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a plurality of low power ultra wideband (UWB) radar
motion sensors for placement in an area of interest;

means for transmitting an UWB radar signal in said area
wherein at least a portion of said signal can be received
with at least one motion sensor of said motion sensors to
produce a received signal;

means for analyzing said received signal to determine

whether a movement has occurred within said area and
producing an alarm signal if a motion has occurred
within said area;

means for communicating at least a portion of said alarm

signal to a wireless ad hoc network to produce a for-
warded alarm signal, wherein said wireless ad hoc net-
work comprises a mother node and a plurality of nodes,
wherein said means for communicating at least a portion
of said alarm signal to a wireless ad hoc network
includes means for transmitting said alarm signal by
UWRB radar to said mother-node; and

means for transmitting said forwarded alarm signal to a

destination.

17. The apparatus of claim 16, wherein each sensor of said
low power UWB radar motion sensors comprises a plurality
of operatively connected electronics modules comprising a
central processing module, a global positioning module, a
transmitter and receiver communications module, a power
and control module and a radar detector sensor module.

18. The apparatus of claim 16, wherein each sensor com-
prises an UWB transceiver.

19. The apparatus of claim 16, wherein said means for
transmitting comprises means for continuously transmitting
an UWB signal.
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20. The apparatus of claim 16, wherein said means for
transmitting comprises means for periodically transmitting
an UWB signal.

21. The apparatus of claim 16, wherein said wireless ad hoc
network comprises a plurality of UWB transceiver nodes.

22. The apparatus of claim 16, wherein said means for
transmitting said forwarded alarm signal to a destination
includes means for communicating said forwarded alarm sig-
nal to a satellite to produce a satellite signal, wherein said
satellite communicates said satellite signal to a destination.

23. The apparatus of claim 16, wherein said wireless ad hoc
network comprises a plurality of UWB transceiver nodes,
wherein each node of said network is attached to a different
sensor of said sensors.

24. The apparatus of claim 16, wherein said transceiver
comprises an omni-directional loop antenna.

25. The apparatus of claim 16, wherein said sensor com-
prises a range gated radar sensor.

26. The apparatus of claim 16, wherein said sensor com-
prises a dual range gate sensor.

27. The apparatus of claim 16, wherein said sensor com-
prises a multiple range gate sensor.

28. The apparatus of claim 16, further comprising means
for tracking the movement of the cause of an alarm.

29. The apparatus of claim 28, further comprising means
for detecting the heart and/or respiration rate of the cause of
said alarm.
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1
RADAR SIGNATURE DATABASE
VALIDATION FOR AUTOMATIC TARGET
RECOGNITION

PRIORITY

This application claims priority from the USPTO provi-
sional patent application entitled “Radar Signature Database
Validation for ATR” filed on Apr. 29, 2009, Ser. No. 61/173,
694 which is hereby incorporated herein by reference.

RIGHTS OF THE GOVERNMENT

The invention described herein may be manufactured and
used by or for the Government of the United States for all
governmental purposes without the payment of any royalty.

BACKGROUND OF THE INVENTION

The ability to make radar signature databases portable for
use within similar sensor systems may be critical to the
affordability of future airborne signature exploitation sys-
tems. The capability to hybridize measured and synthetic
signature database components may maximize the impact of
the investment required to build complex radar signature
databases. Radar target scattering mechanisms may be mod-
eled and the signature signal model analyzed as a random
process to enable portability and hybridization. Modal
mutual information may be developed as a measure of simi-
larity to compare measured field data to modeled synthetic
data. The inherent qualities of mutual information to be used
in the context of the automatic target recognition problem
may be demonstrated using synthetic signature sets com-
prised of both “similar targets” and “dissimilar targets.”

Signature exploitation systems are of ever increasing
importance both in air-to-air and air-to-ground sensor sys-
tems. Successful implementation of these systems often
requires a robust and integrated signature database for train-
ing exploitation algorithms. Signature training databases
should represent the radar measured signature process across
a wide range of target articulations and configurations as well
as under many operating conditions including clutter, obscu-
ration, and other sources of RF interference. It is also useful to
have signature databases that are portable for use in similar
sensor applications. For example, it is desired that airborne
radar systems associated with a type of aircraft be able to
share a common radar signature database. Construction of a
signature database based entirely on measurements is expen-
sive and can be an impractical proposition. It is possible to
construct a signature database using electromagnetic scatter-
ing codes.

However, given the complexity of typical targets including
personnel carriers, tanks, aircrafts, and missiles etc., and the
challenge of modeling a variety of electromagnetic scattering
phenomena ranging from specular reflection to edge diffrac-
tion, smooth surface diffraction etc., computation of signa-
tures with sufficient accuracy is a challenging task. Further-
more, it needs to be established that the computed signatures
are consistent with measured signatures. The validation of the
computed or surrogate sensor signature process enables the
expanded use of multi-source signature data for algorithm
training within ongoing automatic target recognition (ATR)
theory efforts, nearly all of which depend on a valid charac-
terization of the signature scattering model for all targets of
interest.

The use of high range resolution (HRR) radar measure-
ments has been useful in the support of research and study of

10

30

40

45

65

2

signature exploitation capability within airborne platforms.
In view of the uncertainties in the aspect angle of the target,
the high range resolution signature may be considered to be a
random vector. Given the changing geometry relative to the
target within a typical radar measurement interval, the statis-
tics associated with the high range resolution random vector
are often time varying. Therefore, the measured high range
resolution signature of the target at a given time “t” is a
realization of a multidimensional random process (time vary-
ing random vector). If the target statistics are assumed to be
stationary (constant with time), the sample signatures asso-
ciated with this random vector correspond to a range of aspect
angles in a small window about this reference.

The present invention compares two different high range
resolution signature databases within the context of valida-
tion similarity requirements for automatic target recognition
systems.

The problem of validation is quite different from the design
of target recognition algorithms. In the case of automatic
target recognition algorithms, a signature measured under
field conditions (which may be considered to be a sample
realization of a random process) is compared to the signature
random process corresponding to the different target classes
of interest comprising a database. Unlike the automatic target
recognition problem, the database similarity problem (vali-
dation) involves the comparison of two random signature
processes.

