y,(1;)/y. (1) (6.0.7)

Ft)=VBE) exp (O) (6.0.8)

=A(z;) exp (0(z,)).- (6.0.9)

Since A(t,) will be known, we need 0(t,) in order to construct
the complex envelope $(t,). The question is: What choice do
we make for 0(t,)? In the absence of additional information, I
propose that we make the choice

6=0 (6.0.10)

yielding
Yelt;)=A(t)

¥,(8)=0.

FIGS. 8A and 8B illustrate the signal complex envelope as
described by the equations (6.0.6)-(6.0.8) being constructed
by using the equations (6.0.10)-(6.0.11). Because of the
choice of signal phase (=0), the signal complex envelope has
only a real part. B(t,) is proportional to RCS. In FIG. 8B,
addition of noise to the signal complex envelope. n_(t,), n.(t,)
are the real and imaginary parts of the noise complex enve-
lope. Simulating the complex envelope of signal plus noise.
(See e.q.’s (6.0.6)-(6.0.11)). The noise complex envelope is
fi(t,)=n_(t,)+jn.(t,). FIG. 8C shows an alternative methods to
the process shown in FIGS. 8A and 8B. The signal phase 0 is
arbitrary. An engineer may feel uncomfortable setting 6(t,)=0.
In that case, one may be more comfortable by setting 0 to
some value other than 0 or m radians. If so, one would replace
the equation (6.0.11) by

Yelt;)=A(t;) cos ©

(6.0.11)

Ys(t)=A(t;) sin © (6.0.12)

with 6 chosen to be other than 0 or r radians. In that case,
FIGS. 8A and 8B would be modified to yield FIG. 8C.

(The Signal-to-Noise Ratio)—The signal-to-noise ratio is
defined as the ratio of (¥2) the mean square signal amplitude
to noise variance. The mean square signal is given by

mean square signal = (%]E[Az(t;)] 6.LD

noise variance = o2 = var(ng(s;)) = var(ns(5;)) = (%]Var[}c([‘-)] (6.1.2)

The reason for using the term “mean square signal” is that the
RCS may be a randomly varying quantity, such as in the
models treated earlier. The “real” values of signal and noise
do not matter in the simulation except for determining such
parameters as a noise threshold for controlling false alarms.
Even here, it is the ratio of threshold to noise that matters, not
the specific values themselves.
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(Empirical Cross Sections)—The analysis above and
FIGS. 8A, 8B and 8C hold for empirical or measured
sequences of B(t,), the observed sequence of RCS. In many
situations, all that is known is the sequence of RCS values. All
that is required is that any noise accompanying the input,
represented by B(t,) in FIGS. 8A, 8B and 8C, be essentially
free of noise, compared to the noise source injected after the
square root operation. However, because of the fact that the
actual complex envelope, complete with signal phase, the
process of signal insertion given by those figures has that
arbitrariness associated with it.

(Coherent Processing)—Coherent processing means pro-
cessing upon the complex envelope of signal plus noise. An
example is the application of the complex envelope of signal
plus noise to a bank of Doppler filters on the discrete time
equivalent. In any case, the initial phase of a sequence of
pulses of signal complex envelope is of no consequence.
What matters is the phase progression from pulse to pulse.
For the simulation of such a progression, FIG. 8C would be
modified so that the phase 6 would be a function of time and
therefore can be written as

0(2,)=0,+6,(z).

This is illustrated in FIG. 9 for arbitrary target RCS fluctua-
tion.

(7.0.1)

0, =initial phase (arbitrary)

0,(t;)=variable phase, (7.0.2)

where 0 is induced by varying target range. Since the initial
phase is arbitrary, the simulation expressed by FIG. 9 can be
applied no matter how the amplitude variation A(t,) is
obtained.

