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1
METHOD FOR DETECTING SMALL
TARGETS IN RADAR IMAGES USING
NEEDLE BASED HYPOTHESES
VERIFICATION

FIELD OF THE INVENTION

This invention relates generally to detecting targets inradar
images, and more particularly to detecting very small targets
using sample based track-before-detection.

BACKGROUND OF THE INVENTION

In high-end radar systems, the reflected signals from radar
emission are amplified, and then filtered to extract a sequence
of 2D input image in the form of cells in an image coordinate
system. In radar terminology the cells correspond to pixels in
conventional images. Each cell corresponds to an intensity
(power) of the received signal in a particular spatial location
in world coordinate system, defined by a range (bins) and an
azimuth (beams). In other words, the coordinates of the cells
in the image coordinate system correspond to locations in the
world coordinate system.

In addition to a potential target reflection signal, the image
also includes noise, electromagnetic interference, and clutter.
It is extremely difficult to detect very small targets in noisy
environments. The difficulty can be compared to the classical
“finding the needle in the haystack problem.”

Most simple methods apply a threshold to the input image
and label the cells exceeding the threshold value as corre-
sponding to candidate targets. If the threshold is too low, then
more targets are detected, at the expense of an increased
numbers of false alarms. Conversely, if the threshold is rela-
tively large, then fewer targets are detected, but the number of
false alarms is relatively small.

Often the threshold is set to achieve a constant false alarm
rate (CFAR) by adaptively estimating the level of the noise
floor around the cell using background statistics. This is
acceptable as long as the signal-to-noise (SNR) and signal-
to-clutter (SCR) ratios are sufficiently large. However, for a
lower SNR, where targets cannot be easily distinguished from
the cluttered noisy background, such cell thresholding
approaches give large rates of false detections.

FIG. 1 illustrates the problem solved by the invention. FIG.
1 has a sequence of four images of radar measurements when
SNR=20 dB and SCR=7 dB. The most recent image is a time
t,, and the earliest image is at t;. There is a single target in the
center of each image. Even for these small 21x21 cell images,
the target signal cannot be easily identified. In real applica-
tions, the image size is 1000x100 cell, which means targets
are even less distinguishable from the background noise and
clutter.

Instead of making a decision solely based on the current
image, detectors can be supplied with a temporal window of
previous measurements to allow the detection of targets when
the SNR is small. In the example shown, the temporal window
includes the current and three previous images. Evidence of
there being a target is accumulated by integrating likelihoods
of'individual cells over time in the temporal window. In other
words, hypothetical targets are tracked before the targets are
detected. This class of methods is often called track-before-
detect (TBD).

Ideally, the evidence accumulation is performed by evalu-
ating all possible states of a dynamic and intrinsic evolution
of the target. Here the state of the target can correspond, for
example, to the position and velocity of the target in the image
and the intensity of the underlying cell. For simplicity, the

10

15

20

25

30

35

40

45

50

55

60

65

2

state evolution is usually modeled by a linear process, espe-
cially when the temporal window duration is short. However,
the input image is a stochastically sampled process and has
only a nonlinear relation with the target state, albeit the target
distribution characteristics are assumed to be available. In
addition, cell responses with high intensities are only weakly
correlated to the locations of the targets. As a result, an ana-
Iytically intractable number of states can be generated for
most basic specifications.

One way to make this problem feasible is to quantize the
state space and use discrete valued target models. Several grid
methods have been developed to estimate the evidence in
discrete space including a Bayesian maximum a posteriori
MAP estimator, a maximum likelihood (ML) estimator, or a
statistical graph networks, e.g. hidden Markov models
(HMM).

The Bayesian estimator is an approximation to the poste-
rior distribution of the target state. On a uniformly spaced set
of'states, which is augmented with a null state to indicate the
possibility of no target case, the estimator applies the Bayes
rule by imposing certain heuristics on the state transition
probability, and marginal likelihoods, e.g., the parameters of
the probability oftarget existence and the probability of target
discontinuation control the detection performance. The
parameters can be adjusted to optimize a performance of the
detector.