SUMMARY OF THE INVENTION

An automatic target recognition radar database validation
including a first database associated with field measured data
and a second database associated with synthetic data. The
second database compared with the first database using
modal mutual information calculations. The calculations of
the modal mutual information for dissimilar targets are well
separated from similar targets throughout the database, vali-
dating the synthetic database for automatic target recognition
radar use.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is diagram of target scatterers extended in range and
Cross range.

FIG. 2 is a theoretical point spread function example for the
band limited response.

FIG. 3a and FIG. 3b are comparisons of Kolmogorov-
Smirnov test results and illustrates the agreement between the
theoretical and simulated Gaussian cumulative probability
distributions.

FIG. 4 is an Eigenspectrum illustration for BTR-70 ground
target in 2.5 AZx2.5 EL degree spatial sampling window; 100
signatures uniformly distributed in AZ/EL, 1 ft. resolution.

FIG. 5 is an eigenmodes illustration for BTR-70 ground
target in 2.5 Azx2.5 El degree spatial.

FIG. 6 is an illustration of an information theoretic radar
channel model.

FIG. 7 is an illustration of a target aspect field of view.

FIG. 8 is a graphical illustration of baseline MMI and
cumulative MI for BTR-70 & BMP2, Cumulative MI of 0.4.

FIG. 9 is a graphical illustration of MMI and cumulative
MI for BTR-70 & BDRM; confuser case, cumulative MI of
0.2 Nats.

FIG. 10 is a graphical illustration of MMI and cumulative
MI for BTR-70 with ground plane & BTR-70 without ground
plane; similar target case, cumulative MI of 10.5 Nats.
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FIG. 11 is a Modal MI and Cumulative MI for BTR-70
Baseline & BTR-70 with Top 20 Scattering Centers Only,
Cumulative MI of 6 Nats.

FIG. 12a is a Two Dimensional Image of T-72 Tank, 0°
Az/15° El Target Aspect Angle with fender scattering.

FIG. 125 is a Two Dimensional Image of T-72 Tank, 0°
Az/15° El Target Aspect Angle without fender scattering.

FIG. 13 is a Modal MI and Cumulative MI for T-72 with
Fender Scattering and T-72 without Fender Scattering,
Cumulative MI of 16 Nats

FIG. 14q is a two Dimensional Image of T-72 Tank, 0°
Az/15° El Aspect Angle With Fuel Barrel Scattering.

FIG. 145 is a two Dimensional Image of T-72 Tank, 0°
Az/15° El Aspect Angle Without Fuel Barrel Scattering.

FIG. 15 is a graphical illustration of Modal MI and Cumu-
lative MI for Baseline T-72 Scattering and Baseline T-72
without Fuel Barrel Scattering, Cumulative M1 of 14 Nats.

FIG. 16q is a two Dimensional Image of T-72 Tank, 0°
Az/15° El Aspect Angle With Gun Barrel Scattering.

FIG. 165 is a two Dimensional Image of T-72 Tank, 0°
Az/15° El Aspect Angle Without Gun Barrel Scattering.

FIG. 17 is a graphical illustration of Modal MI and Cumu-
lative MI for Baseline T-72 with Gun Barrel Scattering and
T-72 without Gun Barrel Scattering, Cumulative MI of 12
Nats.

FIG. 18 is a graphical illustration of Modal MI and Cumu-
lative M1 for Baseline T-72 and T-72 without Fenders, Fuel
Barrel, and Gun Barrel Scattering, Cumulative MI of 11 Nats.

FIG. 19 is a graphical illustration of Modal MI Versus MSE
for Baseline BMP2 and BMP2 with Additive Gaussian Signal
Demonstrating Dependence at Significant Levels of Added
Distortion.

DETAILED DESCRIPTION

The present invention uses the characterization of target
signature statistics available in J. C. Principe, D. Xu, Q. Zhao,
J. W. Fisher “Learning form Examples with Information
Theoretic Criteria”, Journal of VLSI Signal Processing 26,
61-77, 2000. This and all other references are herein incor-
porated by reference. Xu, Zhao, and Fisher present a frame-
work for the present invention. D. R. Fuhrmann and G. San
Antonio. “Transmit beam forming for MIMO radar systems
using partial signal correlation,” IEEE Transactions Aero-
space Electronics Systems Vol. 43, no. 4, October 2007;
describes radars with a new architecture referred to as the
MIMO (Multiple Input Multiple Output) radar. The present
invention provides a multi-radar signature database for at
least two radar systems having automatic target recognition
using a synthetic signature set automatically compared with
the target signature to provide automatic target recognition
based upon a modal mutual information calculation.

To a great extent the referenced work has either focused on
improving sensor and waveform design for maximum target
information measurement or has attempted to develop an
information theoretic approach to performance prediction
and decision rule design. Much of the above referenced work
has focused on areas outside the validation and assessment of
information associated with the random signature processes
within the radar target training database.

J. Malas, K. Pasala, “Information Theory Based Signature
Analysis”, Proceedings 0of 2007 IEEE Aerospace Conference,
March 2007 introduced the use of mutual information as a
similarity measure for use in radar signature database valida-
tion. One aspect of the present invention is the development
and demonstration of modal mutual information (MMI) as a
physics based radar signature similarity measure compatible
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4

within the automatic target recognition problem context.
Techniques are developed with the present invention to avoid
numerical issues in the computation of mutual information.
“Numerical issues” include the reduction of false positives,
false negatives, and inconclusive results. One of more of
which may be reduced with the present invention.

Modal mutual information is a modal part of the mutual
information. The choice of mutual information as a measure
of signature database similarity is based on several unique
characteristics of mutual information. Relative entropy is a
measure of the distance between two distributions. The rela-
tive entropy D(p||q) is a measure of the inefficiency of assum-
ing that a distribution is q when the true distribution is p.

Modal mutual information provides a mathematical com-
putational approach that avoids or surmounts the computa-
tional barriers of other methods. Such barriers may include
infinity failures or calculations that may result in more false
positives, false negatives or indecisive results than obtainable
with the present invention.

Mutual information is the relative entropy between the
joint distribution f(p,q) and the product of the respective
marginal distributions f(p)1(q). The mutual information
between p and q will be zero if and in one embodiment only
if p=q and represents the reduction in uncertainty in one
random variable given the knowledge of another. Mutual
information is a measure of the dependence between random
variables and is a more general (contains all the statistics)
measure of similarity.