FIG. 9 is a block diagram of the method of simulating the
complex envelope of moving target signal plus noise. The
time variable signal phase is 6(t,)=0,+0 (t,) where 6, is the
initial phase and is arbitrary and 0 (t,) is the variable phase
and is induced by the changing target range. As stated, the
variable component 0,(t;,) of the phase is induced by the
variation of target range, so that arbitrary motion could be
simulated, including closing speed, closing acceleration, etc.
Nevertheless, whatever phase variation has been induced by
target motion around its center of gravity is lost.

(Coherent Processing and Arbitrary Signal Complex Enve-
lope)—The discussion above and FIG. 9 show how the com-
plex envelope of a signal, with arbitrary Doppler shift can be
simulated given only the sequence of RCS values. The same
idea can be applied to the simulations of the four Swerling
models and the general chi-square fluctuation models. All that
is required is that the phase progression

0(1-0,+9,(1)

be applied to the complex envelope as illustrated in the block
diagram of FIG. 10, which is simply an extension of FIG. 6A.
FIG. 10 illustrates simulating the phase progression applied
to the signal complex envelope where 0 =arbitrary initial
phase and 6 (t,)=phase progression induced by changing
range. In this instance, the phase progression is applied to the
signal complex envelope that has no phase progression, just
the phase characteristics of its intrinsic fluctuation.

(Range Glint)}—The addition of range glint to the simu-
lated radar echo can be made in a straightforward manner,
although it may not, at first, seem possible. Range glint refers
to the apparent change in range of a target of small range
extent. Ordinarily if a target echo has a range extent smaller
than the nominal range resolution of the wave-form, it is
treated as a point scatterer. This is the basis—small size—that
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is the basis of all the target models treated here. However, no
real radar target is a single point scatterer. A real radar target
will consist of a number of scattering points whose relative
range locations, sizes, electrical properties, etc., are generally
unknown. In fact, because of multiple reflections on or in the
target, the electrical length is frequently greater than the pro-
jected physical length. As the target changes its orientation
with respect to the radar, these scattering points, or “scatter-
ing centers”, change relative positions, amplitudes and
phases. The composite response, after any form of single
pulse filtering (e.g., pulse compression) shows a maximum
return that varies from pulse to pulse. This phenomenon is the
“range glint”.

At any given range sampling point, the value of the echo
will vary in amplitude and phase caused by the range glint. We
treat the echo as a point return in our simulation. Therefore, at
the point in time at which we are looking at the echo and
noise, there is another perturbation arising from glint. How-
ever, this perturbation is not additive. It is multiplicative.
Therefore, the effect is imposed on the signal complex enve-
lope as a multiplication, as is the signal phase progression
shown in FIG. 10. FIG. 11 illustrates the process of modeling
the range glint characteristics, which is simply an extension
of FIG. 10. Now the question arises as to the nature ofthe glint
complex envelope. There is very little information about this
although there has been some work in estimating the extent of
radar glint. (See, for example, J. H. Dunn et al., “Phenomena
of scintillation noise in radar tracking systems”, Proc. IRE,
vol. 47, pp. 855-863, May 1959, the disclosure of which is
incorporated herein by reference). Range glint is recognized
as a random process and some information has been gathered
experimentally. Dunn, et al. give a value of 0.8xobject length
for the rms value of the range glint variation. On the other
hand, Kharilas gives a value 0of 0.35 L, where L is the radial
extent of the target. (See P. J. Kahrilas, Electronic Scanning
Radar Systems (ESRS) Design Handbook, Dedham, Mass.:
Artech House, Inc., p. 234 (1975)). Barton gives the value
Lz/3 (see D. K. Barton and H. R. Ward, Handbook of Radar
Measurement, Englewood Cliffs, N.J.: Prentice Hall Inc.
1969; Section 6.1), which is essentially the same as that given
by Kharilas quoted above.

FIG. 11 illustrates imposition of range glint on the radar
echo signal where

0(2,)=0,+6,(z),
a (t)=amplitude of glint fluctuation, and

6,(2)=phase of glint fluctuation.

