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behavior actions or navigation information for tracking
objects; means for acquiring necessary information from the
first processing means and the active diagrammatic models to
provide tactical behaviors and associated reactive behaviors
to respond to dynamic situations in the visual scene; and
second means for communicating with the control systems of
the unmanned vehicles or autonomous robots, controlling
switching of the means for centering the part of the visual
information in the visual scene, tracking the objects in the first
processing means to allow centering of the part of the visual
information in the visual scene with respect to a center of the
tracked objects, and placing the centered part of the visual
information in the visual scene into the second processing
means for processing of the tracked objects.

32. A computer-implemented method of active semiotics
for image and video understanding by autonomous robots and
unmanned vehicles to provide better situation awareness and
intelligent tactical behavior in real world situations, the
method comprising the steps of:

obtaining visual information corresponding to visual

scenes in real world situations;

processing the visual information into semiotic form;

generating active diagrammatic models in accordance with

the visual information in semiotic form;

storing the active diagrammatic models as a plurality of

implicit symbols and their alphabets and a plurality of
diagrams and reference links;

transforming the active diagrammatic models into higher-

level active diagrammatic models using graphs and dia-
grammatic information and identifying object classes
within the visual scenes;

recognizing the implicit symbols stored in the memory;

converting information from other formats into internal

representations corresponding to the active diagram-
matic models; and

predicting and planning a course of action in accordance

with the active diagrammatic models and communicat-
ing the course of action to control systems of autono-
mous robots or unmanned systems for situation aware-
ness and intelligent tactical behavior in real world
situations.

33. A method according to claim 32; further comprising the
steps of deriving regularities from the active diagrammatic
models and compressing the regularities into active diagrams
for emulation of mid-level vision processes and for further
high-level intelligent processing; and wherein the recogniz-
ing step comprises recognizing regular patterns and obtaining
the implicit symbols from perceptual information or from
within the active diagrams.

34. A method according to claim 32; wherein at least one of
the implicit symbols represents a pattern that can be obtained
as a solution to a local pattern recognition problem with a
finite number of possible patterns.

35. A method according to claim 32; wherein at least one of
the implicit symbols represents a structure within the corre-
sponding active diagrammatic models; and wherein at least
one of the alphabets of the corresponding implicit symbols
represents a set containing a finite number of possible pat-
terns or a set containing the structures within the correspond-
ing active diagrammatic models.

36. A method according to claim 32; further comprising the
step of dynamically creating or deriving new implicit sym-
bols and corresponding alphabets and new diagrammatic
models.

37. A method according to claim 32; further comprising the
step of dynamically modify existing implicit symbols and
corresponding alphabets and new diagrammatic models.
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38. A method according to claim 32; wherein the step of
processing the visual information comprises the steps of:
processing by visual buffers the visual information at the level
of an entire visual scene, and further comprising the step of
creating abstract knowledge models corresponding to the
processed visual information and mapping known visual con-
straints of the created abstract knowledge models back to the
visual buffers; and processing by object buffers a selected
subset of the visual information processed by the visual
buffer, the subset of the visual information appearing within a
region of interest or attention within the visual scene at a finer
level for recognition and identification of object classes for
labeling of the active diagrammatic models of the visual
scene.

39. A method according to claim 38; further comprising the
steps of centering a part of the visual information in the visual
scene for extraction of the subset of the visual information,
the centered part of the visual information corresponding to
an object that is separated from a background of the visual
scene, and deriving the active diagrammatic models from the
separated object for invariant classification of the separated
object.

40. A method according to claim 39; further comprising the
steps of: mapping symbols of the object classes to the active
diagrammatic models of the visual scene; and mapping the
active diagrammatic models of the visual scene to which the
symbols of the object classes are mapped to provide under-
standing of the content of the visual buffers by the unmanned
vehicles or autonomous robots.

41. A method according to claim 40; wherein the subset of
visual information in the object buffers is used for recogniz-
ing similar subsets in the visual buffers to facilitate process-
ing of similarities and textures in the entire visual scene in the
visual buffers by linking similar features expressed with sym-
bols thereof into coherent structures within the active dia-
grammatic models for the identification of rigid bodies and
textured regions in the visual scene; and further comprising
the step of identifying the object classes in accordance with
the active diagrammatic models of the visual scene to which
the symbols of the object classes are mapped to provide
necessary visual constraints of information that may be con-
tained in a particular visual scene, and processing the infor-
mation with a set of the visual constraints that allows for
interpretation of the content of the visual buffers as a visual
description of a three-dimensional world in the form of a
diagrammatic structure with assigned relative distances and
proportions; and further comprising the step of mapping the
set of the visual constraints back to the visual buffers.

42. A method according to claim 41; further comprising the
steps of communicating a plurality of behavior request con-
trollers with the control systems of the unmanned vehicles or
autonomous robots by requesting behavior actions or naviga-
tion information for tracking objects, obtaining necessary
information from the active diagrammatic models to provide
tactical behaviors and associated reactive behaviors to
respond to dynamic situations in the visual scene, communi-
cating a situation awareness controller with the control sys-
tems of the unmanned vehicles or autonomous robots to con-
trol switching of the region of interest, tracking the objects to
allow centering of the part of the visual information in the
visual scene with respect to a center of the tracked object, and
placing the centered part of the visual information in the
visual scene into the object buffers for processing of the
tracked objects.

43. A computer program product comprising a computer-
readable medium having computer program instructions and
data embodied thereon for a method of active semiotics for
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ACTIVE SEMIOTIC SYSTEM FOR IMAGE
AND VIDEO UNDERSTANDING BY ROBOTS
AND UNMANNED VEHICLES, METHODS
AND APPARATUS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefits of the provisional
patent application 60/744,494, filed on Apr. 7, 2006, which is
incorporated here by reference

FIELD OF THE INVENTION

The present invention relates generally to control systems
of robots and unmanned vehicles and more specifically to
their sensor systems when processing images from surround-
ing environment.

BACKGROUND OF THE INVENTION

To conserve soldiers’ lives and provide Army units with
operational and tactical advantages, The Department of
Defense and The Army work on the development of Mobile
Robots and Unmanned Ground Vehicles (UGV) under the
Future Combat Systems (FCS) program. Tactical behaviors
are essential in order to enable the UGV to perform in a
battlefield environment. Most of these behaviors are identi-
fied in fighting manuals, standard operating procedures, etc.

AUGYV is amember of a maneuvering unit, and it moves in
an appropriate position at a particular distance and with a
specific mission. Upon receiving information about friendly
or enemy situations, tactical maneuvers may use folds in
terrain and thick vegetation for cover and concealment, gain-
ing and maintaining contact with an enemy entity without
being detected, and occupying a position that provide an
optimal line of sight for engaging the enemy. The UGV must
be able to report enemy contact and chemical alerts, request
orders and support fires. For an armed UGV, tactical behav-
iors include targeting, engaging, and assessing damage. Tar-
geting includes finding, identifying, and handing off targets.
Survivability includes changing battle positions, hiding, fir-
ing, and calling for additional support. If captured, a UGV
might call in artillery on itself or self-destruct. The UGV must
also protect itself from natural dangers and be able to estimate
obstacles.

Tactical behaviors for robots have not fully matured yet.
Most development efforts are focused on self-preservation.
Much work has begun in the area of cognitive modeling,
neural networks, Bayesian networks, case-based reasoning,
and other decision-making methods. Advances in software
for real-time cognitive processes are not being integrated yet
into tactical behavior technologies for UGV systems.

Unstructured roads pose a challenge because the roads are
likely to appear unmarked, and edges may not be distinct.
Current approaches may lose the road on sharp curves or
classify steep slopes as obstacles. Obstacle detection on
unstructured roads may be more difficult because curves or
dips may limit opportunity to look far ahead. Difficulty will
be encountered when the “road” is defined more by texture
and context. In a combat environment obstacles may include
bomb craters, masonry piles, or other debris. On-road mobil-
ity in an urban environment is very difficult. In addition,
perception performance will be affected by weather, levels of
illumination, and natural and manmade obscurants that affect
visibility.
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There has been significant progress in road following,
obstacle detection and avoidance, terrain classification, and
traversability analysis for off-road mobility. But despite
impressive demonstrations, today’s automated systems
remain below human driving performance under realistic
driving conditions even on structured roads. And there are
significant gaps in road-following capability and perfor-
mance in the urban environment, on unstructured roads and
under all-weather conditions.

The nature of combat situations requires FCS to be
equipped with a target recognition system. For many years,
the solution of target recognition problems was linked to the
solution of more generic Pattern Recognition Problem. The
successes of pattern recognition algorithms created a hope
that they can be used for recognizing targets. But their per-
formance always sharply degraded under field conditions.

Major points of failure of the target recognition system
were its inability to separate a target from a clutter, to identify
possible target location in a natural environment, and reliably
recognize occluded targets. It became apparent soon that
reliable target detection and identification go far beyond the
scope of the Pattern Recognition Problem.

More importantly, the system was able to react only when
something already started happening and target became
clearly noticeable, which might not be acceptable for combat
situations, especially for FCS. Target may pose a threat, and
this threat should be identified and destroyed or avoided
before it is too late. Because of that, human observers can
monitor and scan potential threat areas and find hidden
objects while the modern computer vision systems lack these
capabilities.