In contrast, a simple cross correlation only involves the
second order statistics of the variables under test. Mutual
information (via statistical dependence) can be used to deter-
mine the degree of common “information” within the physi-
cal scattering that is present in both of the random signature
processes.

While techniques including maximum likelihood tests
operate within the full dimensionality of the data, mutual
information operates within the “typical set” of the signature
subspace which is related the entropy of the signature pro-
cesses. Attributes of entropy based methods and mutual infor-
mation offer the potential to measure similarity within this
lower dimensional space. The ability to relate this generalized
mutual information similarity measure directly to Bayes error
through an information theoretic systems theory is a signifi-
cant strength of this approach.

In one embodiment of the present invention modal mutual
information is used to compare two high range resolution

signature random processes X and Y. High range resolution
signatures of complex extended targets may be associated
with complex random processes that are circular Gaussian.
Numerical computation of mutual information with the prior
art can be unstable due to the singularities that exist when the

individual or joint correlation matrices of X and/or Y are rank
deficient or ill conditioned. The concept of modal mutual
information is introduced to overcome these numerical prob-
lems and obtain a stable computed value of mutual informa-

tion between X and Y. Using electromagnetic prediction
codes, high range resolution signature processes and Y are
computed for anumber of different target classes at a sampled
range of aspect angles.

These experimental examples are designed to demonstrate
the implementation of modal mutual information and more
importantly, to demonstrate that the strength of mutual infor-
mation may be used successfully to provide multi-radar sig-
nature database for at least two radar systems having auto-
matic target recognition of a target having a target signature.
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The database includes measured field data and modeled syn-
thetic data which are compared using the modal mutual infor-
mation. The field data compared to the synthetic data math-
ematically combined to create a synthetic signature set using
modal mutual information. In one embodiment this is high
resolution data and/or two high range resolution signatures.
The synthetic signature set in one embodiment includes both
similar targets and dissimilar targets. A synthetic database
may include surrogate data, measured data, model data or any
combination thereof. The synthetic signature set automati-
cally compared with the target signature to provide automatic
target recognition based upon a modal mutual information
calculation.

An automatic target recognition radar database validation
may include a first database associated with field measured
data and a second database associated with synthetic data.
The second database may be compared with the first database
using modal mutual information calculations. The calcula-
tions of the modal mutual information for a dissimilar target
are well separated from a similar targets throughout the data-
base, validating the synthetic database for automatic target
recognition radar use. There may be other uses for the par-
ticular application of modal mutual information calculations
where overcoming the mathematical barriers are needed to
reach reliable solutions.

The comparison signature processes is preferably based on
the underlying common physical scattering information.
Modeled variants of the actual target physical scattering are
preferably used to form the cases for testing automatic target
recognition.

A random signature process may be formed through a
mapping of high range resolution signature to target azimuth/
elevation aspect angle locations distributed within a local
window about a center reference aspect angle to the target.
While not guaranteed one-to-one, the mapping is sufficient to
represent the support of the function.

When the two signature processes Xand Y correspond to
two different target classes, the cumulative modal mutual
information is near zero even when they appear to be “close”
and could be considered a “confuser” based on conventional
geometric or feature based measures. A confuser may include
a false positive, false negative or inconclusive determination.
The confusion may be in part because the high range resolu-
tion signature processes of two different target lasses are
independent and the cumulative modal mutual information
between independent processes is zero, even when they
appear “close” by conventional measures.

When the signature processes correspond to the same tar-
get class, but with variations, the cumulative modal mutual
information is high. This is demonstrated by determining the
modal mutual information between the signature processes of
a target and its variants. The variants are obtained, for
example, by removing certain physical features from the
original target. A number of such variants are created. Cumu-
lative modal mutual information is consistently high between
signatures corresponding to targets with in-class variations.
Cumulative modal mutual information is consistently low
between signatures corresponding to targets with out of class
variations. Thus the modal mutual information developed
herein can be used to determine if two signature processes,
obtained by two different methods (measured and synthetic,
for example) correspond to in-class or out of class targets.

The electromagnetic phenomenology of the signature pro-
cess together with the characteristics of the sensor may be
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used to create a signal model for the high range resolution
signature. In the high frequency regime used to obtain high
range resolution signatures of the target may be approximated
as a collection of scattering centers valid over a limited aspect
window and frequency band.

These scattering centers may be considered to be localized
to a point and may represent a variety of scattering phenom-
ena ranging from specular reflection to diffraction phenom-
ena including as edge and tip diffraction. The fields radiated
by these point scatterers depend upon both temporal and
spatial frequencies (angular dependence). Since the radar
illuminating the target has finite bandwidth and is a one
dimensional imaging system, the target is seen as a collection
of contiguous swaths of range, with each range swath corre-
sponding to a particular range. The extent of each range
swath, range resolution, depends upon the signal bandwidth.
For a typical extended target of interest, each range swath
contains a number of scattering centers which can be widely
spaced in cross-range as shown in FIG. 1.

FIG. 1 shows an aircraft 10, detecting a tank 11 to produce
tank scattering 12 with range bins 13, a down range dimen-
sion 14 and a cross range dimension 15.

The electromagnetic field obtained as a result of the inter-
ference of the scattered fields from the scattering centers
appears as the signal corresponding to the range bin 13 of the
high range resolution signature.

The high range resolution signature may be considered a
one dimensional image of the reflectivity (or scattering) pro-
file of the target for a given look angle and bandwidth. Due to
finite bandwidth of a practical radar system, the point spread
function is not an impulse function. As shown in FIG. 2, a
mainlobe 20 of finite width 21, length 22 and height 23 sets a
limit on the range resolution achievable, and sidelobes (not
shown). The mainlobe 20 and sidelobes have decreasing
amplitude in all directions from a peak 24.

Even when the scattering phenomenon is localized to a
specific range bin, this phenomenon will manifest as reflec-
tivity that is present in other range bins as well. Therefore
every point target at any specific range location will present
itself as collateral scattering phenomenon at other ranges. The
value of the reflectivity at the actual location is defined as a
“signal” and at all other locations as “noise.”

On an actual or non-scattering center approximated target,
this “noise” would comprise the effects of non-localized scat-
tering at any given time delay as well as the windowed side-
lobe response of localized scattering.

Hence, at any given range location, the observed data is
comprised of a component due to the coherent interference of
all the mainlobe point-like target phenomenon present at that
location (the signal component) and a component that is the
sum total of the collateral contributions (side lobes) that occur
in range bins other than the range bin of interest. This latter
component may be referred to as noise and the observed data
in the i” range bin may be modeled as in Equation (Eq.) (1).