The selection of the quantization steps is a trade off
between estimation accuracy, which improves with finer
resolution, and computational requirements. The Bayesian
estimator selects the state with a highest probability by recur-
sively defining the probability of the target occupying a par-
ticular location by the superposition of all of the possible
paths to that position. If the accumulated probability is higher
than the null state probability, then a detected target is sig-
naled.

Rather than accumulating the probability from alternate
paths, the ML estimator selects the single best path. A quan-
tized state space Viterbi process is designed to determine the
most likely sequence of states by maximizing a joint posterior
probability ofthe sequence of states. One advantage is that the
Viterbi process always produces an estimate consistent with
the dynamic model.

A discrete state space often leads to high computation and
memory requirements. An alternative is to use a sequential
analogue of a Markov chain Monte Carlo (MCMC) batch
method, such as particle filter, to accumulate the evidence
within the Bayesian framework. MCMS is a numerical
approximation technique that uses randomly placed samples
instead of fixed grid. The idea is to represent the required
posterior density function by a set of random samples with
associated weights, and to determine estimates based onthese
samples and weights.

As the number of samples becomes very large, this char-
acterization becomes an equivalent representation to the
usual functional description of the posterior probability den-
sity function (PDF), and the particle filter approaches the
optimal Bayesian estimate. Although the particle filtering can
achieve similar estimation performance for lower cost by
using fewer sampling points than are required for a discrete
grid, particle filtering usually requires a considerable amount
ofparticles to effectively approximate continuous probabilis-
tic distributions. Thus, the computational burden for high
dimensional state spaces, e.g., where acceleration and non-
linear motion are parameterized, becomes an issue.

Instead of using a numerical model for the target distribu-
tion, a multiple-hypothesis tracker (MHT) imposes a para-
metric representation to reduce the computational load. The
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MHT allows a hypothesis to be updated by more than one
consecutive state at each update, generating multiple possible
hypotheses. With each input image, all existing hypotheses
are updated and unlikely hypothesis are deleted to upper
bound the computational complexity.

A probabilistic MHT (PMHT) uses a recursive expectation
maximization (EM), such as a Kalman filter, to determine, in
an optimal way, associations between the measurements and
targets, instead of measurement-to-hypothesis assignment.
The probability that each measurement as associated with
each hypothesis is estimated using the MAP method. In other
words, the PMHT uses soft posterior probability associations
between measurements and targets. These soft associations
can be considered as mapping the problem from discrete, i.e.,
of combinatorial complexity, to continuous, i.e., amenable to
iterative procedures.

In a histogram PMHT (H-PMHT), the received energy in
each cell is quantized, and the resulting integer is treated as a
count of the number of measurements that are within that cell.
The sum over all of the cells is the total number of measure-
ments taken. A probability mass function for these discrete
measurements is modeled as a multinomial distribution,
where the probability mass for each cell is the superposition
of target and noise contributions.

Rather than using the entire input image, maximum likeli-
hood joint probabilistic data association (JPDA) reduces the
threshold to a low level, and then applies a grid-based state
model for estimation to avoid track coalescence. Another
approach to detect targets in the TBD manner is to apply a
state parameter mapping, e.g., a Hough transform, after quan-
tizing the parameters.

In addition to being computationally expensive, the above
prior art methods assume the signal, clutter, and noise distri-
bution functions to be known due to their dependency on the
likelihood ratio function. Furthermore, those methods impose
single-stage Markovian updates, as particle filters, for the
determination of the cell likelihoods, even though a larger
portion of the previous measurements is often available.

SUMMARY OF THE INVENTION

The embodiments of the invention provide a method for
detecting small targets from a sequence of radar images using
sample based track-before-detection (TBD). The TBD
method is grid based and utilizes all available measurements
in a given temporal window without imposing any assump-
tions on probability distributions.

It is an object of the invention to achieve at least a 50% true
detection rate at only a 10-° false alarm rate for the targets are
smaller than the size of the cells, and an overall signal-to-
noise and signal-to-clutter ratios are less than 7 dB. It is
assumed that the number of targets is unknown. That is, the
number of targets is estimated from the radar images.