The real problems of machine perception are not in the
imprecision of sensors. In fact, sensors become more and
more sophisticated and precise, and they can see far beyond
the human senses. But nothing yet can replace human vision
in its unique ability to understand and interpret perceptual
information. None of the systems can match the performance
of'an alert human driver, which is using context and experi-
ence in addition to perception.

In the human vision, the scene context plays a significant
role in the identification of an object.

In many cases such identification is only possible when
using context: temporal and spatial relations between the
parts of a scene and inferred facts, unobservable in the scene.

In many cases, an object can only be recognized correctly
after identification of its role/position in the visual scene.
Therefore, the separation of an object from clutter might
simply not be feasible without this step.

However, the mainstream of figure-ground separation
algorithms still treats image information as a 2-Dimensional
array of pixels, and uses simple separation criteria with a
bottom-up approach. This usually creates an ambiguity and
imprecision, while the natural vision provides unambiguous
separation of an object from its background.

It was found that vision and knowledge areas in the brain
are linked with forward and back projections, and knowledge
is heavily used for object detection and identification. Vision
mechanisms can never be completely understood apart from
the informational processes related to knowledge and intelli-
gence. Failure of modern computer vision systems is, in a
major sense, failure of their knowledge components.

The problem of discrimination of a target from clutter is
different from the segmentation of 2-Dimensional array upon
some threshold criteria. The unambiguous separation
requires the integration of bottom-up fusion of multiple local
and regional features with intelligent top-down processes that
involve knowledge and context.
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There were significant efforts in conversion image data
into meaningful informational structures, and also on usage
of context in processing of visual information. For instance,
Geographic Information Systems (GIS) can effectively
address problems with geographic and satellite imagery,
because geographic knowledge has been well formalized in
the form of maps, and maps can be represented well in com-
puterized form.

In the field of multimedia, the MPEG-7 standard was a
wide industry effort to address these problems for generic
images, converting them into XML structures. MPEG-7 pro-
vides a set of image primitives called Descriptors. The
MPEG-7 Description Scheme is the structure and semantics
of the relationships between image components, which may
be both Descriptors and Description Schemes. A MPEG-7
image description consists of a Description Scheme and a set
of Descriptor Values.

MPEG-7 supports a range of abstraction levels, from low-
level video features, such as are object’s shape, size, texture,
color, movement, and position, to high-level semantic infor-
mation. However, the MPEG-7 standard reflects the present
state of image/video processing, and it only provides a set of
predefined descriptors and schemas. MPEG-7 Visual
Descriptors evolve from low-level image processing, which is
well understood and formalized. However, Description Sche-
mas relate to mid- and high-level image processing, which
has not yet been well formalized.

Neither automatic and semiautomatic feature extraction
nor schema creating algorithms is inside the scope of the
MPEG-7 standard. Although most low-level features can be
extracted automatically, high-level features and schemas usu-
ally need human supervision and annotation. Only the
description format in MPEG-7 is fixed and not the extraction
and transformation methodologies. These are the areas that
must be addressed.

The highest level of image description is the semantic one,
and MPEG-7 standardizes information on these levels. But
the problem of transforming primary image structures
directly into semantic description has not been solved yet, as
processes on the intermediary levels are not well understood
and formalized.

Although RDF (Resource Description Framework) is bet-
ter than other schemas in its ability to specify relationships
and graphs, the MPEG-7 Group has made a decision to use an
easily understandable and readable XML (Extensible
Markup Language) Schema Language as the MPEG-7 DDL.
However, neither RDF nor XML Schema has been designed
to describe complex dynamic hierarchical structures that con-
stitute most of real images.

MPEG-7 Visual Descriptors can be used for searching and
filtering images and videos based on several visual features
such as color, texture, object shape, object motion, and cam-
era motion. This allows measuring the similarity between
images and videos. Such a set of descriptors might be effec-
tive for the entire image.

There are other similar approaches toward converting
images into their structured description that is based on image
low level features and their combinations, which use either
top-down or bottom-up flow of processing image data or both
types of flow, and attaching linguistic values for semantic
querying. The most of arts are trying to convert image into a
sort of structural description that can be compared against a
similarly described collection of images stored in a database.

These approaches might work well for image and multi-
media databases as they allow for creating structured collec-
tions of images, and querying them on certain similarity
criteria, but not for the robots and UGV that must perform in

10

15

20

25

30

35

40

45

50

55

60

65

4

the real-time and in hostile environments. These approaches
not only add extra steps, but also increase reaction time which
might be vital for the real-time systems. More importantly,
they are not able to provide the needed level of understanding
of the environment by a robot or an Unmanned Ground
Vehicle.

Any real world environment has the dynamic nature, and so
is visual information. Ambiguity and uncertainty in the real-
world visual information can not be resolved without a sys-
tem of active vision. There are many situations when genera-
tion of a meaningful structural description might not be
possible for certain image components without interaction
with motor programs.

In the brain, spatial perceptual information hierarchically
converts from quantities to qualities, from qualities to objects,
from objects to spatial situations. Temporal perceptual infor-
mation converts from changes to actions, from actions and
objects to events, from events to “cause and effect” links, and
from them to algorithms and scenarios. Feedback projections
exist in the brain on every level. They provide context and
help to resolve ambiguity and uncertainty.

Such conversions are achieved with the help of mid-level
vision. Phenomena of mid-level vision are known as percep-
tual grouping and organization. They can be partially
described with so-called gestalt laws. However, these pro-
cesses are neither well understood nor formalized. There is no
common opinion on how these processes might be repre-
sented for computer simulation. As of today, there is a sig-
nificant gap between low-level image processing and its
semantic description.

To be useful in the battlefield component of the Armed
Forces, military robots must exhibit predictive situation
awareness. This requires a decision support context, and this
is not possible without an effective knowledge system that
provides effective World Modeling. This is the basis for plan-
ning in a generation of behaviors and the resolution of uncer-
tainty in sensory processing. These ideas have been built into
the RCS architecture. However, the success or failure of an
implementation strongly depends on how effectively differ-
ent subsystems can communicate with each other and on how
effectively knowledge representation serves the goals of the
subsystems.

The NIST 4D/RCS architecture provides analysis, design,
and implementation methodology for development of real-
time control systems using sensory information to guide the
intelligent vehicle in the execution of complex tasks. A strong
side of RCS architecture is a hierarchical framework for task
execution planning and adaptation to changes in the environ-
ment.

The traditional approach to tactical-level reasoning is the
rule-based systems, implemented either as monolithic deci-
sion-trees or finite state machines. Such approaches are
inspired by defensive driving literature, where knowledge is
often expressed in the form of high-level rules. Simple ver-
sions of such rules can be used as a starting point for a
rule-based tactical driving system.

The development of intelligent ground vehicles requires a
thorough understanding of intelligent behavior, whicha UGV
must exhibit. Knowledge representation techniques are
needed to capture information that the sensor system per-
ceives and organize that knowledge in a fashion that makes it
easy to retrieve and process.

Knowledge models exist today in the forms of frames,
expert and production systems, logical and functional pro-
grams, and DAML and OWL ontologies, etc. Knowledge is
captured in the software development area in the form of
objects and simulation models, including Al games. The lat-
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est wave of knowledge models is built upon the XML trees.
Each of the current knowledge models can address certain
problems, but not cover everything. J. F. Sowa called this
situation “knowledge soup”.

Knowledge systems have been intensively studied begin-
ning in the late 1960s, but the status of knowledge models is
very similar to Computer Vision, where numerous theoretical
and computational methods exist but none of them can cover
the entire process. In the same way, the established methods
of knowledge representation capture certain aspects of
knowledge processes and models, but none of them can meet
the requirements to knowledge representation from the pre-
vious page in the first section.

Existing knowledge models are based on artificial theories
that are based upon symbolic strings and constructs of a
written language. Formal logic has been developed further
into a separate branch of science as abstractions of these
methods.

The artificial symbolic strings of a written human language
cannot serve as a good representation for knowledge models.
Written language is just a static reflection of knowledge mod-
els and processes, happening in the brain. To obtain a full-
scale knowledge system, written language must be accompa-
nied with a context system and with a processor—an
inference engine. Although strings of symbols are perfectly
readable by humans, it is difficult to build an inference engine
for such a representation of knowledge. Such a knowledge
system is limited mostly to what a human can type in.

It is well known that expert systems in the late 80’s and
early 90’s have proved themselves to be ineffective in most
areas of potential application. Even when it was possible to
collect enough knowledge to cover a major number of pos-
sible cases of system behavior, there always were some
unplanned situations. Because this type of system can handle
only situations that have been anticipated and entered into the
system via facts and rules, a human being must be involved in
the system all the time in the event that an unplanned situation
arrives. However, a human operator inside the loop jeopar-
dizes the whole idea of such a system. This representation is
good for knowledge acquisition, serving as a mediator
between human experts and computers. But it does not serve
well for modeling.