X=SN, ®

The signal component at any range bin is due in part to the
interference of the scattered fields from all the scattering
centers distributed in cross range over several wavelengths
and may be expressed as in Eq. (2).

N _ 2)
Vi= ) Anein.
n=l1
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Here A,, and ¢,, are the amplitude and modulo 27 phase of
the n scatter in the i” range bin respectively. ¢, is a function
of the look angle and frequency and may be modeled as a
random Variable uniformly distributed between [0, 2m]|.
Given that o, Zand p , » are the variance and the mean of the
amplitudes, it can be readlly shown that as N—co both real
and imaginary parts of V, are zero mean Gaussian random
variables with a variance given in Eq. (3).

©)

N-(0%, +#5)
gy = f

The theoretical Gaussian shape of the real and imaginary
components of the signature (afforded by the central limit
theorem) meets the criteria for parametric estimation and as
such the Kolmogorov-Smirnov test (K-S test) is employed to
verify the Gaussian shape assumption. The K-S statistic indi-
cates the level of agreement between two continuous distri-
butions that are fully specified (location, scale and shape). At
one foot resolution, these test results indicate that there are
sufficient numbers of scatterers contributing within each
range bin to validate the assumption that for electrically large
targets with many scattering sources extended in cross range,
the probability density functions (pdfs) associated with the
real and imaginary signature data are in fact Gaussian and
zero mean. An example of the real and imaginary components
of the signal within an high range resolution range bin con-
forming to the Gaussian distribution is provided in FIG. 3
which shows the Kolmogorov-Smirnov test Results of high
range resolution. The Signature Range Bin Illustrates the
agreement between the theoretical and simulated Gaussian
Cumulative Probability Distributions.

Hence, given the appropriate bandwidth and target charac-
teristics outlined above, both the signal and noise components
of the signal in any range bin are assumed to be complex
Gaussian distributed random variables. The signal compo-
nent is obtained from the interference of the mainlobes of the
point spread functions and the noise components are obtained
from the sidelobes of the point spread functions. The high
range resolution signature vector may be modeled in the
vector version of Eq. (3) as shown in Eq. (4).

X=S+N Q)

While the ease of analysis afforded by the Gaussian distri-
bution is helpful in developing concepts pictured below, all
results produced using continuous vector random variables
can be reproduced using discrete random variables.

The variation in signature phenomenology due to the
uncertainties in the aspect angle are captured in the signal
model illustrating that the high range resolution signature
may be viewed as a random process. All random processes
under analysis herein are assumed to be stationary. The cova-
riance matrix of the random process and it’s representation in
terms of eigenmodes are used in the following experimental
examples.

A small window of aspect angles, typically less than 5°x5°
in azimuth and elevation around a specified aspect, is experi-
mentally chosen for targets of interest at X-band frequencies
(8-12 GHz) in the following example. The targets are electri-
cally large with dimensions in range and cross-range of many
wavelengths. An ensemble of complex high range resolution
signatures,
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corresponding to a number of aspect angles distributed in this
window are used to estimate (unbiased) the covariance matrix

The factor (LL-1) can be changed to L for the maximum
Likelihood estimator of the Gaussian case. A spectral decom-
position of this covariance matrix may be expressed as given
in equation (5).

®

Q)
ME

A-gy -4

~
I

1

Here A, and g, represent the eigenvalues and the corre-
sponding eigenvectors. M is the size of the correlation matrix
and equals the number of range bins. FIG. 4 shows the
eigenspectrum for such a window for the BTR-70 target (ar-
mored personnel carrier) in 2.5 AZx2.5 EL degree spatial
sampling window; 100 signatures uniformly distributed in
AZ/EL, 1 ft. resolution. It suggests the possibility ofa decom-
position of the signature space into signal and noise sub-
spaces consistent with the signal model defined by equation
(4). The eigenspectrum for BTR-70 ground target in FIG. 5
shows some of the eigenmodes associated with this decom-
position for a BTR-70 ground target in 2.5 Azx2.5 El degree
Spatial sampling window. It may be noted that these eigen-
modes form a complete basis set for database validation.

Let X represent a signature vector random process corre-
sponding to a specified target in a 2.5°x2.5° aspect angle
window. Therefore,

X=X %, ...
where X, i=1,2 ..
ing the signals in the M range bins. Let X be obtained using

a computational process. Let ?:[Yl, Y., ... Y,]" be the
signature random process corresponding to the same target
and aspect angle, but obtained by a different method, for
instance by a measurement process. Validation of the data-

Xl” (6)

. M are the random variables represent-

base requires a comparison of the random processes Xand Y
to determine how “close” or “different” they are. Towards this

end, the mutual information between X and Y may beused as
a measure of similarity or lack thereof between them. The
mutual information is defined as given below in equation (7).

IX:=hEr-hX /D= +h(T)-h(X,T) D

In equation (7), h(Y) and h(?) represent the differential
entropies of Xand Y, h(Y/ ?) is the conditional entropy and
also is referred to as the equivocation of X given Y, h(Y,?)
is the joint differential entropy of X and Y. The differential
entropy h(Y) is defined in equation (8).
B =E[-In {3 [ In(f(x N x )

Here f(X) is the probability density function of X. h(X) is
expressed in units of Nats which is a logarithmic unit of
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information or entropy based on natural logarithms and pow-
ers of e rather than the powers of 2 associated with base 2
logarithms which define the Bit.

The high range resolution signature is a complex, vector,
zero-mean Gaussian process whose probability density func-
tion is given by equations (9) and (10).

£ I o (&)

x = M |detCﬁ |
3

and

S SH S
ox)=x clx (10

C§:E[(Y—p;)(i—u;)H] the covariance matrix of X. For
this case, a closed form expression for the differential entropy
is easily obtained and is given by Eq. (11).