Ifrange glint is to be modeled as a random process, we need
to know the probability density function of the glint. The first
probability density function of range glint has been deter-
mined by Howard and Lewis (D. D. Howard and B. L. Lewis,
“Tracking radar external range noise measurement and analy-
sis”, Naval Res. Lab. Rpt 4602, Aug. 31, 1955) and also
reported by Barton and Ward. It is well approximated by a
Gaussian curve. Of course, the first probability density func-
tion is insufficient to describe the process. In the absence of
other information, | propose modeling the range glint process
as a stationary complex Gaussian process with zero mean and
statistically independent from pulse to pulse. The standard
deviation of the process (same as the rms value) is to be taken
as 0.35 times the physical length. Admittedly, this assumption
of'statistical independence is purely a guess, since [ could find
nothing in the literature concerning this aspect.

(Other Target Fluctuations)—The set of possible target
fluctuations is very large. A few of these have been so far
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treated in this report. In all of the models, the target has been
treated as a point reflector. To consider range extended targets
is beyond the scope of this except for consideration of those
range extended targets whose fluctuations can be treated in
terms of an equivalent point target fluctuation. An example is
a target exhibiting precession and mutation with the radar
range resolution interval being larger than the target’s range
extent. To go deeply into the subject of range extended targets
is beyond the scope of this report. However, for those cases
where the target may be considered as a point reflector there
is one general type of fluctuation that can be simulated fairly
easily; that is the case where the complex envelope fluctuation
process is a wide sense stationary random process and is
therefore described by its autocorrelation function having a
single argument. The autocorrelation function in this case is
the sum of two terms:

ImPP+R;(v)
where m is the mean value of the complex envelope process
§(t), and Ry() is the autocovariance function. The process
description is not yet complete because the probability den-
sity function is not specified. Therefore, when only the auto-
correlation function is given, it is common to assume that the
echo sequence is a sample function of a stationary complex
Gaussian process. The particular type of fluctuation that is
treated here is one that can be described as the sum of a
number of sinusoids with random, uncorrelated, amplitudes
and initial phases. Such a type of fluctuation is a good model
for such periodicities as precession and mutation.

Let’s consider, first, a motion consisting of a single sinu-
soid. For the complex envelope, the motion is an exponential
as follows:

(8.0.1)

P(t)=a, exp[j(0,140))], 1=iT, 0=I=N (8.0.2)

where:

a, is a complex random variable, but independent of 6

0, is the initial phase,

w, =2mxfrequency of the sinusoidal motion
The phase angle 0, is assumed to be uniformly distributed
over the interval (-m,m) radians. It is easy to see that

EfF@®]=0 (8.0.3)
Therefore,
Ry(T) = E[3(0)y™ # (t = 7] (8.0.4)

= {Elallzexp(jwlr + 6 — jo, T =6 + jw,T)}

= Elai Pexp(jw; 1)

Here, of course, T will be multiples of the repetition period T:

T=iT (8.0.5)

We shall deal with a finite segment of T:t=iT; =1, ..., N.
Now, consider ¥(t) having two component exponentials:

F(=a, exp [j(0,2+0)]+a, exp[j(0,1+65)] (8.0.6)

Where a, and a, are statistically independent, as are 6, and 6.
Also, we assume that 0, and 0, are each uniformly distributed
over (-m,m). Then it is easily found that the autocovariance
function is:

Ry(t)=Ela,” exp(jor v)+Ela, |’ exp[jo,t] (8.0.7)
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In general, for a sum of exponentials with statistically inde-
pendent amplitudes a, and phases 0,, the sum autocovariance
function is

Ry(T)=5 “Ela)? exp (jo). (8.0.8)

(The Covariance Matrix and Its Decomposition)—In order
to create a sequence of duration N values, we have to deal with
the covariance matrix of those values and with its decompo-
sition into the so-called “Cholesky factors™. The autocovari-
ance sequence at time instants kT is written as:

Ry(KT)

The covariance matrix R;; is constructed from (8.1.0) as fol-
lows:

(8.1.1)

8.1.2
Ry (0) Ry(T) R;(2T) . Ry(IN-11T)
Ry(T) R;(0) Ry(T) . Ry(IN-2IT)
Ry = § R3(T)
Ry(2T) : Ry(0) . Ry(IN=3IT)
Ry(IN —117) Ry(IN-21T) RY(IN-3IT) ... Ry(0)

We note that R, is Hermitian and Toeplitz.