In other words, an appearance of knowledge models rather
than their true modeling nature was the subject of studies in
past. And this approach hid the true modeling capabilities of
knowledge systems from researchers and developers.

String representations have no connection to neuroscience
and brain research. Without an appropriate theory of knowl-
edge, there was a strong tendency to substitute models of
informational processes for models of physical processes in
the neural “hardware”. But such models don’t appear to cap-
ture the essence of informational processes in biological sys-
tems. Physical processes are not identical to informational
processes. A complex pattern of energy activity in the semi-
conductors of a microchip is described as a complex set of
partial differential equations. But on the informational level it
represents Boolean 0-s and 1-s. If differential equations were
used instead of Boolean logic, digital computers would
remain a highly theoretical idea. For our goals, instead of
emulating physical processes in the cortex, it would be better
to discover the informational representation of intelligent
operations in the cortex.

The unsolved problems with knowledge and lack of its
unified representation and processing leave the current arts at
the level of separate methods which do not allow them for the
creating of a full-scale perception system for robots and
unmanned vehicles without meeting additional requirements.

30

40

45

6

If we look at the commonalities among all known knowl-
edge models, we can find that knowledge has a hierarchical
relational nature, and knowledge models can be expressed in
the form of graphs and diagrams. The first systems of writing
were based on pictorial representation rather than on sym-
bolic strings and they look like pictorial diagrams that show
the story in space and time. Diagrams inspired scientists and
philosophers such as Charles Sanders Pears to create abstract
logical systems. After recognizing the failure of expert sys-
tems, there was an intensive search of more natural ways of
representing knowledge.

A string is a chain of symbols, whereas a chain is a flat and
one-dimensional graph. A chain represents a linear sequence
but not a relational model. Moving knowledge representation
from strings into a multidimensional graph- or diagrammatic
form aids in solving problems that string representation alone
suffered from.

This situation begin changing in recent years with the
development of multi-agent systems, methods of computa-
tional intelligence, and theories of visual languages, graph-
and diagram-based representations and other natural repre-
sentations of knowledge.

In the mainstream of modern software development, World
Modeling is supposed to be achieved with a Multi-Agent
System, which is connected to a Knowledge Base. An agent
represents a model or a process that is supposed to solve
certain tasks. The term “Multi-Agent systems” covers mul-
tiple sets of agents that are supposed to communicate with
each other for solving more complex problems than a single
agent can solve.

Today, such systems are built on empirical bases. There is
still no widely accepted theory of how knowledge and intel-
ligence can be represented in the brain and how such system
works with vision, and what is required for the implementa-
tion of an effective knowledge system for perception, predic-
tion, decision making, and control.

Any World Model can be described as a System. A System
has an identifiable hierarchical relational structure. However,
it is impossible to have a complete set of models for every
possible situation. Knowledge is incomplete in this sense.
Instead, it helps to build models on the fly from smaller, but
verified models.

Knowledge Models include facts and rules. Facts are small
fragmentary models of the World that are believed to be true.
Rules are generalized fragmentary models, where concrete
entities are replaced with classes or roles. When such models
come together in an active space, they tend to create a larger
model.

Therefore, Knowledge Representation should allow for
synthesis, analysis and verification of models, and requires a
processor that can handle these operations. These processes
are logical. Synthesis is successful if analysis and verification
cannot find any contradiction in the created model.

Processes in a robotic system are largely driven by input
from the perceptual system, helping to choose the right mod-
els. However, perceptual system must speak a language that
the knowledge system understands. In other words, percep-
tion should have the same representation of models and pro-
cesses at a certain level that knowledge systems have.

There are relations between the model’s components and
processes. Other types of relations group entities and pro-
cesses into sets and classes. These relations can be used for
traversing knowledge bases in search of needed fragments
and for creating analogies, which are special kinds of rules.
Therefore, effective Knowledge Representation requires a
context system and must be based on relations. Relations
specify constraints in the system.
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An important question is how to express components, pro-
cesses and relations: implicitly or explicitly? From a design
point of view this means: what should be hard-coded, and
what can be represented with flexible replaceable models.

If we have an implicit representation of relations, they are
hardcoded into the designed system. In this case, the system
will have a predetermined structure, and can handle a pre-
defined set of cases only. Therefore, in order to allow for
changing the structure of the system on the fly, relations in
such a system should be represented explicitly with a sort of
a special class that represents a relation. A class that repre-
sents a model can have a flexible set of “relations” in its
properties, and this will allow for changing the structure of the
model dynamically.

On the other hand, if we code entities in our system explic-
itly, then we also have an inflexible model structure where
every block is hard-coded. To avoid this, we need an implicit
representation for entities via a class that reference such an
entity, or points to it. In this case, the structure of the system
can also be modified by changing a reference or re-pointing to
another entity.

In such a statement of the problem, a system explicitly
reveals its structure while using implicit symbolic names for
its entities and components. It allows for the incorporation of
structural transformations into the runtime system. This
makes Knowledge Models dynamic and flexible, and permits
their creation and modification dynamically.

There was a gap between the higher-level knowledge rep-
resentation in the symbolic form and low-level quantitative
image information. The mechanism of transfer of quantities
into qualities and symbols was not clear for decades and
became apparent only recently after many years of develop-
ment of fuzzy set theory by L. Zadeh and others.

Lack of a unifying representation of knowledge has led to
hybrid vision systems combining heuristics and dissimilar
approaches. There are a few custom Image Understanding
systems, and CAD-based, Model-based, Context-based,
Object-based vision systems. They are based on the ideas of
recognition as comparison of a primary view of an object with
its 3-D model. Such “recognition” can work well only for
non-occluded, non-cluttered objects that have their 3-D mod-
els in the system. Instead, the human vision gives us an
understanding of the visual scene with ranges and distances.

Existing theories of perception give a very generic picture
of possible information processing on the level of the entire
brain, mapped to the particular cortical areas. Researchers
have identified the major pathways of visual information in
the brain that are related to different activities of the visual
system. Instead of being a parallel process, vision appeared to
be a multithreaded sequential process with two different but
interconnected systems. Narrow foveal vision provides the
separation of figure from ground, object identification,
semantic analysis, and precise control of actions. Rough,
wide peripheral vision identifies and tracks salient motion,
guiding the foveal system to salient objects. It also provides
the scene context.

Different phases of the vision process are known as low-,
mid-, and high-level vision. Low-level vision is related to
features and is very well studied. How the mid- and high-level
vision works—has always been a mystery. Without methods
that work with visual information as mid- and high level
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vision does it is not possible to create full-scale perception for
robots and unmanned vehicles.

SUMMARY OF THE INVENTION

The goal of present invention is to address these problems
and provide the methods and apparatus that allow for the
creation of effective perception systems for robots and
unmanned vehicles.

A subject of the present invention is an active knowledge
system that:

Allows for the representation that unifies real-world per-

ceptual and conceptual information on a single basis.

Allows for their processing on a single basis in real-time;

Can be a convenient basis for plans and models, and deci-

sion making process;

Canprovide reliable description of contextual information;

Allows for easy search or derivation/inference of new mod-

els and their incorporation into the knowledge base.

Can be seamlessly embedded in the control systems of

unmanned ground vehicles and robots, giving them abil-
ity to interpret visual information similar to human
beings.

Also, this invention has thought to create the overall
mechanisms of image understanding, including mid- and
high-level vision with detailed description of the methods and
algorithms of image/video understanding that can effectively
work with the active knowledge system from the paragraph
above.

Although the preferred embodiment targets military appli-
cations, it has to be understood that the invention can be
applied to any other robotic, unmanned and automatic sys-
tems without departing from the spirit and scope of the
present invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 11is a diagram, illustrating the current state of prior art
related to image and video understanding.

FIG. 2 is a diagram, illustrating prior art in the field of
structured representation of images and multimedia.

FIG. 3 is a diagram, shown an RCS node—NIST open
architecture standard for intelligent control systems of robots
and unmanned vehicles.

FIG. 4 is a diagram, illustrating prior art in the field of
cognitive neuroscience—the generic schema of processing
visual information in the human brain that also involve
knowledge areas.

FIG. 5 is a diagram, illustrating what should be done for the
solution of image understanding problems.

FIG. 6 is a diagram, illustrating the differences between the
prior art in the area of knowledge representation—expert
systems and ontologies and full-scale real time knowledge
system proposed in the current invention.

FIG. 7 is a diagram, illustrating prior art in the area of
knowledge representation—diagrammatic representation of
examples of written human language with explicit symbols
and semantic labeling.

FIG. 8 is a diagram, illustrating methods of emerging
implicit symbols and their alphabets in the brain that also can
be achieved with methods of computational intelligence.

FIG. 9 is a diagram, illustrating implicit symbolic labeling
with the same language diagrams as on FIG. 7.

FIG. 10 is a diagram, illustrating cortical supercolumn—an
informational module in the cortex that cover visual proper-
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ties of a small visual area and can be represented as a set of
implicit alphabets of visual properties or an advanced recep-
tive field.

FIG. 11 is a diagram, illustrating multilevel hierarchical
receptive fields.

FIG. 12 is a diagram, showing how grouping and splitting
of'visual information can be achieved on symbolic level using
mechanisms of computational intelligence

FIG. 13 is a diagram, illustrating hierarchy of processing
visual information from primitives to semantic levels.