W(X)=M In(em)+InlderC (11

Expressing the determinant of

M
C? as det(C?) = H A7

where A" are the eigenvalues of the covariance matrix C7,

h(Y) may be expressed as

LM (12)
hx) = Z In(meld}).

k=1

Similarly, h(?) may be expressed as

R M (13)
wy) = Z In{redy),

k=1

where

MNok=1,2..M

are the eigenvalues of the C. Note that these expressions are
for the complex signature processes of X and Y. The joint
entropy h(Y,?) may also be obtained by defining the vector
U=[X;Y] and defining equation (14), the covariance matrix

c, C.,. (14)
c_| 7
gTlct, o,

Xy ¥
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where C-5 is the cross-covariance between X and Y. Then

h(Y,?) can be written as is shown in equation (15).

oo N 2M (15)
WX, 7) = D) = > nGreAd),
k=1

where A,Y, k=1, 2 . . . 2M are the eigenvalues of Cz. The
expression for the mutual information is given by equation

(16).

e

Equation 18 for mutual information requires the computa-
tion of the eigenvalues of C, C, and Cy. However, when
C7 and C; are rank deficient, there are numerical issues that
should be dealt with carefully. It can be shown that for any
null eigenvalues of C> and C-;, there are always correspond-
ing null eigenvalues of C3, resulting in the cancellation of
singularities. Numerically, however, the eigenvalues are
never exactly zero, leading to the subtraction of two large
numbers. Such a procedure is not recommended. The follow-
ing process computes mutual information that avoids any
numerical difficulties and, in addition, provides significant
insight into comparing two signature processes as herein
claimed.

Let the two random processes X and Y be expressed in
terms of their components along a basis set of orthonormal
vectors. It is convenient to choose the eigenvectors of C7 or
C as the basis. The choice of eigenvectors from C> or C is
a valid one when each covariance matrix is highly diagonal-
ized and the eigenvalue sensitivity is low. This is articulated in
detail and the Gershgorin Circle Theorem. Another possible
choice is the basis set of vectors that simultaneously diago-
nalize both C; and C-;. Here, the eigenvectors of C;, denoted
by qu k=1, 2 .. . M, are chosen. In this case, the spectral
decomposition of C7 is expressed in equation (17).

M p (1n
c,= > gl
k=1

Here ), k=1,2 ... M are the eigenvalues. The eigenvectors
of C7 are a complete orthonormal set of basis vectors. Thus,

X and Y may be expressed in equation (18) as equation (18).

y= (18)
Ay, and Ay =g’ X

U
I
=
¥ 1
I
=

~
I
~
I

Ay and Ay =37y,

A

I
1=
Lt

I
1=

~
I
~
Il
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The random processes A, and A, are zero-mean Gaussian
random processes and that in equation (19)

E(Aul>) =% =X} a9

And equation (20)
E(AuP) =a% =] 20
While
&
are the eigenvalues of C7,

w

are not the eigenvalues of C-. This is a result of adopting the
eigenmodes of C; as the basis. The random vectors §xk and

§yk are referred to as the k” modes of X and Y.

The mutual information of a sum of statistically indepen-
dent processes is about equal to the sum of the mutual infor-
mation of the corresponding processes. Thus, we need to

consider only the mutual information of S _ and §yk as given
by Eq. (21)

Z(S:xk)'gyk):h (S:xk)"'h (Szyk)_h(?xkx Tszyk):h(szxk)*'

(S 0-h(S ) eay)

- - - - -

- 21
1S3 Syi) = MS )+ A(S ) = (S Sye) eD

- - -

= h(Sxk) + h(Syk) - h(Sxyk)
where

Sep = [Sxk; Syk]'

The covariance matrices for §xk and §yk are of the order M
and are given by equations (22) and (23).

> oH 22
€. = E[545,] @
Xk
= EAu)a,8;
xa AH
=449y
23)

— o o H o H
Cyk = E[Syksyk] = E(lAw ) = vl
Clearly both C2, and C7;, are rank one matrices with only

one non-zero eigenvalue and (M-1) zero eigenvalues. The

entropies h(§xk) and h(§yk) are given by

A(Sq) = In(meX) + (M — 1)
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singularities (corresponding to the null eigenvalues of C3 )
and

B(S,0) = InGren]) + (M - 1)

singularities (corresponding to the null eigenvalues of C3).

Presently, it will be shown that h(§xyk) has 2(M-1) singu-
larities corresponding to the 2(M-1) null eigenvalues of
Gy,

The vector §xyk may conveniently be expressed as is given
in equation (24)

@4

where Xxyk:[Axk, Ayk]T and @ indicates the Kronecker
product. Then the covariance matrix C3, is given in (25) as

C37=ElS i S i]=
E [(nyk@) Tik) (nykH@) 3kH)]:
E[(Zyxkﬂyf)@ (G

i1 D) 407 =C7 @ 487, (25)

where
CX = E[Axyk Afyk]

is a 2x2 matrix. The eigenvalues and eigenvectors of C3y,
may be obtained using mathematical methods known in the
art.

Since

_ s AH
C;;k =C,®4,4,

where C7 is a 2x2 matrix and

is an MxM matrix, there are 2M eigenvalues and correspond-
ing eigenvectors given by

a~hEi=12andj=1,2... M

and 3,6, 0;i=1,2 and j=1,2. . . M,

where X, and 6=1, 2 are the two eigenvalues and eigenvectors
of C; and €, and w,, i=1, 2 . . . M are the M eigenvalues and
eigenvectors of
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respectively. However, noting that

ik

is a rank one matrix, there is only one non-zero eigenvalue,
§,=1 and (M-1) zero eigenvalues. Thus, C;, has two non-
zero eigenvalues A, and A, the two eigenvalues of C, and
2(M-1) null eigenvalues.

The differential entropy h(§xk, §yk) may now be written as
h(S .. S, )-In(mek, )+In(meh,)+2(M-1) singularities.

It may be noted that the logarithmic singularities are due to

the null eigenvalues. The mutual information 1(§xk; §yk) may
now be written as

| (EX,(; Eyk) = In(meA}) + (M — 1) singularities+ In(zer; ) +
(M —1) singularities— ln(nzez/il ;12) —2(M - 1) singularities.

This mutual information for the kK mode can be expressed
as Eq. (26)

X, Y

i Uk ] (26)

| (Exk; Eyk) = In

A1dy

It can now be seen that the singularities of h(?xk) and
h(§yk) are cancelled exactly by the singularities of h(§xk,

§yk) as all the singularities are of the same order. With this
computational process all numerical difficulties due to singu-

larities are eliminated.