The next step that is needed is to apply the Cholesky
decomposition to the covariance matrix to find its factors in
the following form

R;=DD¥, 8.1.3
where the matrix D is a lower triangular matrix:
D, 0 0 ... 0 (8.1.4)
Dy Dy 0 ... 0
D= D31 D32 D33 0
Dyi Dw> Dnz ... Dww

and the elements of D are found from the Cholesky recursion
(H. Urkowitz, SIGNAL THEORY AND RANDOM PRO-
CESSES, Dedham, Mass., Artech House, Inc., (1983), the
contents of which are incorporated herein by reference) in the
following way:

Dyy + 4/ R3(0) =05 = standard deviation of (z) ®.L.5)

Dy =R;(jI), 1 =j=<N

/%0

i—1
Dy =|Ry(li= 1) - ) Dj Dk
k=1

J-1
DY = Ry(0) - > 1Dyl
k=1

(Generating the Desired Sequence)—Suppose we start
with the complex finite sequence

T

5:[5(15 Xy, .- Ryl

(8.2.1)

with the identity matrix I as its covariance matrix.

R=I (8.2.2)
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This means that x has uncorrelated components. We want to
convert this vector to a vector § having the covariance matrix
Rj. This is done by the following procedure.

X—=y

(8.2.3)
by

DX=y(with mean value absent) (8.2.4)

where the transformation matrix D is obtained from Ry by a
Cholesky decomposition as shown by the equation (8.1.4).
The procedure is illustrated in FIG. 12 with the addition of the
mean value vector m. Then the desired output vector § will be

=Di+m (8.2.5)

(Obtaining the Complex Vector X)—From what has gone
before, we start with a complex vector & having uncorrelated
components with unit variance. From the discussion earlier,
we choose to start with a zero mean complex Gaussian
sequence. This may be obtained from the MATLAB com-
mand

real_x=randn(n)

imag_x=randn(n)

The present disclosure provides methods for simulating
many types of radar target echoes. These have been simulated
in complex envelope so that bandpass noise could be properly
added to the signal. Adding noise to the radar target echo
signal at complex envelope level is preferred because that
results in a more realistic noisy radar target echo signal. In the
case of the Swerling targets I, I1, I1I, IV and block correlated,
the complex envelope of target echo has real and imaginary
parts that are themselves Gaussian processes. Noise would be
added coherently to the Gaussian complex signal envelopes
and the sums would be squared and added in the appropriate
fashion to get envelopes that may now be treated noncoher-
ently, e.g., noncoherent integration.

The methods so described can be applied to any general-
ized chi-square cross section fluctuation with an integral
number of duo-degrees of freedom. RCS fluctuations with a
non-integral number of duo degrees of freedom cannot be
obtained with underlying Gaussian complex envelopes; one
must fall back on the general method of constructing the
complex envelope when only the amplitude process is known.
This is done by taking the square root of the RCS versus time,
splitting the result into two parts, and multiplying by the
cosine and by the sine of an arbitrary phase angle.

Such an addition of arbitrary signal phase is an expression
of ignorance. Since the phase fluctuation is unknown, it is
ignored and an artificial phase fluctuation is imposed. There-
fore, it is preferred that, in this case, such artificially created
complex envelopes be used only to get the proper insertion of
noise for subsequent noncoherent operation, such as nonco-
herent integration and tracking. An additional perturbation
that can be modeled is “range glint”. Range glint arises from
the varying amplitudes and phases of the scattering centers of
the target as it changes its orientation with respect to the radar.
This effect is noted even for objects that have small range
extent compared to nominal range resolution of the radar.
Unlike the conventional knowledge disclosed in the litera-
ture, in which range glint is taken as additive noise, in the
present disclosure range glint is modeled as a modulation or
multiplicative process. Thus, the inventor has modeled range
glint as a multiplicative process shown in FIG. 11. The
present disclosure also provides a short section on simulating
other target fluctuations. In particular, an outline of simulat-
ing a motion consisting of a mean value plus sinusoidal
motion consisting of a number of fixed frequency compo-
nents but having random starting phases is shown. Random
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amplitudes may also be considered. Such motions are char-
acteristic of precession and mutation.