FIG. 14 is a diagram, illustrating diagrammatic inference
with active diagrams and implicit symbols; methods of cre-
ation implicit symbols from the fragments of diagrams; clo-
sures that are equivalent to mathematical conclusions, but,
within the proposed solution, are simply reflex-type links
between initial and final symbols.

FIG. 15 is a diagram, illustrating analysis, or understand-
ing, of gestalts with the set of active diagrams and implicit
symbols.

FIG. 16 is a diagram, showing basic components of pre-
sented invention.

FIG. 17 is a diagram, describing method of processing
visual information in the visual buffer of the invention.

FIG. 18 is a diagram, visually illustrating processing of
visual buffer with ecological constraints.

FIG. 19 is a diagram, illustrating method of processing
rigid bodies in visual buffer.

FIG. 20 is a diagram, illustrating method of processing
textures in visual buffer.

FIG. 21 is a diagram, illustrating process of interaction of
visual and object buffer of presented invention.

FIG. 22 is a diagram, illustrating method of processing
visual information in the object buffer of the invention.

FIG. 23 is a diagram, illustrating method of processing of
surfaces using fusion of local features and ecological con-
straints.

FIG. 24 is adiagram, illustrating interaction of processes of
identification and recognition in terms of presented invention.

FIG. 25 is a diagram, illustrating an example of functioning
presented invention as a full-scale real-world knowledge sys-
tem embedded into control system of unmanned ground
vehicle.

DETAILED DESCRIPTION OF INVENTION

FIG. 11is adiagram, illustrating the current state of prior art
related to image and video understanding such as image
analysis (100), software development (101), knowledge engi-
neering (102) and cognitive neuroscience (103). At this time
these areas are not connected to the degree that is needed to
provide a reliable solution for the Image Understanding prob-
lem. Matching visual information against models of objects
with modern methods of Pattern Recognition (104), does not
produce satisfactory results and cannot be used in the real-
time field systems.

FIG. 2 is a diagram, illustrating prior art in the field of
structured representation of images and multimedia. Image
information (200) is a subject of segmentation and grouping
(201) for the converting into structured semantic description
of multimedia (202), using pattern schemas that resides in the
database (203). The result is usually written in XML (204),
accordingly to MPEG-7 standard and can be saved in the
database that contains collection of images (205).

These approaches might work well for image and multi-
media databases as they allow for creating structured collec-
tions of images, and querying them on certain similarity
criteria, but not for the robots and UGV that must perform in
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the real-time and in hostile environments. These approaches
not only add extra steps, increasing reaction time, that might
be vital for the real-time systems. But, more importantly, they
are not able to provide needed level of understanding of the
environment by a robot or an Unmanned Ground Vehicle, as
achieving this level require an autonomous active real-world
knowledge system.

Also, any real world environment has the dynamic nature,
and so is visual information. Ambiguity and uncertainty in the
real-world visual information can not be resolved without a
system of active vision. There are many situations when gen-
eration of a meaningful structural description might not be
possible for certain image components without interaction
with motor programs.

FIG. 3 is a diagram showing an RCS node (301)—NIST
open architecture standard for intelligent control systems of
robots and unmanned vehicles (adopted from NISTIR
69106). RCS 1is a set of high-level interfaces for a multi-
layered hierarchy of computational agents each containing
elements of sensory processing (302), world modeling (304),
value judgment (303), behavior generation (306), and knowl-
edge database (305). World Model supports simulation for
planning and recursive estimation and predictive filtering for
perception. Interaction between sensory processing and
world model enables symbol grounding and provide semantic
meaning to representations in the Knowledge Database. The
effectiveness of the entire system and, therefore, the success
of a practical implementation depend on how effective the
knowledge representation in World Model and Knowledge
Database can be.

FIG. 4 is a diagram, illustrating prior art in the field of
cognitive neuroscience. Major pathways of visual informa-
tion in the brain that are related to different activities of the
visual system have been identified (401) and generic schema
of perception (402) (adopted from Kosslyn). The “where”
(dorsal) pathway is a spatial-features encoding system,
whereas the “what” (ventral) pathway is an object-features
encoding subsystem. Outputs from both pathways come
together in an “associative memory” in the prefrontal areas.
Recognition occurs when an input matches a memory in the
“what” system. Identification takes place when input image
matches a stored representation in the associative memory.

FIG. 5 is a diagram illustrating what should be done for the
solution of image understanding problems. Unification of
knowledge representation (503) and image analysis (502) on
a single basis (501) allows for the implementation of low,
mid, and high level vision processes in a single framework
(504). Such a system matches derivative structures (507) that
were produced by mid-level vision processes as graph trans-
formations (506) rather than primary image views to the
3-dimensional object models (505), and heavily uses context
obtained with high-level vision models for identification
when the object is poorly seen or occluded. Methods of low-
level vision that were accumulated in large numbers in the
area of image analysis can be re-used via a set of standard
interfaces.

FIG. 6 is a diagram, illustrating the differences between the
prior art in the area of knowledge representation—expert
systems and ontologies and full-scale real time knowledge
system.

Expert system or ontology consists of knowledge inference
engine (601), knowledge base in form of facts and rules (602),
expressed in constructions of written language such as sym-
bolic strings, and user interface (603), that allows for query-
ing knowledge base.

It is well known that expert systems in the late 80’s and
early 90’s have proved themselves to be ineffective in most
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areas of potential application. Even when it was possible to
collect enough knowledge to cover a major number of pos-
sible cases of system behavior, there always were some
unplanned situations. Because such system can handle only
situations that have been anticipated and entered into the
system via facts and rules, a human being must be involved in
the system all the time in the event that an unplanned situation
arrives. However, a human operator inside the loop jeopar-
dizes the whole idea of such a system. This representation is
good for knowledge acquisition, serving as a mediator
between human experts and computers, but it does not serve
well for modeling.

A full-scale knowledge system that can function in real
world conditions must also include besides knowledge infer-
ence engine (604) and a knowledge base (605), a context
system (606), simulation engine (607), model inference
engine (608), world (system) model (609) that preserves rela-
tions between world entities and processes (610), and real-
world interface (611).

FIG. 7 is a diagram, illustrating prior art in the area of
knowledge representation—diagrammatic representation of
examples of written human language with explicit symbols
and semantic labeling. The explicit alphabet (701), words
(702, 703), sentences (704,705,706) are shown as diagrams.
All of them are organized into language—a system of knowl-
edge description (707). Existing knowledge models are based
on artificial theories that are based upon symbolic strings and
constructs of a written language. Formal logic has been devel-
oped further into a separate branch of science as abstractions
of these methods.

The artificial symbolic strings of a written human language
cannot serve as a good representation for knowledge models.
Written language is just a static reflection of knowledge mod-
els and processes, happening in the brain.

Although strings of symbols are perfectly readable by
humans, it is difficult to build an inference engine for such a
representation of knowledge. Such a knowledge system is
limited mostly to what a human can type in.

FIG. 8 is a diagram, illustrating methods of emerging
implicit symbols and their alphabets in the brain that also can
be achieved with methods of computational intelligence.
There are no explicit symbols in the brain, but intelligent
processes have symbolic nature.

Informational representations of a resonance are bell-
shape functions (801). Introduction of Certainty Dimension
or normalization converts such a function into a fuzzy set
(802). The core of such fuzzy set is 100% certain, and can be
represented as a member of a set (803) that contains linguistic
values from the domain of the fuzzy variable that covers
quantized axis.

However, these values do not have to be express linguisti-
cally. They can be defined as unique members of the set, and
obtain their linguistic meaning within the set of relations to
other concepts in the knowledge network (808)

Dynamics in neural network can be represented as an
energy landscape with local minima as attractors (804). A
threshold operation can convert the attractors into fuzzy sets
(805), preserving their diagrammatic relationships (806). In
the same way as in two paragraphs above, they can be repre-
sented as implicit symbols in certainty dimension. The topo-
logical relations between implicit symbols emulate a lattice-
type structure.

Methods of Computational intelligence that can create
such implicit symbols include, but are not limited with Fuzzy
sets, supervised and unsupervised Neural Networks, etc.

With such a statement of the problem, an implicit symbol is
a solution to a local pattern recognition problem with a finite
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number of possible patterns. The possible patterns form an
implicit alphabet, which can be represented with a set or a
lattice.

In this sense, an implicit symbol can stand for a concept,
object, feature, pattern, and a node in the relational knowl-
edge system. Linker mechanism (807) is necessary to include
such symbols into set of relationships in order to obtain mean-
ingful values.

FIG. 9 is a diagram, illustrating implicit symbolic labeling
with the same language diagrams as on FIG. 7. In this case,
linguistic values of nodes of the diagram are replaced with
implicit symbols. However, new implicit symbols (901, 902,
903) must now stand for the objects and concepts that were
previously shown by linguistic diagrams. And these symbols
obtain their meaning from the system of relations.