Itis possible to get a simple closed form expressions for Xl
and A,. Consider Eq. (27)

E(|Aql®) en

E(A%Ayw)  EllAyl]

- o

E(AwA
CX = E| Ak Ay | =

2
Tk

Oy " Ot " O
A R
5

o

"
Gopk " Txke " Ty Yk

where d,, is the correlation between A, and A* , and 0,,°0,,

is the product of the of standard deviations associated with
A and A ;. The modeled signature processes X and Y in
equation (18) provide ordered pair data that can be directly
applied to compute 3, .. For this 2x2 matrix, the eigenvalues
may be readily determined and are given by Eq. (28)

12 (28)

1
]i z[(o'fk +U'§k) —40',3/( 'U—ik(l - |5xyk|2)]
The product A 17»2 may then be simplified to Eq. (29)

@29

i

Adp=df -o—i,((l —16gl®

=47 (L= 6o
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Finally, the modal mutual information simplifies to the
expression in equation (30).

(B0

|(Sa: Sya) = ~InlL = 1o ).

Some special cases are of interest. When the Gaussian

processes §xk and §yk are highly correlated such that
13,411, the modal mutual information tends to c. When
these processes are un-correlated such that 13,,1—0, the
mutual information tends to zero as well.

That is as it should be since uncorrelated Gaussian pro-
cesses are statistically independent and the mutual informa-
tion between independent processes is zero. Indeed, modal
mutual information may be considered to be a sensitive indi-
cator of statistical independence and it is this fact that is of
importance in using mutual information for database valida-
tion within the context of the target discrimination problem.

The evaluation of the similarity between the algorithm

training process X and the sensor measured process Y may be
viewed within a systems model depicting the information
flow through the signature sensing and processing compo-
nents of a radar system as shown in FIG. 6. FIG. 6 shows a
continuum relationship between a true state H of a target
under measurement and a decision state Q of a matching
algorithm MA, which provides the matching decision rule.
This relationship is the basis for performance characteriza-
tion.

The mutual information between H and Q, 1(H; Q), can be
related to the probability of error (for binary decision rules)
using Fano’s Inequality shown in equation (31).

HH)-IH,Q)=H(P,) Gy

The operation H(p) is the discrete entropy of the respective
discrete random variable p. The Data Processing inequality
tells us that information in the Markov Chain H= Y=
Y = Q cannot be created; only lost in this channel. The
injection of side information (training information) X inthe
Y space does not affect the Markov nature of H= Y=

Y = Q. Information losses within the channel can be attrib-
uted to various sources including the signature measurement
process, signature signal processing, signature dimensional-
ity reduction-feature selection, decision rule application, and
the dissimilarity between a sensor measured signature pro-

cess Y and a “training” signature process X. The information

loss associated with the dissimilarity between X and Y canbe
expressed using the Data Processing Inequality as shown in
equation (32).

Q=T )= =I5, T)=IEH) (32)

For example, the mutual information between the target
state random variables H and the sensor measurement signa-

ture process Yis greater than the mutual information between
H and the target signature feature process (reduced dimen-

sionality from Y) Y and likewise 1(H; Y) is greater than 1(H;
Q). The losses incurred in the automatic target recognition
matching process associated with a dissimilarity between the

distribution of the training feature database X and the distri-
bution of the sensor measured signature feature process Y are
captured within the difference between 1(H; ?)—I(H; Y). The
lower dimensional subspace of Y (Y) is formed through the

use of side information X to form the basis of Y as derived
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above. Thus the system performance loss associated with the
dissimilarity between X and Y is characterized by the use of
the basis of X in the decomposition of the process Y.

The use of relative entropy directly to interpret the distance

between X and Y in terms of the measure 1(H; Q) is com-
plicated by the fact that mutual information is not a “true”
distance between distributions since it is not symmetric and
does not satisfy the triangle inequality. Although relative
entropy (and thus mutual information) is not a metric, D(p||q)
does in some circumstances behave like the square of the
Euclidean distance and under these conditions convergence
in relative entropy implies convergence in the L, norm. Fur-
ther development of mutual information in this context as a

means to formally interpret I(X; ¥) in terms of 1(H;Q) and
the loss on P, is important and is the subject of ongoing efforts
by the authors.

The emphasis of the work presented here is the exploration
of'the strength of modal mutual information as physics based
similarity measure in the context of the unique automatic
target recognition problem and within the advantages
afforded by the reduced dimensional feature space of an
eigen-decomposition.

It is desirable that the modal mutual information, which is
being used as the measure of similarity, be high between the
signatures of two targets drawn from the same class but with
some variations, be they small or significant. At the same time
it is desired that the mutual information between the signa-
tures of two targets drawn from two different classes be low,
even if these two target classes are considered to be “confus-
ers” based on conventional algorithms. Any measure of simi-
larity should be able to “ignore” in-class variations of signa-
tures of targets drawn from the same class and have a high
value while at the same time yield a low value for the signa-
tures of two targets drawn from different classes, even if the
signatures appear “close” by conventional classification algo-
rithm measures. It is further desired that the “low” and “high”
values of modal mutual information be well separated so that
a decision boundary between these two values is easily deter-
mined. Well separated is preferably by a factor of five (5) and
in one embodiment of the present invention an order of mag-
nitude. The degree of statistical dependence between two
target signature processes will be a function of how similar
the statistics are as captured by the scintillation of the com-
plete physical scattering of each target. Targets that physi-
cally present electrically similar scattering mechanisms will
produce high degrees of dependence. Targets that physically
present electrically dissimilar scattering mechanisms will
produce low degrees of dependence. The results of a number
of numerical simulations and experiments demonstrate that
the modal mutual information exhibits this characteristic and
meets these requirements.

Table I given below lists a number of experiments arranged
into two categories. The first category comprising case-1 and
case-2 experiments consider the comparison of signatures of
out-of-class dissimilar targets.