Although the invention has been described in terms of
exemplary embodiments, it is not limited thereto. Rather, the
appended claims should be construed broadly, to include
other variants and embodiments of the invention, which may
be made by those skilled in the art without departing from the
scope and range of equivalents of the invention.

What is claimed is:

1. A method for determining target echo detection efficacy
of a signal processing algorithm of a radar system compris-
ing:

generating, in a signal processor, a simulated noise com-

plex envelope sequence;
generating a simulated radar target echo signal complex
envelope pulse sequence, wherein generating the simu-
lated radar target echo signal complex envelope
sequence comprises the steps of:
generating a sequence of uncorrelated complex enve-
lope values;
multiplying the generated sequence of uncorrelated
complex envelope values by a transformation matrix,
the transformation matrix being based on an autocor-
relation function of a fluctuating target process;
adding a mean value vector to the product of the
sequence of uncorrelated complex envelope values
and the transformation matrix, to calculate an output
vector containing the simulated radar target echo sig-
nal complex envelope sequence;
adding the simulated noise complex envelope sequence to
the simulated radar target echo signal complex envelope
pulse sequence, thereby producing simulated noisy
radar target echo signal complex envelope sequence;

inputting the simulated noisy radar target echo signal com-
plex envelope sequence into the signal processing algo-
rithm; and

analyzing the signal processing algorithm’s output to

determine target echo detection efficacy of the signal
processing algorithm.

2. The method of claim 1, wherein the simulated radar
target echo signal complex envelope pulse sequence com-
prises Chi-Square radar target models.

3. The method of claim 2, wherein the Chi-Square radar
target models comprise at least one of Swerling target models.

4. A method for simulating radar target echo signal com-
prising:

generating, in a signal processor, a simulated noise com-

plex envelope sequence;

generating a simulated radar target echo signal complex

envelope pulse sequence, wherein generating the simu-

lated radar target echo signal complex envelope

sequence comprises the steps of:

generating a sequence of uncorrelated complex enve-
lope values;

multiplying the generated sequence of uncorrelated
complex envelope values by a transformation matrix,
the transformation matrix being based on an autocor-
relation function of a fluctuating target process;

adding a mean value vector to the product of the
sequence of uncorrelated complex envelope values
and the transformation matrix, to calculate an output
vector containing the simulated radar target echo sig-
nal complex envelope sequence; and

adding the simulated noise complex envelope sequence to

the simulated radar target echo signal complex envelope
pulse sequence, thereby producing a simulated noisy
radar target echo signal complex envelope sequence.
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5. The method of claim 4, wherein the simulated radar
target echo signal complex envelope pulse sequence com-
prises Chi-Square radar target models.

6. The method of claim 5, wherein the Chi-Square radar
target models comprise at least one of Swerling target models.

7. The method of claim 4, wherein said transformation
matrix is calculated by performing the steps of:

constructing a covariance matrix of covariance values at

specific time instants;

factoring the covariance matrix by applying a Cholesky

decomposition to the covariance matrix, wherein one of
the factors is a lower triangular matrix defining the trans-
formation matrix.

8. The method of claim 7, wherein the covariance matrix is
constructed according to:
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Ry(0) Ry(T) Ry(2T) . Ry(N-11T)
Ry(T) Ry(0) Ry(T) . Ry(N=21T)
R2T) Ry(T) Ry(0) . Ry(N=31T)
RY(IN —11T) RSN =21T) Ri(IN -31T) ... Ry(0)

wherein R,(kT) is a covariance sequence at time kT and
wherein R;; is Hermitian and Toeplitz.