FIG. 10 is a diagram, illustrating cortical supercolumn
(1001)—an informational module in the cortex that cover
visual properties of a small visual area and can be represented
as a set of implicit alphabets of visual properties or an
advanced receptive field. A hypercolumn consists of alternat-
ing columns for each eye. The orientation sensitivity of the
columns covers all possible angles within a retinal area. There
are blobs—neural clusters that are responsible for the pro-
cessing of color information, which are discontinuities within
hypercolumns. A hypercolumn can be represented with a set
of implicit alphabets that cover color (1002, 1003), possible
orientation (1004, 1005), and disparity (not shown) that are
bounded to a specific retinal point or a small local area. In this
sense, a hypercolumn can be considered a complex receptive
field (1006), that is capable of working with multiple “alpha-
bets” of implicit symbols of orientation (1009), color (1010),
disparity, etc. that can be derived in a particular point or a
small local neighborhood area (1008) of an image with degree
of certainty that reduces from 1 to 0 from center to borders
(1007) and can be approximated with a fuzzy set.

FIG. 11 is a diagram, illustrating multilevel hierarchical
receptive fields. The concept of areceptive field (1101) can be
spatially represented as a fuzzy set. A “complex” receptive
field (1102) spatially clusters receptive fields from a lower
level, thus providing a hierarchy of information processing in
a larger spatial area of an image. However, on its own level, it
looks a simple receptive field (1003). This repeated multilevel
hierarchical structure allows for multi-level hierarchical spa-
tial clustering and space partitioning upon certain criteria,
such as derived values of feature-symbols on a particular
level. The clustering has a spatial nature, and there are no
restrictions on types or numbers of processing features that
are receptive field outputs.

FIG. 12 is a diagram, showing how grouping (1201) and
splitting (1202) of visual information can be achieved on
symbolic level using mechanisms of computational intelli-
gence. Logical Filtering is a combination of qualitative and
quantitative methods. If a relational difference (1205)
between the values X and Y of a certain feature of receptive
fields (1203) and (1204) is “small”, the fields can be consid-
ered similar. This allows for concatenating or clustering
(1207) the receptive fields. A receptive field of a higher spatial
level represents the union A U B, as it covers an area with
similar features (1208). Such a clustering or integration upon
the criteria of similarity can hierarchically cover a region of
an image. If a relational difference is large (1211), there is no
way to concatenate the two fields (1209, 1210). There is a
relation between the values or symbols of the two fields and it
can be represented with a certain symbol other then “=". A
receptive field (1213) of a higher spatial level marked with
such a symbol can represent a boundary (1212) between the
two regions. Since a receptive field is a spatial structure that
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can carry different sets of symbols/features, it is possible to
choose the basis for clustering and separation upon a single or
multiple features.

FIG. 13 is a diagram, illustrating hierarchy of processing
visual information from primitives to semantic levels. In the
brain, spatial perceptual information hierarchically converts
from quantities to properties (1301), from qualities to objects
or regions (1302), from objects to classes (1303) and to spa-
tial situations (1304). Temporal perceptual information con-
verts from changes (1305) to actions (1306), from actions and
objects to events (1307), from events to cause & effect links
(1308), and from cause & effect links to algorithms and
scenarios (1309). There are also feedback projections (1310)
that resolve ambiguity and uncertainty. Ecological con-
straints (1311) influence spatial situations.

FIG. 14 is a diagram, illustrating diagrammatic inference
with active diagrams and implicit symbols. Created implicit
symbols (1403, 1404) can stand for the fragments of diagrams
(1401, 1402). Their alphabet or lattice can have its own sym-
bol (1405) created in other alphabet. When processing a new
active diagram (1409), fragments (1407) and (1406) will be
replaced with their symbol (1403) while fragment (1408) will
bereplaced with its symbol (1405). New compressed diagram
(1410) may now be used in place of (1409). Closures (1411)
are equivalent to mathematical conclusions as they allow for
bypassing intermediary nodes and diagrams. But, within the
present invention, they are simply reflex-type links between
initial and final symbols. They can be created with a linker
(1413) and activator (1412) within the active diagram system.

FIG. 15 is a diagram illustrating an analysis or understand-
ing of gestalts with the set of active diagrams and implicit
symbols. Gestalt with circles (1501) is analyzed with the set
of active diagrams. A symbol (1503) denotes circle (1502),
the diagrams (1504, 1506) denote column and row respec-
tively, and they are denoted with the symbols (1505) and
(1506) respectively. These symbols create diagrams like
(1508) that denote combination of rows and columns, and
matrix (1509). When another gestalt (1510), or an image with
similar structural properties, is processed in the system, it
may re-use already created system of implicit symbols and
diagrams that self-describe structural properties of the pat-
terns. An example, where instead of group of circles (1501)
there is a group (1510) of vertical lines (1511), that creates
their own symbols (1512, 1513), but shares with the group
(1501) a common part (1504, 1505), which has been created
on a previous step when processing (1501), is shown in the
right part of the figure. Linker (1514) helps to create these
structures.

FIG. 16 is a diagram showing basic components of the
presented invention. It contains a semiotic engine (1601),
which has knowledge repositories in the forms of persistent
implicit symbols and their alphabets (1602) and persistent
diagrams and reference links (1603), which can be loaded
into active diagrammatic model memory (1604) with help of
loader (1605) where they represent active relevant informa-
tion. Linker (1606) helps to create new diagrammatic models
and reference links, while activation manager (1607) controls
relevancy of models in the active memory (1604). Derivation
engines (1609) transform diagrammatic models, using graph
and diagrammatic transformations. Recognition engines
(1608) use methods of computational intelligence that allows
for recognition or creation of new implicit symbols. Knowl-
edge acquisition engines (1610) convert information from
other formats into internal representation. Supervisor (1611)
coordinates different processes. The engine works as a full
scale real-world knowledge system and can process both
perceptual and conceptual information in a unified basis. Low
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level image processing services subsystem (1612) includes a
plurality of visual (1613) and object buffers (1614) that serve
for the conversion of visual information into semiotic form
that can be processed by the semiotic engine.

Behavior planning services or subsystem (1615) includes
Situation Awareness and Control Reporter (1618) that com-
municates with other systems of UGV or the entire formation.
Behavior request controllers (1616) communicate with
motion control system, requesting actions or navigation. Sen-
sors and active vision controllers (1619) obtain visual infor-
mation corresponding to a visual scene in real world situa-
tions.

Tactical game engine (1617) works with semiotic engine in
order to predict/plan a necessary course of action. System in
the present embodiment will have interfaces to other control
systems of UGV or robot.

This architecture and particular subsystems and compo-
nents allow for their implementation both in the form of
software system and as specialized hardware.

FIG. 17 is a diagram describing a method of processing
visual information in the visual bufter (1701) of the invention.
The process starts from mapping ecological constraints into
the visual buffer (1702), such as ground plane and horizon,
assigning relative distances and spatial order (1703), finding
orientation lines, basic image planes and surfaces (1704), and
creating visual context (1705) that allows for the creation of a
scene diagram (1707), which is an abstracted representation
of the visual buffer. Situation awareness controller (1706) is
an intelligent agent process in the system that controls all
these processes, allowing for derivation of the scene diagram
from the visual buffer. The processes are not linear as there are
feedbacks that allows for synthesis of active diagrammatic
models in the same way like the solution of a puzzle, where
empty slots are filled upon context. The situation awareness
controller also controls switching region of attention (1708)
and tracking salient objects (1709). The region of attention is
centered (1710) with respect to the possible center of the
object and is placed into object buffer (1711), where the
object is processed (1712). Recognized object classes (1713)
create their symbols on the scene diagram. The scene diagram
is mapped to the visual buffer, providing understanding of its
content. The visual buffer is linked to reactive behaviors
(1715) for tracking objects and the scene diagram is linked to
other situation diagrams (1714).

FIG. 18 is a diagram, visually illustrating processing of
visual buffer with ecological constraints. The Ecological
Model is a set of ecological constraints that allows for inter-
preting the content of the visual buffer (1802) as a visual
description of 3-dimensional world. According to Gibson, the
visual system of vertebrates has developed to effectively pro-
cess visual information from the surrounding world. The
world has certain basic properties, such as the Ground Plane,
where the observer (1801) stands. The nearest to observer part
of the Ground Plane is always under the observer’s legs (in
case of mobile robot or UGV-wheels), and is in the lowest part
of'the visual image. Therefore, the lowest part of an image can
be considered as a ground plane, which spreads from the
observer up to the horizon line where it meets with sky. The
part of the ground plane closest to horizon, is also farthest
from the observer. Object sizes on the ground plane reduce
with distances from the observer’s location. Such transfor-
mations are called perspective and can be visualized with a
convergent bundle of lines shown as white arrows on image.
Lines can be represented by chains of elements such as recep-
tive fields in a discrete environment like the visual buffer with
receptive fields. Ecological model of visual scene (1804) is a
diagrammatic structure that allows for interpretation of the
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visual buffer in terms of ecological optics and for the assign-
ment of relative distances and proportions. The interpretation
process (1803) maps these constraints to the receptive fields
of'visual buffer that allows for them to be interpreted as a part
of visual scene. Scene diagram resides in the short term
spatial memory and is a part of situation awareness system
(1805). This system can drive motion programs (1807) and
navigate (1806), using changes of visual buffer, while these
changes are “understood” with scene diagram.