TABLE I
SUMMARY OF EXPERIMENTS
EXPERIMENT MI,
Cases 1-6 HYPOTHESIS Nats
1. ‘Dissimilar Out-of-Class Underlying target scattering source 4
Targets will generate independent random
signatures
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TABLE I-continued

SUMMARY OF EXPERIMENTS

EXPERIMENT MI,
Cases 1-6 HYPOTHESIS Nats
2. ‘Confuser’ Out-of-Class Underlying target scattering source 2
Targets will generate independent random
signatures
3. Similar In-Class Underlying target scattering source  10.5
Variation of Targets With will generate dependent random
Ground Plane Removed signatures
4. Similar In-Class Underlying target scattering source 6
Variation of Targets Using will provide dependency with in-
Scattering Center Decimation class variation due to distributed
scattering source differences
5. Similar In-Class Variation ~ Underlying target scattering source 11
of Targets Using Removal of  will provide dependency with
Persistent Physical features scattering source variation due to
significant geometry differences
6. Incremental Addition of Underlying target scattering 8-20

structure will generate dependent
random signatures

Complex Gaussian Signal

All the signature sets considered here are obtained using
electromagnetic prediction codes and were predicted at one
foot resolution. The targets considered here are typical
ground targets designated as BMP2 (infantry combat
vehicle), BDRM (armored ground vehicle), BTR-70 (ar-
mored personnel carrier), and T-72 (main battle tank) and are
taken to be on a perfect electrically conducting (PEC) ground
plane (unless otherwise stated) using vertical polarization.
The signature sets are taken over a 2.5°x2.5° azimuth/eleva-
tion window about the target aspect angle of 2.5° azimuth and
17.5° elevation as shown in FIG. 7.

Total mutual information is computed as the cumulative
sum of modal mutual information. In the experiments below,
all total mutual information values provided are based on the
sum of the modal mutual information associated with all the
modes required to capture 98% of the signature power in both
target signature processes.

The experiment corresponding to case-1 of Table I pertains
to two targets (BTR-70 and BMP2) drawn from two different
target classes. The mutual information between the signatures
of dissimilar targets would be expected to be low as these
signatures would be statistically independent. In FIG. 8 the
modal mutual information for the ‘out-of-class’ target case
yields consistently low mutual information across the modes
and the total mutual information is also quite low at approxi-
mately 0.4 Nats. Confirming expectations, this low value of
mutual information is consistent with the degree of statistical
independence to be expected when the signature processes of
two very dissimilar scattering sources (targets) are compared.

In the case-2 experiment of Table I, the previous experi-
ment is extended to conditions where current classification
algorithm approaches (those based on geometric measure)
indicate that the two targets drawn from two different classes
are ‘close’ and often are confused with one another. The
BTR-70 and the BRDM are known to be “confusers” in that
sense within the regions under evaluation here. FIG. 9 shows
the modal mutual information and cumulative M1 for BTR-70
& BDRM in a Confuser Case with a Cumulative MI of 0.2
Nats. With the cumulative MI between the two target signa-
ture processes at approximately 0.2 Nats, the results in FIG. 9
show clearly that for even this “confuser” case, the low values
of modal and cumulative MI indicate a high degree of inde-
pendence that is consistent with scattering phenomena taking
place on targets from different target classes. This require-
ment would be a challenging test for any measure of statistical
similarity. The modal mutual information measure achieves
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this desirable result in part because it is a good indicator of
statistical independence between two random signature pro-
cesses. The degree of independence is related to how similar
the changing physical scattering (as a function of aspect
angle) is between each signature process. Thus the similarity
is based on the level of agreement inherent in the statistics
captured by the scintillation of the complete physical scatter-
ing of each target and not on statistics based on a limited
feature representation.

Two targets from the same class are often notidentical. The
physical differences can be “minor” or quite striking. A num-
ber of experiments pertaining to the modal and cumulative
mutual information of in-class targets with different degrees
of'variations are considered. Case-3 of Table I corresponds to
the signatures of the BTR-70 with and without the PEC
ground plane representing a “minor” difference. For this case,
the mutual information is expected to be high and is so dem-
onstrated by the results shown in FIG. 10 with the cumulative
mutual information at 10.5 Nats. FIG. 10 shows modal
mutual information and Cumulative mutual information for
BTR-70 With Ground Plane & BTR-70 Without Ground
Plane, a similar target case.

The target signature may be considered to be the sum of
scattering from a collection of scattering centers. Variations in
target and signatures, ranging from “marginal” to “major”
can be simulated by including or not including chosen groups
of' scattering centers. In-class variations are often the result of
certain physical features being removed from or added to a
basic target configuration. For example, fuel barrels may be
added or removed from a tank. Or, there may be tanks which
have one of its parts obscured, while others do not experience
such obscuration.

The uncertainty in computational signature processes can
result from reduced detail within the modeling and prediction
process. Analyzing the behavior of mutual information with
respect to reduced scatter representation is one way to study
this area. In the experiment corresponding to case-4 of Table
1, a number of scattering centers are decimated to test the
suitability of mutual information as a measure of similarity. A
favorable result would indicate that small deviations or omis-
sions of small scattering detail would not impact the measure
of similarity. In this experiment the modal mutual informa-
tion between the baseline BTR-70 and a decimated version of
the BTR-70 comprising the top 20 (amplitude ranking) scat-
tering centers is determined. The results shown in FIG. 11
indicate a cumulative mutual information between the signa-
ture processes to be a high value of approximately 6 Nats.
Such a high value suggests that the modal mutual informa-
tion, used here as a measure of similarity, correctly identifies
the target with decimated scattering centers as an in-class
target, despite the loss of some detail. This robustness with
respectto the inevitable variations in the signatures of in-class
targets is important in addressing issues associated with
articulation and target configuration.

In-class variations from the baseline geometry may be
obtained by removing certain physical features and an effort
is made to ensure that the scattering from these features is
“persistent” over the whole target aspect angle window. The
T-72 tank is used as the baseline target in the experiments
designated as case-5 in Table I with three specific geometry
components identified for study. The geometry components
identified are the forward fenders, rear fuel barrels, and the
gun barrel. The scattering from the front fender is eliminated
and FIG. 12 illustrates the two dimensional image of the T-72
tank with and without the fender scattering. The reduction in
resolved signal power within the cells associated with this
geometry indicates the significant effect of eliminating the
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fender scattering. The results of this first of these sub-experi-
ments are presented in FIG. 13 where the modal mutual
information is computed for the T-72 with and without fender
scattering. The cumulative mutual information is computed
as approximately 16 Nats indicating a high degree of similar-
ity.
FIGS. 14 through 17 show similar results for the sub-
experiments involving the removal of the fuel barrel scatter-
ing in FIG. 14 and FIG. 15 and the gun barrel scattering with
and without the barrel in FIG. 16 and FIG. 17. The cumulative
mutual information for the T-72 with and without fuel barrel
scattering is approximately 14 Nats indicating again a high
degree of similarity. The third sub-experiment results show
the cumulative mutual information for the T-72 with and
without gun barrel scattering to be 12 Nats indicating again a
high degree of similarity. In the final sub-experiment for
case-5, all three physical features are removed (fenders, fuel
barrels and gun removed). In FIG. 18 we see that the cumu-
lative mutual information for the baseline T-72 and this modi-
fied T-72 is approximately 11 Nats.