The method selects a small subset of cells based on inten-
sities of cells. For simplicity, the selected cells in the subset
are called “needles.” By picking a small number of needles,
due to the mutually independent nature of individual cell
measurements for targets smaller than the physical cell cov-
erage, the method collects potential footprints of targets in
each image.

Using state transition models, the method generates aset of
hypotheses and aggregates the cell likelihoods along each
hypothesis.

In a streaming mode, the needle selection only applies to
the current image by updating the hypotheses for the needles
in the temporal window.
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4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a sequence of images, in a form of cells, acquired
from a radar system in which the method according to
embodiments of the invention detects very small targets;

FIGS. 2A-2B are a detailed and simplified flow diagrams
of'the method for detecting targets according to embodiments
of the invention;

FIGS. 3A-3C are graphs of probabilities of target existence
for given measurement intensities and different correlations.

FIG. 4 is a graph comparing performance of needle picking
according to embodiments of the invention with the prior
particle filters; and

FIG. 5 is a graph comparing performance for multiple
targets.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

As shown in FIGS. 2A and 2B, the embodiments of the
invention provide a method for detecting small targets from a
sequence of radar images using sample based track-before-
detection (TBD). The steps of the method can be performed in
a processor connected to memory and input/output interfaces
as known in the art.

A radar system 201 acquires radar measurements 202 in a
form of a temporal sequence of images. At time t, an input
image I, for the method includes noise n,, clutter ¢, and a
target signal z,

I:zA4n+c,

ey
where clutter refers to signals returned from background
objects such as ground, sea, atmospheric conditions, includ-
ing rain, snow, hail, sand storms, clouds, and turbulence, and
man-made objects such as buildings, etc. These constituents
are assumed to be independent random variables. Noise is
typically present in the communication channel, and appears
as random variations superimposed on the received signal.
A state of the target at time t is S,

@
where “” indicates the first derivative (velocity), and “” is a
transpose operator, and S, includes a position and velocity of
the target in the input image, and the state transition is mod-
eled by linear state transition is modeled by linear and/or
nonlinear parametric motion M, e.g., if linear the model is

" 1 %
}S”l’ ‘[0 1]

between sequential input images, and the time is uniformly

sampled at

k=1. The state can also consider noise.

This model does not contain the target signal z, and the
corresponding noise process, which is mainly due to the
fluctuations (Swerling) of the target, as the formulation does
not require its estimation, see U.S. Pat. No. 4,649,390. Each
target has an unknown velocity [X, ¥,]', which is unknown but,
in a range of [X,, .o Vel

The number of the images in a temporal window is T, such
that t, corresponds to the most recent image and I to the
earliest image in the window. Each image is partitioned into a
grid of cells, e.g., 1000x10. Each cell corresponds to an
intensity (power) of the received signal in a particular spatial
location, defined by a range (bins) and an azimuth (beams).

s~x %y, 9.

132

®

M 0
S =
(o
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That is, the coordinates of the cells in an image coordinate
system correspond to locations in a world coordinate system.

A likelihood function 203 is used to determine 104 scores
for the cells in each most recent image. The number of cells
along the range and azimuth (beam) axes are N, and N,
respectively. The total number of cells is N,,.

In a streaming mode with a moving temporal window, the
method proceeds by sorting 205 the cells q*:(x,, y,)* in the
image I, according to intensities I,(q",). Note that I,(q' )=I,
(q1i+1)'

A subset of N, cells having the highest intensities selected
206. The selected cells are referred to as “needles” q. The
selected needles are stored in a current set of needles 207,
A{q' =1, ..., N /T}.

Motion limits 208 are used to determine 209 the coverage
of each cell in each image.

For the selected needles q',, all possible hypotheses
Hli,l, Ce, Hlu are generated 210 using, e.g., the state
transition model of Eqn. (3), and corresponding maximum
limits. This means that a grid (g, g), ...~ 15 applied to the
earliest image I, in the window around the coordinates (x,,
y,)! of the cell q*, to determine the extend of the hypotheses,
e.g., the corresponding coverages. For example, the hypoth-
eses correspond to candidate paths of the target passing
through the position corresponding to the location of the cell.
The grid generates a fixed number J of hypotheses

x, y 4
(e 80 = (3=, 3 v 2227

where ~-U=u=U, -V=v=YV, and ] is the total number of grid
locations that have (%, , *+¥,,.,.>)° distance from the center
of'the grid. U and V are selected to obtain a subcell resolution.
In addition, the hypothesis can be a linear and nonlinear
function from time domain to image locations. The hypoth-
esis can be generated so that it ends on a sub-cell resolution
grid in the most previous image within the temporal window
for each current needle. The current needle position can be
perturbed within a sub-cell resolution grid, and then the
hypotheses are generated for each of these multiple perturbed
positions for each current needle.