FIG. 19 is a diagram, illustrating method of processing
rigid bodies in visual buffer. Hierarchical fuzzy Top-Down
process (1901,1902,1903) of separation of Receptive Fields
on different levels (1904,1905,1907) that have selected fea-
tures/symbols from the ones that have no such features/sym-
bols leads to the creation of fine coherent structures of the
regions with selected features/symbols on the lower levels.

Linker (1908) binds neighbor cells with similar features
into coherent relational structures, and on multiple levels
such a structure represents a tree, which hierarchically
describes a form of a rigid body

The level of grey in a receptive field shows a degree of
presence in the area covered with the receptive field (1906) of
a particular feature/symbol that is specified by the selection
criteria. Arrows between the grayed receptive fields denote
coherency relations between spatial elements of the selected
region. The system of such coherent relations can help in the
identification of the form of rigid bodies and other patterns.

FIG. 20 is a diagram, illustrating method of processing
textures in visual buffer. In case of textures, receptive fields
with selected features/symbols (2001) on a particular fine
level might become disconnected. Anyway, linker will bind
disconnected fields (2002,2003,2004,2005) with similar fea-
tures/symbols into a coherent structure. This phenomenon is
known as perceptual grouping. The pattern of binding is an
important structural feature of a textured region, and it gives
additional visual clue that allows visual system to separate
distinctive textural regions. The level of grey in a receptive
field shows a degree of presence in the area covered with the
receptive field of a particular feature/symbol that is specified
by the selection criteria. Arrows between the grayed receptive
fields shows perceptual grouping of spatial elements with
similar features/symbols into a coherent structure. The sys-
tem of such coherent relations can help in the identification
and separation of textured regions and similar spatial pat-
terns.

FIG. 21 is a diagram, illustrating process of interaction of
visual and object buffer of presented invention. Visual buffer
(2101) contains large receptive fields. Some fields contain
features that might be related to an object (shown in the levels
of'grey). The other fields do not have these features and can be
treated as a background (shown white). They will be ignored
in the further analysis of the object. At this point, it helps to
find and narrow down initial region of interest and roughly
separate figure from ground. Precise contour of object cannot
be fully known at this phase. The black contour shows here a
ground truth. When centered in the region of attention, the
object appears in the object buffer (2102), and its fine repre-
sentation of object buffer content with small receptive fields
allows object completely be separated from its background
(2103) with help of visual intelligence (2104) that provides
additional separation criteria. Further logical grouping
(2105) in Object Buffer derive a Shape Tree Diagram that
with help of Graph and Diagrammatic Transformations can
be converted into Derivative Structures (2106), and their
invariant classification can be easily achieved. Object Buffer
(2107) also demands finding similar structures to the one in
the Object Buffer elsewhere in the visual buffer (2108).
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FIG. 22 is a diagram, illustrating method of processing
visual information in the object buffer of the invention. Object
buffer (2201) separates centered object (2202) from its back-
ground, and inference engine (2204) derives invariant struc-
tures (2203) from an object. These structures are subject for
identification (2205) and recognition (2206) that identifies
object classes (2207) used for implicit labeling (2208) of
scene diagram (2209). Models of situations (2210) help to the
process of identification, providing necessary context. ROI
controller (2211) centers object in the object buffer, sending
command to the visual buffer (2212).

FIG. 23 is a diagram, illustrating method of processing of
surfaces using fusion of local features and ecological con-
straints. The orientation of local surfaces (2301) can be mea-
sured with implicit alphabet of possible orientations (2302,
2303). Fusion (2305) with ecological constraints of visual
scene (2304) helps to create visual surfaces in their discrete
diagrammatic representation (2306), and they can be pro-
cessed with means for diagrammatic and graph transforma-
tions.

FIG. 24 is a diagram, illustrating interaction of processes of
identification and recognition in terms of presented invention.
The content of object buffer (2401) may be a subject of a
holistic recognition (2403) and identification by parts (2402)
if object is occluded. This is a recursive process, as a part can
be processed in the same way. Recognition involves implicit
alphabets of objects (2404) and their views (2405) that are
associated with model structures consisting from parts (2406)
of identified objects.

FIG. 25 is a diagram, illustrating an example of functioning
presented invention as a full-scale real-world knowledge sys-
tem embedded into control system of unmanned ground
vehicle (2501). Instead of precise calculations of a 3-dimen-
sional model of the visual scene, it construct a spatial rela-
tional structure of salient information from the visual buffer,
using different depth cues with respect to the UGV or robot,
which is placed in the center of “Egosphere.” Recognition is
achieved as interaction between visual (2502) and object
buffers (2503) allows for the labeling of this structure with
implicit symbols. Implicit labeling does not require explicit
wording, and the semantic values are shown here only for a
better explanation. Basic orientation lines extracted from the
image are shown in black. The processes of identification of
the spatial structure and recognition are interdependent. Rec-
ognition of a texture as “bushes” or another type of vegetation
helps to “understand” surface as being of a particular type.
Similarly, a surface can be treated as a “valley,” and then the
vegetation can be easier recognized as “bushes.”” An object,
which suddenly popped up over the terrain, might not be
recognized as a helicopter at the first moment. But its behav-
ior and its position on the scene identify it as a helicopter,
loading appropriate models and implicit alphabets for further
recognition of the type of the helicopter and activation of
appropriate reactive behavior. A similar logical mechanism
works for spatial relations. Approximate distances are rela-
tive to the observer and to each other, and knowledge of some
relative distances makes deriving other relative distances pos-
sible. The visual scene has a certain logic, which allow for
using different cues in building knowledge structures from
visual information. Once built, the scene diagram changes
slower than local information in the visual buffers. This
allows for the mapping of labels and distances back to the
visual buffer via a set of closures, which disambiguates visual
information for action control and navigation. (For the pur-
pose of clarity, only one such closure for the helicopter object
(2504) is explicitly shown on the current image. Such clo-
sures-links exist for other salient objects/regions, but the clo-
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sures are not shown here.) Having the logic of a visual scene
captured in the form of relational hierarchical network-sym-
bolic structure and mapped back to the visual buffer, the UGV
can derive relative locations of targets and other salient com-
ponents of the scene and use it as a perceptual input for the
Predictive Situation Awareness Model. All ofthis is possible,
because the embedded semiotic engine emulates a full-scale
real-world knowledge system (2505, 2506, 2507, 2508, 2509,
2510, 2511) that is also able to process perceptual informa-
tion in real time. Tactical behaviors can be provided by a
Tactical Game Engine (2505) that uses Predictive Situation
Awareness Model (2512) and associated reactive behaviors to
respond to dynamic situations, and can choose the right tac-
tical behavior: to report, to hide, to call for support, or to
attack.
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What is claimed:

1. An active semiotic system for image and video under-
standing by autonomous robots and unmanned vehicles to
provide better situation awareness and intelligent tactical
behavior in real world situations, the active semiotic system
comprising:

a plurality of sensor and active vision controllers that
obtain visual information corresponding to a visual
scene in real world situations;

a visual information processor that processes the visual
information into semiotic form;

a semiotic engine comprising: a linker that generates active
diagrammatic models of the visual scene in accordance
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with the visual information processed into semiotic
form; a plurality of derivation engines that transform the
active diagrammatic models into higher-level active dia-
grammatic models using graphs and diagrammatic
information and that identify object classes within the
visual scene; a plurality of knowledge acquisition
engines that convert information from other formats into
internal representations corresponding to the active dia-
grammatic models; a memory that stores the active dia-
grammatic models as a plurality of implicit symbols and
their alphabets and a plurality of diagrams and reference
links; a loader that loads the plurality of implicit sym-
bols and their alphabets and the plurality of diagrams
and reference links into the memory; a plurality of rec-
ognition engines that recognize the implicit symbols
stored in the memory; and an activation manager that
controls the plurality of implicit symbols and their
alphabets and the plurality of diagrams and reference
links stored in the memory; and

a behavior planning services module that predicts and
plans a course of action in accordance with the active
diagrammatic models and that communicates the course
of action to control systems of autonomous robots or
unmanned systems for situation awareness and intelli-
gent tactical behavior in real world situations.

2. An active semiotic system according to claim 1; wherein
the derivation engines of the semiotic engine derive regulari-
ties from the active diagrammatic models and compress the
regularities into active diagrams for emulation of mid-level
vision processes and for further high-level intelligent pro-
cessing.

3. An active semiotic system according to claim 2; wherein
the recognition engines recognize regular patterns and obtain
the implicit symbols from perceptual information or from
within the active diagrams.

4. An active semiotic system according to claim 2; wherein
regular structures are associated with the respective implicit
symbols.

5. An active semiotic system according to claim 1; wherein
at least one of the implicit symbols represents a pattern that
can be obtained as a solution to a local pattern recognition
problem with a finite number of possible patterns.

6. An active semiotic system according to claim 1; wherein
at least one of the implicit symbols represents a structure
within the corresponding active diagrammatic models.

7. An active semiotic system according to claim 6; wherein
at least one of the alphabets of the corresponding implicit
symbols represents a set containing a finite number of pos-
sible patterns.