Mutual information used as a measure of similarity cor-
rectly identifies the modified targets in all cases. Further, the
mutual information remains high even when geometry that is
deemed important in statistical pattern recognition based dis-
crimination methods is removed.

Experiments conducted so far show that mutual informa-
tion remains high for a range ofin-class variations and is close
to zero for out of class targets, even when they appear “close”
by other measures. It is natural to wonder if it is possible to
make so many changes in the baseline target that the modified
target could be considered a dissimilar target resulting in a
mutual information level close to zero. To test this notion and
starting with the signature process of a baseline target
(BMP2), a new signature process is obtained by the addition
of uncorrelated Gaussian signal. The mean squared error
(MSE) between the modified and baseline signatures serves
as a measure of “distortion.” FIG. 19 shows the cumulative
mutual information as function of the mean squared error for
Baseline BMP2 and BMP2 with additive Gaussian signals
demonstrating dependence at significant levels of added dis-
tortion. The salient feature of FIG. 19 is that as the mean
squared error (MSE) increases, to a level typical of dissimilar
targets, the mutual information levels off but does not really
become zero. The reason for this behavior is that irrespective
of'the amount of “distortion” added to the original signature,
the modified signature never becomes an independent pro-
cess. Mutual information is zero only when the two processes
are independent. It is this property of mutual information that
leads to the desirable result of it being high for a rather wide
range of in-class variations but is low for out-of class varia-
tions.

The role of signature database validation is significant in
achieving realizable radar signature exploitation systems.
Developing similarity measures that operate within an auto-
matic target recognition systems framework is central to
building this technology. The research and key findings asso-
ciated with an information theoretic similarity measure to
provide a high range resolution signal model. The database in
one embodiment of the present invention includes measured
field data and modeled synthetic data where the field data is
compared to the synthetic data and mathematically combined
to create a synthetic signature set using the above computated
modal mutual information and/or mutual information. In one
embodiment of the present invention the synthetic signature
set includes both similar targets and dissimilar targets. The
synthetic signature set in one embodiment of the present
invention is automatically compared with the target signature
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to provide automatic target recognition based upon the above
modal mutual information calculations.

Computationally stable techniques for computing modal
mutual information are herein disclosed for use in radar and
multi-radar signature database validation. Numerical experi-
ments have been conducted to validate the approach taken and
to demonstrate that modal mutual information can be used to
determine if two signature processes correspond to in-class or
out of class targets.

Experimentally it was shown that MI is consistently high
between signatures corresponding to targets with in-class
variations and consistently low (independent) for out of class
target comparisons, including the ‘confuser’ case. While the
full interpretation of mutual information’s ability to measure
the common signature scattering information has not been
fully studied, the inherent capability to test for statistical
independence is useful. The apparent ‘sharpness’ of the
modal mutual information as a measure of statistical indepen-
dence is compatible with efficient methods of hypothesis
testing and training which will be needed to fully realize the
measure in assessing a signature process for use within an
automatic target recognition system.

Modal mutual information provides an improved test mea-
surement for radar. Other applications may include radar
integrated with an automatic target recognition systems data-
base. In addition to this, the characteristics of mutual infor-
mation have strong appeal in dealing with real word artifacts
of contemporary radar signature data. The ability of mutual
information to determine the common information between
two signature processes even with the addition of large levels
of additive Gaussian signal shows great promise to operate in
high interference and noise conditions, often experienced in
measured radar signature data. Potential solutions to today’s
troublesome issues of uncertainty in signature alignment and
calibration faced by many feature based similarity
approaches may be better addressed with the process herein
disclosed.

Regardless of the dimensionality and the bandwidth of the
automatic target recognition signature process, this method of
statistical database comparison for signature processes within
the 1D domain may be applied to signatures in higher dimen-
sions and at higher resolution (projecting to lower dimension
and with reduced bandwidth) in order to address issues within
the database area.

While specific embodiments have been described in detail
in the foregoing description and illustrated in the drawings,
those with ordinary skill in the art may appreciate that various
modifications to the details provided could be developed in
light of the overall teachings of the disclosure.

What is claimed is:

1. A method of assessing radar signature databases for use
in training a radar target recognition decision algorithm, the
method comprising the steps of:
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generating radar signature data from at least three targets
using a first process and a second process, wherein the
radar signature data includes at least one of actual radar
measurements and synthetic radar measurements, the
synthetic radar measurements being generated using
numerical simulation, and wherein the targets comprise
at least two different target classes, at least two targets
being in a same target class and at least one target being
in a different target class;

producing a first radar signature database using the first

process and a second radar signature database using the
second process;
comparing the first radar signature database and the second
radar signature database using an information theory;

computing an amount of cumulative modal mutual infor-
mation, M, between the first radar signature database
and second radar signature database for targets compris-
ing the same target class and for targets comprising
different target classes, wherein the computation com-
prises a numerical stability calculation to remove singu-
larities; and

based on the amount of cumulative modal mutual informa-

tion between the first radar signature database and the
second radar signature database for targets comprising
the same target class, determining whether the first pro-
cess and second process are suitable for use together to
generate a hybrid radar signature database for training
the radar target recognition decision algorithm.

2. The method of claim 1 wherein M is at least about five
times greater when the targets comprise the same target class
as compared to when the targets comprise different target
classes.

3. The method of claim 1 wherein M=5 Nats when the
targets comprise the same target class.

4. The method of 3 wherein the targets include at least one
target comprising at least one in-class structural variation.

5. The method of claim 1 wherein 0=M=1 when the
targets comprise different target classes.

6. The method of claim 5 wherein the targets include at
least one target comprising at least one out-of-class structural
variation.

7. The method of claim 1 wherein the radar signature data
is high range resolution signature data.

8. The method of claim 1 wherein the radar target recog-
nition decision algorithm is used in a plurality of automatic
target recognition systems, wherein the automatic target rec-
ognition systems comprise at least one of an air-to-air sensor
system and an air-to-ground sensor system.