Ahypothesis Hy: {@'5 -+ -5 (80 8)ruovis - + - » (80 & lienr
corresponds to a motion trajectory in the spatio-temporal
window passing through the corresponding needle.

The likelihood of each hypothesis L(H,;) is accumulated
215 by traversing backwards in time along the motion trajec-

tory

T
L(H; )= Z (&x» gy)i,u,v,r'

t=1

The accumulated likelihoods are either the underlying cell
intensities or their individual likelihood scores obtained from
the likelihood ratio in case the distribution parameters are
known.

The likelihoods are appended 220 to a queue 221 of like-
lihoods Q, of the corresponding location of the cell in the
image I,. That is there is one queue for each location. The
queue stores the hypotheses reaching to that cell position and
their likelihoods. Because the appended hypotheses are
already in the same image, their location are 1=q',. The
appending operation is only done for the cell locations at the
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6

current image I, because the final detection is evaluated in this
image. In other words, I, is the final detection image.

For the needles q’, 222 in the previous sets A,, 1=t_T, the
location forward motion on the corresponding hypotheses is
determined 225, and the hypotheses are updated 230 with the
corresponding likelihoods. Due to this update, the final
appending locations/can change. Therefore, such hypotheses
are reassigned to the correct queues.

While updating 240 the existing hypotheses, the contribu-
tion of the needles that are not in the current temporal window
are subtracted from the queue, i.e., the cells in I, , along the
trajectory. The needles of the I,+1 are deleted 245 from the
current queue 241, and the corresponding hypotheses are also
deleted 250 by updating 255 so that the queue always retains
a constant number of needles in the queue, and time indices
are updated 255.

The maximum likelihood for each needle location in the
queue is selected to determine 260 the queue of likelihoods
Q;, which indicates the target existence in the image I, by
applying a threshold 270 to detect the locations of the targets
280. The threshold is set such that the detection performance
achieves a specified false alarm rate.

Inabatch mode, all N,, cells for the entire temporal window
are selected at the same time, either by sorting all 205 cells
and selecting cells 206 with the highest intensities, or sorting
cells within each image as described above. Alternatively, the
selecting can use a threshold intensity.

All hypotheses are generated at the same time, and the
likelihoods and queues are constructed accordingly. In gen-
eral, a target cannot exactly coincide to the underlying integer
indexed cell locations on the uniformly quantized imaging
grid because of the mapping from world to imaging coordi-
nates. For instance, a target at coordinates (4.49, 3.51) will
appear at the cell at coordinates (4, 4) due to quantization.

Because all hypotheses pass through the integer valued cell
locations in the above selecting step, there is a chance that
some hypotheses contain inaccurate cells along their trajec-
tories. This can become observable for extremely low false
alarm rates and very large temporal window sizes. To prevent
this, multiple cells are assigned at subcell proximity to the
selected cell, instead of assigning a single cell.

Number of Cells

The probability of target existence, given the measurement
intensity, can have different correlation as shown in FIGS.
3A-3C. In FIG. 38, the target is not correlated with the inten-
sity. In FIG. 3B the target is linearly correlated, and FIG. 3C
shows higher intensities that are much more likely to repre-
sent a target.

Ifthe cell intensities I, are not correlated with the probabil-
ity of being a target, then the conditional probability function
of target existence given the cell intensity is uniformly dis-
tributed imposing all intensities to have the same probability.
If there is no direct relation between the observed cell inten-
sities and target probability as shown in FIG. 3A, then one can
only select cells randomly at the current frame, hoping one
contains the target, and generate hypotheses based on those
selections. In this case, an expected true detection rate for the
N images is

T T (&)
N,
T o] Lo=1-{1- =
PL=1 D Pl.=1 (1 NbN,) ,
where P! __is the probability of a miss at a single image. For

instance, to obtain an expected true detection rate 0.5 for the
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N,=1000, N,=100, and T=10, the number of cells that need to
be selected at each image is N, =6697.