8. An active semiotic system according to claim 6; wherein
at least one of the alphabets of the corresponding implicit
symbols represents a set containing the structures within the
corresponding active diagrammatic models.

9. An active semiotic system according to claim 1; wherein
the derivation engines dynamically create or derive new
implicit symbols and corresponding alphabets and new dia-
grammatic models.

10. An active semiotic system according to claim 1;
wherein the derivation engines dynamically modify existing
implicit symbols and corresponding alphabets and new dia-
grammatic models.

11. An active semiotic system according to claim 1;
wherein the visual information processor comprises:

a plurality of visual buffers that process the visual infor-
mation generated by the semiotic system at the level of
the entire visual scene, the semiotic engine creating
abstract knowledge models corresponding to the pro-
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cessed visual information and mapping known visual
constraints of the created abstract knowledge models
back to the visual buffers; and

aplurality of object buffers that process a selected subset of

the visual information processed by the visual buffers,
the subset of the visual information appearing within a
region of interest (ROT) within the visual scene at a finer
level for recognition by the recognition engines and
identification by the derivation engines of object classes
for labeling of the active diagrammatic models of the
visual scene.

12. An active semiotic system according to claim 11; fur-
ther comprising an ROI controller that centers part of the
visual information in the visual scene in the object buffers for
extraction of the subset of the visual information.

13. An active semiotic system according to claim 12;
wherein the part of the visual information centered by the ROI
controller corresponds to an object that is separated from a
background of the visual scene; and wherein the derivation
engines comprise an inference engine that derives the active
diagrammatic models from the separated object for invariant
classification of the object via matching of the active dia-
grammatic models thereof by the derivation engines or for
recognition thereof by the recognition engines.

14. An active semiotic system according to claim 13;
wherein the linker maps symbols of the object classes to the
active diagrammatic models of the visual scene.

15. An active semiotic system according to claim 14;
wherein the semiotic engine maps to the visual buffers the
active diagrammatic models of the visual scene to which the
symbols of the object classes are mapped to provide under-
standing of the content of the visual buffers by the unmanned
vehicles or autonomous robots.

16. An active semiotic system according to claim 15;
wherein the subset of visual information in the object buffers
is used by the recognition engines for recognizing similar
subsets in the visual buffers to facilitate processing by the
linker of similarities and textures in the entire visual scene in
the visual buffers by linking similar features expressed with
symbols thereof into coherent structures within the active
diagrammatic models for the identification of rigid bodies
and textured regions in the visual scene.

17. An active semiotic system according to claim 15;
wherein the derivation engines identify the object classes in
accordance with the active diagrammatic models of the visual
scene to which the symbols of the object classes are mapped
to provide necessary visual constraints of information con-
tained in the visual scene, the information in the visual buffers
being processed with a set of the visual constraints that allows
for interpretation of the content of the visual buffers as a
visual description of a three-dimensional world in the form of
adiagrammatic structure with assigned relative distances and
proportions, the set of visual constraints being mapped back
to the visual buffers by the semiotic engine.

18. An active semiotic system according to claim 13;
wherein the behavior planning services module comprises: a
plurality of behavior request controllers that communicate
with control systems of the unmanned vehicles or autono-
mous robots by requesting behavior actions or navigation
information for tracking objects; a tactical game engine that
obtains necessary information from the visual buffers and
active diagrammatic models to provide tactical behaviors and
associated reactive behaviors to respond to dynamic situa-
tions in the visual scene;

and a situation awareness controller that communicates

with the control systems of the unmanned vehicles or
autonomous robots, controls switching of the ROI,
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tracks the objects in the visual buffers to allow centering
of the part of the visual information in the visual scene
with respect to a center of the tracked objects, and places
the centered part of the visual information in the visual
scene into the object buffers for processing of the
tracked objects.

19. An active semiotic system for image and video under-
standing by autonomous robots and unmanned vehicles to
provide better situation awareness and intelligent tactical
behavior in real world situations, the active semiotic system
comprising:

means for obtaining visual information corresponding to a

visual scene in real world situations;

means for processing the visual information into semiotic
form;

means for generating active diagrammatic models of the
visual scene in accordance with the visual information
processed into semiotic form;

means for transforming the active diagrammatic models
into higher-level active diagrammatic models using
graphs and diagrammatic information and for identify-
ing object classes within the visual scene;

means for converting information from other formats into
internal representations corresponding to the active dia-
grammatic models;

means for storing the active diagrammatic models as a
plurality of implicit symbols and their alphabets and a
plurality of diagrams and reference links;

means for recognizing the stored implicit symbols;

means for controlling the stored plurality of implicit sym-
bols and their alphabets and the plurality of diagrams
and reference links; and

means for predicting and planning a course of action in
accordance with the active diagrammatic models and for
communicating the course of action to control systems
of autonomous robots or unmanned systems for situa-
tion awareness and intelligent tactical behavior in real
world situations.

20. An active semiotic system according to claim 19;
wherein the means for transforming derive regularities from
the active diagrammatic models and compress the regularities
into active diagrams for emulation of mid-level vision pro-
cesses and for further high-level intelligent processing and
wherein the means for recognizing recognizes regular pat-
terns and obtains the implicit symbols from perceptual infor-
mation or from within the active diagrams.

21. An active semiotic system according to claim 19;
wherein at least one of the implicit symbols represents a
pattern that can be obtained as a solution to a local pattern
recognition problem with a finite number of possible patterns
or represents a structure within the corresponding active dia-
grammatic models.

22. An active semiotic system according to claim 21;
wherein at least one of the alphabets of the corresponding
implicit symbols represents a set containing a finite number
of possible patterns.

23. An active semiotic system according to claim 21;
wherein at least one of the alphabets of the corresponding
implicit symbols represents a set containing the structures
within the corresponding active diagrammatic models.

24. An active semiotic system according to claim 19;
wherein the means for transforming dynamically creates or
derives new implicit symbols and corresponding alphabets
and new diagrammatic models.
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25. An active semiotic system according to claim 19;
wherein the means for transforming dynamically modify
existing implicit symbols and corresponding alphabets and
new diagrammatic models.

26. An active semiotic system according to claim 19;
wherein means for processing includes first processing means
for processing the visual information at the level of the entire
visual scene; and further comprising means for creating
abstract knowledge models corresponding to the processed
visual information and for mapping known visual constraints
of the created abstract knowledge models back to the first
means for processing.

27. An active semiotic system according to claim 26;
wherein the means for processing includes second processing
means for processing a selected subset of the visual informa-
tion processed by the first processing means, the selected
subset of the visual information appearing within a region of
interest (ROI) within the visual scene at a finer level for
recognition by the means for recognizing and identification
by the means for derivation engines of object classes for
labeling of the active diagrammatic models of the visual
scene.

28. An active semiotic system according to claim 27; fur-
ther comprising means for centering part of the visual infor-
mation in the visual scene in the second processing means for
extraction of the subset of the visual information; wherein the
part of the visual information centered by means for centering
corresponds to an object that is separated from a background
of the visual scene; and wherein the means for transforming
comprises means for deriving the active diagrammatic mod-
els from the separated object for invariant classification of the
object via matching of the active diagrammatic models
thereof by the means for transforming or for recognition
thereof by the means for recognizing engines.

29. An active semiotic system according to claim 28;
wherein the means for generating maps symbols of the object
classes to the active diagrammatic models of the visual scene.

30. An active semiotic system according to claim 28; fur-
ther comprising means for mapping to the first processing
means the active diagrammatic models of the visual scene to
which the symbols of the object classes are mapped to provide
understanding of the content of the first processing means by
the unmanned vehicles or autonomous robots; wherein the
subset of visual information in the second processing means
is used by the means for recognizing for recognizing similar
subsets in the first processing means to facilitate processing
by the means for generating of similarities and textures in the
entire visual scene in the first processing means by linking
similar features expressed with symbols thereof into coherent
structures within the active diagrammatic models for the
identification of rigid bodies and textured regions in the visual
scene; and wherein the means for transforming identifies the
object classes in accordance with the active diagrammatic
models of the visual scene to which the symbols of the object
classes are mapped to provide necessary visual constraints of
information contained in the visual scene, the information in
the first processing means being processed with a set of the
visual constraints that allows for interpretation of the content
of the first processing means as a visual description of a
three-dimensional world in the form of a diagrammatic struc-
ture with assigned relative distances and proportions; and
further comprising means for mapping the set of visual con-
straints back to the first processing means.

31. An active semiotic system according to claim 30;
wherein the means for predicting and planning comprises:
first means for communicating with the control systems of the
unmanned vehicles or autonomous robots by requesting
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behavior actions or navigation information for tracking
objects; means for acquiring necessary information from the
first processing means and the active diagrammatic models to
provide tactical behaviors and associated reactive behaviors
to respond to dynamic situations in the visual scene; and
second means for communicating with the control systems of
the unmanned vehicles or autonomous robots, controlling
switching of the means for centering the part of the visual
information in the visual scene, tracking the objects in the first
processing means to allow centering of the part of the visual
information in the visual scene with respect to a center of the
tracked objects, and placing the centered part of the visual
information in the visual scene into the second processing
means for processing of the tracked objects.

32. A computer-implemented method of active semiotics
for image and video understanding by autonomous robots and
unmanned vehicles to provide better situation awareness and
intelligent tactical behavior in real world situations, the
method comprising the steps of:

obtaining visual information corresponding to visual

scenes in real world situations;

processing the visual information into semiotic form;

generating active diagrammatic models in accordance with

the visual information in semiotic form;

storing the active diagrammatic models as a plurality of

implicit symbols and their alphabets and a plurality of
diagrams and reference links;

transforming the active diagrammatic models into higher-

level active diagrammatic models using graphs and dia-
grammatic information and identifying object classes
within the visual scenes;

recognizing the implicit symbols stored in the memory;

converting information from other formats into internal

representations corresponding to the active diagram-
matic models; and

predicting and planning a course of action in accordance

with the active diagrammatic models and communicat-
ing the course of action to control systems of autono-
mous robots or unmanned systems for situation aware-
ness and intelligent tactical behavior in real world
situations.

33. A method according to claim 32; further comprising the
steps of deriving regularities from the active diagrammatic
models and compressing the regularities into active diagrams
for emulation of mid-level vision processes and for further
high-level intelligent processing; and wherein the recogniz-
ing step comprises recognizing regular patterns and obtaining
the implicit symbols from perceptual information or from
within the active diagrams.

34. A method according to claim 32; wherein at least one of
the implicit symbols represents a pattern that can be obtained
as a solution to a local pattern recognition problem with a
finite number of possible patterns.

35. A method according to claim 32; wherein at least one of
the implicit symbols represents a structure within the corre-
sponding active diagrammatic models; and wherein at least
one of the alphabets of the corresponding implicit symbols
represents a set containing a finite number of possible pat-
terns or a set containing the structures within the correspond-
ing active diagrammatic models.

36. A method according to claim 32; further comprising the
step of dynamically creating or deriving new implicit sym-
bols and corresponding alphabets and new diagrammatic
models.

37. A method according to claim 32; further comprising the
step of dynamically modify existing implicit symbols and
corresponding alphabets and new diagrammatic models.
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38. A method according to claim 32; wherein the step of
processing the visual information comprises the steps of:
processing by visual buffers the visual information at the level
of an entire visual scene, and further comprising the step of
creating abstract knowledge models corresponding to the
processed visual information and mapping known visual con-
straints of the created abstract knowledge models back to the
visual buffers; and processing by object buffers a selected
subset of the visual information processed by the visual
buffer, the subset of the visual information appearing within a
region of interest or attention within the visual scene at a finer
level for recognition and identification of object classes for
labeling of the active diagrammatic models of the visual
scene.

39. A method according to claim 38; further comprising the
steps of centering a part of the visual information in the visual
scene for extraction of the subset of the visual information,
the centered part of the visual information corresponding to
an object that is separated from a background of the visual
scene, and deriving the active diagrammatic models from the
separated object for invariant classification of the separated
object.

40. A method according to claim 39; further comprising the
steps of: mapping symbols of the object classes to the active
diagrammatic models of the visual scene; and mapping the
active diagrammatic models of the visual scene to which the
symbols of the object classes are mapped to provide under-
standing of the content of the visual buffers by the unmanned
vehicles or autonomous robots.

41. A method according to claim 40; wherein the subset of
visual information in the object buffers is used for recogniz-
ing similar subsets in the visual buffers to facilitate process-
ing of similarities and textures in the entire visual scene in the
visual buffers by linking similar features expressed with sym-
bols thereof into coherent structures within the active dia-
grammatic models for the identification of rigid bodies and
textured regions in the visual scene; and further comprising
the step of identifying the object classes in accordance with
the active diagrammatic models of the visual scene to which
the symbols of the object classes are mapped to provide
necessary visual constraints of information that may be con-
tained in a particular visual scene, and processing the infor-
mation with a set of the visual constraints that allows for
interpretation of the content of the visual buffers as a visual
description of a three-dimensional world in the form of a
diagrammatic structure with assigned relative distances and
proportions; and further comprising the step of mapping the
set of the visual constraints back to the visual buffers.

42. A method according to claim 41; further comprising the
steps of communicating a plurality of behavior request con-
trollers with the control systems of the unmanned vehicles or
autonomous robots by requesting behavior actions or naviga-
tion information for tracking objects, obtaining necessary
information from the active diagrammatic models to provide
tactical behaviors and associated reactive behaviors to
respond to dynamic situations in the visual scene, communi-
cating a situation awareness controller with the control sys-
tems of the unmanned vehicles or autonomous robots to con-
trol switching of the region of interest, tracking the objects to
allow centering of the part of the visual information in the
visual scene with respect to a center of the tracked object, and
placing the centered part of the visual information in the
visual scene into the object buffers for processing of the
tracked objects.

43. A computer program product comprising a computer-
readable medium having computer program instructions and
data embodied thereon for a method of active semiotics for
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image and video understanding by autonomous robots and
unmanned vehicles to provide better situation awareness and
intelligent tactical behavior in real world situations, the
method comprising:
obtaining visual information corresponding to visual
scenes in real world situations;
processing the visual information into semiotic form;
generating active diagrammatic models in accordance with
the visual information in semiotic form;

storing the active diagrammatic models as a plurality of
implicit symbols and their alphabets and a plurality of
diagrams and reference links;

transforming the active diagrammatic models into higher-

level active diagrammatic models using graphs and dia-
grammatic information and identifying object classes
within the visual scenes;

recognizing the implicit symbols stored in the memory;

converting information from other formats into internal

representations corresponding to the active diagram-
matic models; and

predicting and planning a course of action in accordance

with the active diagrammatic models and communicat-
ing the course of action to control systems of autono-
mous robots or unmanned systems for situation aware-
ness and intelligent tactical behavior in real world
situations.

44. A computer program product according to claim 43;
further comprising deriving regularities from the active dia-
grammatic models and compressing the regularities into
active diagrams for emulation of mid-level vision processes
and for further high-level intelligent processing; and wherein
the recognizing of the implicit symbols comprises recogniz-
ing regular patterns and obtaining the implicit symbols from
perceptual information or from within the active diagrams.

45. A computer program product according to claim 43;
wherein at least one of the implicit symbol represents a struc-
ture within the corresponding active diagrammatic models;
and wherein each of the alphabets of the corresponding
implicit symbols represents a set containing a finite number
of'possible patterns or a set containing the structure within the
corresponding active diagrammatic models.

46. A computer program product according to claim 43;
wherein the processing of the visual information comprises:
processing by visual buffers the visual information at the level
of an entire visual scene; creating abstract knowledge models
corresponding to the processed visual information and map-
ping known visual constraints of the created abstract knowl-
edge models back to the visual buffers; and processing by
object buffers a selected subset of the visual information
processed by the visual buffer, the subset of the visual infor-
mation appearing within a region of interest or attention
within the visual scene at a finer level for recognition and
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identification of object classes for labeling of the active dia-
grammatic models of the visual scene.

47. A computer program product according to claim 46;
further comprising centering a part of the visual information
in the visual scene for extraction of the subset of the visual
information, the centered part of the visual information cor-
responding to an object that is separated from a background of
the visual scene, and deriving the active diagrammatic models
from the separated object for invariant classification of the
separated object.

48. A computer program product according to claim 47,
further comprising mapping symbols of the object classes to
the active diagrammatic models of the visual scene and map-
ping the active diagrammatic models of the visual scene to
which the symbols of the object classes are mapped to provide
understanding of the content of the visual buffers by the
unmanned vehicles or autonomous robots.

49. A computer program product according to claim 48;
wherein the subset of visual information in the object buffers
is used for recognizing similar subsets in the visual buffers to
facilitate processing of similarities and textures in the entire
visual scene in the visual buffers by linking similar features
expressed with symbols thereof into coherent structures
within the active diagrammatic models for the identification
of rigid bodies and textured regions in the visual scene; and
further comprising the step of identifying the object classes in
accordance with the active diagrammatic models of the visual
scene to which the symbols of the object classes are mapped
to provide necessary visual constraints of information that
may be contained in a particular visual scene, and processing
the information with a set of the visual constraints that allows
for interpretation of the content of the visual buffers as a
visual description of a three-dimensional world in the form of
adiagrammatic structure with assigned relative distances and
proportions; and further comprising the step of mapping the
set of the visual constraints back to the visual buffers.

50. A computer program product according to claim 49;
further comprising the steps of communicating a plurality of
behavior request controllers with the control systems of the
unmanned vehicles or autonomous robots by requesting
behavior actions or navigation information for tracking
objects, obtaining necessary information from the active dia-
grammatic models to provide tactical behaviors and associ-
ated reactive behaviors to respond to dynamic situations in
the visual scene, communicating a situation awareness con-
troller with the control systems of the unmanned vehicles or
autonomous robots to control switching of the region of inter-
est, tracking the objects to allow centering of the part of the
visual information in the visual scene with respect to a center
of the tracked object, and placing the centered part of the
visual information in the visual scene into the object buffers
for processing of the tracked objects.
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