The target signal is additive to the noise and clutter. Thus,
the larger the intensity of a cell, the more likely the target is at
that location. For the scenario where the intensity is linearly
correlated with the probability of being target, the probability
of'a miss at a single image is

©

N, \2
).

Prlnim:(l_ NuN,
.

When selecting the cells with the highest intensities, one
needs N, =3406 cells, i.e., 3% of all cells in the image, at each
image to achieve the same P” td above. Yet, the correlation is
much stronger in actual systems resembling Heaviside func-
tion

0.5+~  arctan(B[Z-1,]),

where the equilibrium point I, is defined by the likelihood
functions L(hylI,)=L(h,lat), and p=0.01. As an example,
using the likelihood computation in the following section,
only N =70 cells (0.07% of all cells in the image are needed,
which is a reduction of about two orders of magnitude.

Likelihood Ratio Determination

The method does not require signal distributions to be
known or use a likelihood ratio. Still, certain systems assume
noise n, to be a Rayleigh distribution as the noise corresponds
to the Euclidean distance between two orthogonal, normally
distributed random variables, and the clutter ¢, to be a Weibull
random variable.

The likelihood ratio is the ratio of the null and target exist-
ence hypotheses functions. The null hypothesis h, represents
the probability that no target is in a given cell. This can be
modeled as the distribution of the sum of Rayleigh and
Weibull random variables corresponding to the clutter and
channel noise

M
where random variables c, and n, maintain their distribution
properties between the measurements. Thus, the t index is not
used, and clutter, of course, can change over time.

Given two independent random variables ¢ and n with
corresponding densities p(c) and p(n), the probability distri-
bution density for the random variable r=c+n is defined as the
convolution operator

plho)p(ctn),

®)

However, the noise and clutter distribution parameters are
not known, and the convolution operator cannot be applied
directly. It is possible to approximate this summed distribu-
tion for a relatively large amount of data, e.g., (1000x100
cells), where possible targets can have only insignificant sta-
tistical contribution. Hence, an arbitrary shape envelope can
be fit to the measurements exploiting the strong law of large
numbers by kernel density estimation in terms of Gaussian
kernels

p(r)=pn)*plc).

)

where 1) is a zero mean Gaussian kernel, and K is the total
number of kernels used. This type of kernel fitting, in general,
can model any nonlinear distributions.
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The second hypothesis h, corresponds to the probability of
observing a target

plh)p(s+erm)=p(s+ho), (10)

which corresponds to the distribution of sum of two Rayleigh
and one Weibull random variables, in case the target random
variable is Rayleigh distributed.

After the distribution function of the null hypothesis is
obtained, it is numerically convoluted with the target density
function where the value of this parameter comes from the
working operating point. After both distributions of the null
and target hypotheses are estimated, a log likelihood decision
rule is applied to determine the likelihood ration for a cell.

FIG. 4 compares the performance graphs of the needle
picking 401 according to embodiments of the invention with
the prior particle filters 402 and CFAR 403 when there is a
single target in the measurements. The needle picking
achieves 55% detection rate at 10~ false alarm rate, while the
adaptive CFAR can only provide 8%. The particle filter has
many parameters to fine tune. Its performance deteriorates for
the low false alarm rates by constructing false trajectories in
very low SNR measurements.

FIG. 5 compares the performance for the multiple targets.
The performance can be higher for vertical (on range) and
horizontal (on beam) target motions. Because the hypotheses
are accumulated along the candidate trajectories, the candi-
date hypotheses do not change the trajectory points when the
motion is vertical or horizontal regardless of the velocity.

Although the invention has been described by way of
examples of preferred embodiments, it is to be understood
that various other adaptations and modifications may be made
within the spirit and scope of the invention. Therefore, it is the
object of the appended claims to cover all such variations and
modifications as come within the true spirit and scope of the
invention.

I claim:

1. A method for detecting a target in a sequence of radar
images, wherein each image is partitioned into a. grid of cells,
and wherein each cell has a. corresponding position in an
image coordinate system associated with a location in a world
coordinate system, comprising:

determining, for each most recent image in a sliding tem-

poral window of the sequence of images, intensities of
each cell, wherein each cell has the corresponding posi-
tion in the image coordinate system associated with the
location in a world coordinate system;

storing a subset of the cells having highest intensities as a

set of current needles, wherein each needle in the current
set of needles has the corresponding position in the
image coordinate system associated with the location in
the world coordinate system;

determining a set of hypotheses, obtained by using a state

transition model and corresponding maximum limits,
for the current set of needles, wherein each hypotheses
for each needle in the current set of needles has the
corresponding position in the image coordinate system
associated with the location in the world coordinate
system,

appending the current set of hypotheses, to a set of queues,

wherein there is one queue for each corresponding cell
position in the final image, wherein the corresponding
position is each cell in the final image is associated with
the location in the world coordinate system;

updating hypotheses for the previous sets of needles to the

corresponding set of queues; and

selecting a maximum likelihood in the set of queues to

detect the location of targets, wherein the current posi-
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tion associated with the queue with the maximum like-
lihood corresponds to the locations of the targets in the
world coordinate system, wherein the steps are per-
formed in a processor.
2. The method of claim wherein each image I, includes
noise N, clutter C,, and a target signal Z, according to

I:zAnq4c,

3. The method of claim 1, wherein a state of the target at
time tis S,

s~x %y, 91

<o

where “” indicates a first derivative (velocity), and “ indi-
cates a transpose operator, and s,, includes a position and
velocity of the target in the image, and the state transition is
modeled by linear motion M

between sequential images, and the time is uniformly
sampled at k=1.

4. The method of claim I, wherein a state is of the target at
time tis S,

=[x, %,y,¥J +fhoise.

5. The method of claim 1, wherein a state transition is
modeled by linear and nonlinear parametric motion.

6. The method of claim 1. wherein a hypothesis is a. can-
didate path of the target passing through the position corre-
sponding to the location of the current needle.

7. The method of claim 1, wherein a hypothesis is a linear
and nonlinear function from time domain to image locations.

8. The method of claim 1, wherein each location has an
associated range and azimuth.

9. The method of claim 1 further comprising:

using motion limits to determine a coverage of each cell in

each image.

10. The method of claim 1, wherein a size of the target is
equal to or less than a size of the cell.

11. The method of claim 1, wherein each intensity is deter-
mined according to a likelihood, and likelihood of each

30
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hypothesis is accumulated by traversing forward and back-
wards in time along a motion trajectory by aggregating the
cell likelihood scores.

12. The method of claim 1, further comprising:

subtracting contributions of needles that are not in a current

temporal window of sequence of images from the
queues.

13. The method of claim further comprising:

removing hypotheses that are not generated for the needles

in a current temporal window of sequence of images
from the queues.

14. The method of claim 1, further comprising: storing a
subset of the cells having intensities higher than a threshold as
a set of current needles.

15. The method of claim 1, further comprising: generating
hypotheses ending on a sub-cell resolution grid in the most
previous image within the temporal window for each current
needle.

16. The method of claim 1, further comprising:

perturbing the current needle position within a sub-cell

resolution grid and generating hypotheses for each of
these multiple perturbed positions for each current
needle.

17. A method for detecting a target in a sequence of radar
images, wherein each image is partitioned into a grid of cells.,
and wherein each cell has a corresponding position in an
image coordinate system associated with a location in a world
coordinate system, comprising:

determining, for the sequence of images, intensities of each

cell;
storing a subset of the cells having intensities higher than a
predetermined threshold as a set of needles:

determining a set of hypotheses, obtained by using a state
transition model and corresponding maximum limits,
for the set of needles;

appending the set of hypotheses, to a set of queues, wherein

there is one queue for each corresponding cell position
in a final detection image; and

selecting a maximum likelihood in the set of queues to

detect the location of targets corresponding to the posi-
tions associated with the queues.



